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Motivation

• Some of the central problems in Machine Learning (ML)/ Statistics
(S) / (regression, classification and estimation) have been addressed
using heuristic methods; (Lasso for best subset regression or CART
for optimal classification).

• This implies that we do not really know if we have indeed solved
these problems.

• While convex optimization (CO) has had impact in ML/S:
Compressed Sensing, Matrix Completion, Mixed integer optimization
(MIO) and Robust Optimization (RO) are relatively unknown in
ML/S.

• ML/S considers MIO problems to be intractable.

• Yet MIO, RO, CO have advanced very significantly.
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Progress of MIO

• Speed up between CPLEX 1.2 (1991) and CPLEX 11 (2007): 29,000
times

• Gurobi 1.0 (2009) comparable to CPLEX 11

• Speed up between Gurobi 1.0 and Gurobi 6.5 (2015): 48.7 times

• Total speedup 1991-2015: 1,400,000 times

• A MIO that would have taken 16 days to solve 25 years ago can now
be solved on the same 25-year-old computer in less than one second.

• Hardware speed: 93.0 PFlop/s in 2016 vs 59.7 GFlop/s in 1993
1,600,000 times

• Total Speedup: 2.2 Trillion times!

• A MIO that would have taken 71,000 years to solve 25 years ago can
now be solved in a modern computer in less than one second.
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Remarks on Complexity

• A 2.2 Trillion speed up forces us to reconsider what is tractable.

• A problem is tractable if it can be solved for sizes and in times that
are appropriate for the application.

• Asymptotic polynomial solvability or NP-hardness is not relevant
under this definition.
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Research Objectives

• To demonstrate that using modern optimization (MIO, RO, CO)
optimal solutions to large scale instances in ML/S

I can be found in seconds.
I can be certified to be optimal in minutes.
I outperform classical heuristic approaches in out of sample experiments

involving real and synthetic data.

• To bring closer ML/S to Optimization.

• To a↵ect the teaching of ML/S. In the Fall 2017 and Spring 2018 I am
teaching a MS and doctoral class at MIT on the topic of this lecture.
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Sparse Linear Regression, B.+van Parys, 2016

• Problem with reguralization

min
w

1
2� kwk

2
2 +

1
2 kY � Xwk22

s.t. kwk0  k ,

• We rewrite (ws)i = siwi , si 2 {0, 1}.
• Spk :=

�

s 2 {0, 1}p : 1>s  k

 

min
s2Spk



min
ws2<k

1

2�
kwsk22 +

1

2
kY � Xswsk22

�

.

• Solution:

min c(s) =
1

2
Y

>
⇣

In + �
P

j2[p] sjKj

⌘�1
Y

s.t. s 2 Spk ,

•
Kj := XjX

>
j .

• Binary convex optimization problem.
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A Cutting Plane Algorithm

• Input: Y 2 <n, X 2 <n⇥p and k 2 [1, p].

• Output: s? 2 Spk and w

? 2 <p.

•
s1  warm start
⌘1  0
t  1

• While ⌘t < c(st)
I

st+1, ⌘t+1  argmins, ⌘ { ⌘ 2 <+ s.t. s 2 Spk , ⌘ �
c(st) +rc(st)(s � st), 8i 2 [t]}

I
t  t + 1

•
s

?  st

•
w

?  0, w

?
s?  

�

Ip/� + X

>
s?Xs?

��1
X

>
s?Y
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Scalability

Cutting plane algorithm is faster than Lasso.

Exact T [s] Lasso T [s]
n = 10k n = 20k n = 100k n = 10k n = 20k n = 100k

k
=

10 p = 50k 21.2 34.4 310.4 69.5 140.1 431.3
p = 100k 33.4 66.0 528.7 146.0 322.7 884.5
p = 200k 61.5 114.9 NA 279.7 566.9 NA

k
=

20 p = 50k 15.6 38.3 311.7 107.1 142.2 467.5
p = 100k 29.2 62.7 525.0 216.7 332.5 988.0
p = 200k 55.3 130.6 NA 353.3 649.8 NA

k
=

30 p = 50k 31.4 52.0 306.4 99.4 220.2 475.5
p = 100k 49.7 101.0 491.2 318.4 420.9 911.1
p = 200k 81.4 185.2 NA 480.3 884.0 NA

Bertsimas (MIT) ML and Modern Optimization January 2018 9 / 41



Phase Transitions

•
Y = Xwtrue + E where E is zero mean noise uncorrelated with the
signal Xwtrue.

• Accuracy and false alarm rate of a certain solution w

?

A% := 100⇥ |supp(wtrue) \ supp(w?)|
k

F% := 100⇥ |supp(w?) \ supp(wtrue)|
|supp(w?)| .

• Perfect support recovery occurs only then when w

? tells the whole
truth (A% = 100) and nothing but the truth (F% = 0).
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Phase Transitions
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Phase Transitions

Phase transition happens at

n > n

? =
2k log p

log

✓

2k

�2
+ 1

◆ .
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Remark on Complexity

• Traditional complexity theory suggests that the di�culty of a problem
increases with dimension.

• Sparse regression problem has the property that for small number of
samples n, the dual approach takes a large amount of time to solve
the problem, but most importantly the optimal solution does not
recover the true signal.

• However, for a large number of samples n, dual approach solves the
problem extremely fast and recovers 100% of the support of the true
regressor wtrue.
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Sparse Classification, B.+Pauphilet+ Bart van Parys

• minw2Rp ,b2R
Pn

i=1 `(yi ,w
T
xi + b) +

1

2�
kwk22,

• Problem equivalent to
min
s2Sp

k

c(s),

where for any s 2 {0, 1}p,

c(s) := �
n
X

i=1

ˆ̀(yi ,↵i )�
�

2

n
X

j=1

sj↵
T
XjX

T
j ↵ s.t. eT↵ = 0.

• ˆ̀(y ,↵) := maxu2R u↵� `(y , u) is the Fenchel conjugate of the loss
function `.

•
c(s) is convex over [0, 1]p.
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Problems

Method Loss `(y , u) Fenchel conjugate ˆ̀(y ,↵)

Logistic loss log (1 + e

�yu)
(1 + y↵) log(1 + y↵)� y↵ log(�y↵), y↵ 2 [�1, 0],
+1, otherwise.

1-norm SVM max(0, 1� yu)
y↵, if y↵ 2 [�1, 0],
+1, otherwise.

2-norm SVM 1
2 max(0, 1� yu)2

1
2↵

2 + y↵, if y↵ 6 0,
+1, otherwise.
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Cutting-plane procedure

•
@c

@sj
(s) = ��

2
↵⇤(s)TXjX

T
j ↵⇤(s).

• Outer-approximation algorithm

•
X 2 Rn⇥p, Y 2 {�1, 1}p, k 2 {1, ..., p}

•
s1  warm-start, ⌘1  0, t  1

• Repeat st+1, ⌘t+1  
argmins,⌘

n

⌘ : s 2 S

p
k , ⌘ > c(si ) +rc(si )(̇s � si )8i = 1, ..., t

o

•
t  t + 1

• Until ⌘t < c(st)

• Algorithm converges to an optimal solution in a finite number of
iterations.

• Algorithm scales to n, p = 10, 000,
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Sparse logistic regression, p = 1000
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Optimal sparsity k? (left) and proportion of true features
TF/k? (right) as n increases,
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Real world data sets

Sparsity k AUC
Data set n p Sparse Lasso Sparse Lasso

Lung cancer 1, 145 14, 858 50 171 0.9816 0.9865
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Sparse SVM, p = 1000
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Optimal sparsity k? (left) and proportion of true features
TF/k? (right) as n increases,
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Phase Transitions

Phase transition happens at

C

✓

1 + C

0�
2

k

◆

k log(p � k)
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Classification

• Classification is a key problem in Machine Learning

I Given training data (xi , yi ), i = 1, . . . , n, we want to learn a function
for predicting y based on x

I xi 2 Rp are the features of the data

I
yi 2 {�1,+1} are the labels =) binary classification

• Example: Iris dataset from UCI Machine Learning Repository

I 150 iris flowers of three di↵erent types

I Four measurements for each flower: petal width/height and sepal
width/height

I Task: Predict the iris type using the measurements
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Decision Trees

• Decision tree methods are a popular and successful method for
classification

I Create a recursive partitioning of the features to classify points
I CART (Breiman et al, 1984) is the state-of-the-art method in this area
I Widespread use in academia and industry (⇠ 33000 citations!)

1

2 V

V S

Sepal length < 5.75 Sepal length � 5.75

Sepal width < 2.7 Sepal width � 2.7
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How does CART work?

• Each split branches on the value of on a single feature

• Greedy approach to partitioning—make a locally optimal split then
recurse on both children
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Observations

• CART is fundamentally greedy—it makes a series of locally optimal
decisions, but the final tree could be far from optimal

I Can we find globally optimal decision trees instead?

I How far from optimality are trees created by current methods?

• There have been many attempts to find methods for globally optimal
decision trees in the literature. Examples include:

I Linear optimization (Bennett, 1992)
I Continuous non-linear optimization (Bennett and Blue, 1996)
I Dynamic programming (Cox Jr et al, 1989; Payne and Meisel 1977)
I Genetic algorithms (Son, 1998)

• To date, there has not been a globally optimal decision tree method
that is tractable and is able to scale to the typical problem sizes seen
in classification
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Breiman’s take on globally optimal trees

Finally, another problem frequently mentioned (by others, not

by us) is that the tree procedure is only one-step optimal and not

overall optimal. . . . If one could search all possible partitions

. . . the two results might be quite di↵erent.

We do not address this problem. At this stage of computer

technology, an overall optimal tree growing procedure does not

appear feasible for any reasonably sized data set.

— Breiman et al. (1984)

• CART’s use of locally-optimal splits rather than globally-optimal was
guided by practical limitations at the time.
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Our Approach

• From: B.+Dunn, “Optimal Trees”, Machine Learning, 2017.

• Use Mixed-Integer Optimization (MIO) to consider the entire decision
tree problem at once and solve to obtain the Optimal Tree

• Motivation: MIO is the natural form for the Optimal Tree problem:
I Decisions: Which variable to split on, which label to predict for a region
I Outcomes: Which region a point ends up in, whether a point is

correctly classified

• Aspirations: Driven by recent improvements in MIO we seek new
decision trees that:

I Are globally optimal (or near-optimal)
I Provide a guarantee of optimality (or a measure of sub-optimality)
I Can be found in times appropriate for the application
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Performance of Optimal Classification Trees

• Average out-of-sample accuracy across 60 real-world datasets:
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Forming the tree structure

• Given training data (xi , yi ), i = 1, . . . , n

• Specify a maximum depth and form a complete tree of that depth

1

2 3

4 5 6 7

aT1 xi < b1 aT1 xi � b1

aT2 xi < b2 aT2 xi � b2 aT3 xi < b3 aT3 xi � b3

• Define sets for branches, B = {1, 2, 3}, and leaves, L = {4, 5, 6, 7}.
• Variables at , bt define the split at each branch node t 2 B
• We want splits that are parallel to the axes (one feature at a time)

I Elements of at binary, and
Pp

j=1 ajt = 1, so exactly one element is 1
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Allocating points to leaves

1

2 3

4 5 6 7

aT1 xi < b1 aT1 xi � b1

aT2 xi < b2 aT2 xi � b2 aT3 xi < b3 aT3 xi � b3

• Each point has to be assigned to a leaf t 2 L according to the splits:
I Binary variables zit = 1 if point i assigned to leaf t, 0 otherwise
I
P

t2L zit = 1 to ensure each point is assigned to a leaf

• Enforce splitting rules

aTmxi + ✏  bm +M (1� zit) , 8 left-branch ancestors m of t

aTmxi � bm �M (1� zit) , 8 right-branch ancestors m of t
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Calculating misclassification

• For each leaf node, the best class to assign is the most common label
among points assigned to that node

• Use Nkt to count the points of each label k in leaf t:

Nkt =
X

i :yi=k

zit

• Set Nt =
P

k Nkt to be the number of points in each leaf

• The misclassification error, Lt , is the number of points in the leaf that
do not belong to the most common class

Lt = Nt �max
k

{Nkt} = min
k
{Nt � Nkt}

• Linearize with binary variables

• Objective is to minimize sum of misclassifications Lt
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Extension—Hyperplane Splits

• CART and other methods require splits to be parallel to axes
• Using hyperplane splits can be more natural

I Referred to as oblique decision trees
I No good way to construct these in the literature: exponentially many

hyperplanes to consider
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Modifying formulation to incorporate hyperplane splits

• Our previous constraints on the splits were:

p
X

j=1

ajt = 1, 8t 2 B

ajt 2 {0, 1}, j = 1, . . . , p, 8t 2 B

• We can simply relax integrality on the ajt and replace sum with norm:

katk1  1, 8t 2 B

• Choose 1-norm because we can linearize it easily
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Local search heuristic for Optimal Trees

• We have developed a heuristic local search procedure with random
restarts to e�ciently optimize over this reduced search space

• Overview of one local search iteration:
I Choose node in the tree at random
I Re-optimize split at this node so it is locally optimal

F
If improved, exit and start local search iteration on new tree

I If no split can be improved, terminate

• Repeat local search iterations until no improvements found

• Use di↵erent starting trees as random restarts
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Real-world datasets

• 60 datasets from UCI Machine Learning Repository
I Wide range of values for n (50–245,000), p (2–500) and K (2–10)

• For each dataset:
I Split data into training and testing sets (75/25)
I Train model on training and report error on test set

• Repeated five times for each dataset and results averaged
I Minimizes the e↵ect of any particular training/validation/test split

• Carried out for CART, OCT, and OCT-H

• State-of-the-art methods: Random Forest, XGBoost
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Optimal Classification Trees with Hyperplanes

• Average out-of-sample accuracy across all 60 datasets:
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Improved triaging for children after head trauma,
B.+Dunn+Trikalinos+Wang, 2017

• Most children with head injury have apparently minor trauma.

• Main challenge is to identify a clinically important traumatic brain
injury (TBI) that necessitates immediate intervention.

• Computed tomography (CT) is the standard for rapid diagnosis of
intracranial injury,

• A CT scan has more than 60 times the radiation of an X-ray.

• Pediatric Emergency Care Applied Research Network (PECARN),
Lanchet, 2009 has developed and validated rules for triaging which
children with head trauma to do CT scan based on CART.
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Results

• Data EMR from 42412 children.

• We used OCT and compared with CART (PECARN study).

• Out of 8574 children < 2 years old, CART selected 4120 to do CT
scans, identified 80 correctly and missed 1.

• Out of 8574 children < 2 years old, OCT selected 2380 to do CT
scans, identified 80 correctly and missed 1.

• Out of 25355 children > 2 years old, CART selected 11866 to do CT
scans, identified 237 correctly and missed 7.

• Out of 25355 children > 2 years old, OCT selected 9251 to do CT
scans, identified 241 correctly and missed 3.
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Prediction of mortality in ED

• Data: 380,000 emergency surgeries in 600 hospitals across the US
from 2007-2014

• Task: Predicting risk of mortality within 30 days following surgery

• Use trees for interpretability so that we can help surgeons understand
the risk factors

• Current state-of-the-art is CART: 83% AUC out-of-sample

• Optimal Trees: 92% AUC out-of-sample.
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Conclusions

• Central problems in ML/S considered intractable a generation ago are
now tractable via modern optimization.

• Given the astonishing developments in MIO, we need to revisit our
core beliefs on computational complexity.

• ML/S traditionally linked to Probability; Especially in data rich
environments, ML/S is more naturally linked to Optimization.

• Statistics departments need to rethink their educational o↵erings and
the link to optimization.
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