Self-Adjusting Binary Search
Trees: Recent Results

Talk based on papers in WADS 2015, ESA 2015, FOCS 2015, and unpublished work.

Parinya Chalermsook’ Kurt Mehlhorn
Mayank Goswami? Thatchaphol Saranurak*
Laszl6 Kozma?

l l I I I max planck institut
informatik

January 15, 2017 T Aalto University, Helsinki 3Tel Aviv University, Tel Aviv
2CUNY, New York #KTH, Stockholm

Binary Search Trees (BSTs)

= A search for x in a binary search tree
walks down a path. If x is equal to the
key stored in the current node, we have
found x. If x is smaller than the key

) stored in the node, we go left. If x is

larger than the key stored in the node,
we go right.

= Different flavors of BSTs:

= static BSTs

= balanced BSTs: AVL-trees, 2-4-trees,
red-black trees, ...

= self-adjusting BSTs: Splay trees.

Innpynn::
inf ati

CGKMS 2/21

The Self-Adjusting BST-Model

= After an access, replace the
search path by an arbitrary tree
(the after-tree) on the same
- set of nodes rooted at the
accessed element.

= Reattach the dangling subtrees
(uniquely defined).

ini p B0 g pakinint Goivs 3721

The Self-Adjusting BST-Model

= After an access, replace the
search path by an arbitrary tree
(the after-tree) on the same

. set of nodes rooted at the
accessed element.
= Reattach the dangling subtrees

(uniquely defined).
» Cost = length of search path.

ini p B0 g pakinint Earvs 3721

The Self-Adjusting BST-Model

= After an access, replace the
search path by an arbitrary tree
(the after-tree) on the same

. set of nodes rooted at the
accessed element.

= Reattach the dangling subtrees
(uniquely defined).
» Cost = length of search path.
Question: Which re-arrangements lead to an efficient
online algorithm?
OPT = cost of the offline optimum.

OPT knows the entire access sequence in advance and can act
accordingly. The online algorithm has to rebuild without
knowing future accesses.

ini p B0 g pakinint Earvs 3721

The Dynamic Optimality Conjecture (Sleator/Tarjan
’85)

Splay trees are O(1)-competitive , i.e., for every
access sequence X, the cost of serving X by splay trees is at
most a constant factor larger than serving X optimally.

A path towards proving or disproving the conjecture:

= Understand better which variants of splay trees might also
work.

= Show special cases of the dynamic optimality conjecture.

= Exhibit easy sequences, i.e., sequences which OPT serves
in time o(nlog n).

ESA-paper addresses the first item.

ini p | [t Ol CTeT VTS

4/21

Self-Adjusting BSTs: What Makes them Tick? (ESA
2015)

Splay trees have many nice properties, e.g.,

= Logarithmic access cost Static optimality
= Working set property Static finger property
» Sequential access Dynamic finger property

We give sufficient (andnecessary) conditions for the first four
properties.

Previous work: Sleator, Tarjan, Subramanian, Georgakopoulos,
McClurkin prove first four properties for splay-trees and variants
thereof.

All of these results are corollaries of the main theorem in the
ESA paper. Also prove new results about depth-halving.

ini p B0 g pakinint - Carvs 5721

Main Result

Characteristic quantities of the search path and the after-tree.

Imnpnn:
it

CGKMS 6/21

Main Result

Characteristic quantities of the search path and the after-tree.

= length of the search path: |P|
12

ini p B0 g pakinint Eorvs 6/21

Main Result

Characteristic quantities of the search path and the after-tree.

= length of the search path: |P|
12

» number of side changes: z 4

ini p B0 g pakinint - Coivs 6/21

Main Result

Characteristic quantities of the search path and the after-tree.

= length of the search path: |P|

12
= number of side changes: z 4
= number of leaves: ¢ 5

ini p B0 g pakinint Gorvs 6/21

Main Result

Characteristic quantities of the search path and the after-tree.

= length of the search path: |P|

12
= number of side changes: z 4
= number of leaves: ¢ 5

* max left-depth of left subtree
(max right-depth of right
subtree): d 3

ini p B0 g pakinint Eorvs 6/21

Main Result

Characteristic quantities of the search path and the after-tree.

= length of the search path: |P|

12
= number of side changes: z 4
= number of leaves: ¢ 5

* max left-depth of left subtree
(max right-depth of right
subtree): d 3

Theorem: If accessed element goes to root, d = O(1), and ¢ =
Q(|P| — z), then the BST has the first four properties.

ini p B0 g pakinint Eorvs 6/21

Main Result

Characteristic quantities of the search path and the after-tree.

= length of the search path: |P|

12
= number of side changes: z 4
= number of leaves: ¢ 5

* max left-depth of left subtree
(max right-depth of right
subtree): d 3

Theorem: If accessed element goes to root, d = O(1), and ¢ =
Q(|P| — z), then the BST has the first four properties.

We also have a partial converse (more later).

ini p B0 g pakinint Eorvs 6/21

Application I: Splay Trees

= Split the search path at s and swap adjacent odd-even pairs.
= This is a global view on splay trees; seems to be new.

ini p B0 g pakinint - Carvs 7721

Application I: Splay Trees

ini p B0 g pakinint - Carvs 821

Application I: Splay Trees

= accessed element becomes root

ini p B0 g pakinint - Gorvs 8/21

Application I: Splay Trees

= accessed element becomes root
= max right-(left) depth is d = 2

ini p B0 g pakinint - Gorvs 8/21

Application I: Splay Trees

= accessed element becomes root

= max right-(left) depth is d = 2

=z+(>|P|/2 -1
Proof: There are |P|/2 — 1 odd-even pairs. Each side
change can move the elements of one pair to different sides.
Each odd-even pair on the same side creates a leaf. Thus

of leaves > |P|/2 — 1 — # of side changes

ini p B0 g pakinint - Gorvs 8/21

Depth Halving

In splay every node on the search path roughly halves its depth.

Sleator: is this property sufficient?

ini p B0 g pakinint - Carvs 9721

Depth Halving

In splay every node on the search path roughly halves its depth.

Sleator: is this property sufficient?

We don’t know, but strict depth-halving is sufficient: the
accessed element becomes the root and every node x on the
search path loses at least (1/2 + €)d(x) — O(1) ancestors and
gains at most O(1) new descendants.

ini p | [Ol CTeT VT

9/21

Partial Converses

If the after-tree may have non-constant left-depth or right-depth,
then the good properties (logarithmic access, static optimality,
...) cannot be shown with the sum-of-logs potential function.

HTULES
inf at

CGKMS 10/21

Partial Converses

If the after-tree may have non-constant left-depth or right-depth,
then the good properties (logarithmic access, static optimality,
...) cannot be shown with the sum-of-logs potential function.

If the number of leaves of the after-tree is allowed to be
o(|P| — number of side changes), then the traversal conjecture
does not hold.

< planck ins|
ini p B0 pppakinint - Gorvs 10721

The Dynamic Optimality Conjecture (Sleator/Tarjan
’85)

Splay trees are O(1)-competitive , i.e., for every
access sequence X, the cost of serving X by splay trees is at
most a constant factor larger than serving X optimally.

A path towards proving or disproving the conjecture:
= Understand better which variants of splay trees might also
work.
= Show special cases of the dynamic optimality conjecture.
= Exhibit additional easy sequences, i.e., sequences which
OPT serves in time o(nlog n).

FOCS-paper addresses items 2 and 3.

Traversal conjecture: Let X be the preorder traversal of a tree
T. Process X starting with a tree T'. OPT = O(n).
Only shownfor T’ =Tor X =1,2,...,n.

ini p B0 g pakinint - Carvs 11721

Pattern Avoiding Accesses (FOCS 2015)

An access sequence X avoids a pattern P if there is no
subsequence of X that is order-isomorphic to P.

= X=1,2,...,navoids 2, 1.
= Preorder traversal of a tree avoids 2, 3, 1.

ini p | [t Ol CTeT VTS

12/21

Pattern Avoiding Accesses (FOCS 2015)

An access sequence X avoids a pattern P if there is no
subsequence of X that is order-isomorphic to P.

» X=1,2,...,navoids 2,1.
= Preorder traversal of a tree avoids 2, 3, 1.
= Special cases of the optimality conjecture.
= GREEDY serves any sequence that avoids a permutation
pattern of size k with cost O(2a(”)°“2) -n).
= GREEDY with chosen initial tree serves any such sequence
with cost O(20¢) .).
= Traversal conjecture: k = 3.
* New easy sequences.

= OPT serves any k-decomposable sequence with cost
O(nlog k).

ax |)|dll(l;k institut CGKMS 12/21

lllpll"‘

Satisfied Point Sets

ce O

ce @)

[] [O)e]
ce
ce
[]

M = a {0, 1}-matrix (a point set).
Ignore the colors for the moment.

Opg = Closed rectangle with corners p
and g.

M is satisfied if for any two points
P, q € M with distinct x and y
coordinates there is another point
from M in the rectangle.

Access sequence X — matrix X.

Point (x, t) € X iff the element x is
accessed at time t .

* Atree T gives rise to a matrix T.

HITULES
inf ati

CGKMS

13/21

Geometric BSTs (Demaine, Harmon, lacono, Kane,
Patrascu (SODA ’09))

Geometric BST A on input [] outputs a

ce o satisfied matrix [ATT(X)], where
ce © Ar(X) 2 X.
) 0o
oe _—) .
oce Chosen initial tree: On input X outputs
o A(X).
Cost=8

ini p B0 kit Corms 1421

Geometric BSTs (Demaine, Harmon, lacono, Kane,
Patrascu (SODA ’09))

Geometric BST A on input [] outputs a

ce o satisfied matrix [ATT(X)], where
ce © Ar(X) 2 X.
[] OO
oe - . .
oce Chosen initial tree: On input X outputs
o A(X).
Cost=8 Cost = number of points (ones) in Ar(X).

ini p B0 kit Corms 1421

Geometric BSTs (Demaine, Harmon, lacono, Kane,
Patrascu (SODA ’09))

Geometric BST A on input [] outputs a

ce o satisfied matrix [ATT(X)], where
ce © Ar(X) 2 X.
[] OO
oe - . .
oce Chosen initial tree: On input X outputs
o A(X).
Cost=8 Cost = number of points (ones) in Ar(X).

Offline versus online

ini p B0 ki Gorvs 1421

Geometric BSTs (Demaine, Harmon, lacono, Kane,
Patrascu (SODA ’09))

Geometric BST A on input [] outputs a

ce o satisfied matrix [ATT(X)], where
ce © Ar(X) 2 X.
[] OO
oe - . .
oce Chosen initial tree: On input X outputs
o A(X).
Cost=8 Cost = number of points (ones) in Ar(X).

Offline versus online

Theorem(DHIKP): (online) geometric-BSTs = (online) BSTs.

ini p B0 ki corms 1421

Greedy (Lucas, Munro, DHIKP)

o = After access to x at time t add exactly the
. o (v, t) that are needed for satisfaction.

Accessed points
in black.

Points added by
Greedy in blue.

ini p B0 ki Gorms

15/21

Greedy (Lucas, Munro, DHIKP)

[] [] []
o » After access to x at time t add exactly the
(y, t) that are needed for satisfaction.
¢ « Greedy is not optimal.
[) [] [J
[] []
[]
[} []

lanck ins|
ini p B0 g pakinint Eorvs 15721

Greedy (Lucas, Munro, DHIKP)

[] [] []
o » After access to x at time t add exactly the
(y, t) that are needed for satisfaction.
¢ « Greedy is not optimal.
= Conjecture (Lucas, Munro, DHIKP):
o o Greedy is O(1)-competitive.

lanck ins|
ini p B0 g pakinint Eorvs 15721

Greedy (Lucas, Munro, DHIKP)

[] [] []
o » After access to x at time t add exactly the
(y, t) that are needed for satisfaction.
¢ « Greedy is not optimal.
= Conjecture (Lucas, Munro, DHIKP):
o o Greedy is O(1)-competitive.

* Theorem: Greedy almost satisfies
traversal conjecture (cost n - 2(M°Y),

Greedy with chosen initial tree satisfies
traversal conjecture.

lanck ins|
ini p B0 g pakinint Eorvs 15721

Forbidden Matrix Theory

oce o

ce O o o

° oo .
oce contains .
oce °
°

Let M and P be n x nand k x k matrices s.t. M avoids P.
= (Marcus, Tardos, Fox): If P is a permutation matrix, the
number of ones in M is at most n20(k)

» (Klasar, Keszegh): If P is light (only one 1 per column), the

. \ O(K?
number of ones in M is at most n2(M°*.

S. Pettie pioneered the use of forbidden matrix theory for the
study of data structures.

< planck ins|
ini p B0 g pakinint Copvs 16/21

Greedy and Forbidden Matrices |

If the access sequence X avoids a pattern P, then for any initial
tree T, GREEDY(X) avoids P @ Cap, where Cap = (4 ° o)-

ForP= ("), PeCap= ()

Proof: Assume that at time ¢ columns a and b are touched. If
all accesses after time t are to columns < aor > b, then
columns a+ 1 to b — 1 will not be touched after time t.

Thus, if GREEDY(X) contains a point in
[a+1,...,b—1] x [t+1,...], X must contain a point in this set.

In particular, if GREEDY(X) contains P ® capture then X
contains P.

ini p B0 g pawkinint Gorvs 17721

Greedy and Forbidden Matrices |

If the access sequence X avoids a pattern P, then for any initial
tree T, GREEDY(X) avoids P @ Cap, where Cap = (4 ° o)-

ForP=(",+), PeCap = ()

For preorder sequence X, GReeDY(X) avoids a light 6 x 9
matrix.

GREEDY with arbitrary initial tree serves preorder sequences
with cost n - 22(M°Y.

ini p B0 g pawkinint CorMs 17721

Greedy and Forbidden Matrices Il

If access sequence X avoids a pattern P, then GREeDY(X) with
chosen initial tree avoids P @ P’, where P’ is a particular
permutation matrix (of the same size as P).

This proof is more involved.

ForP:<°.-),P®P’i39><9.

Greedy with chosen initial tree satisfies traversal conjecture.

< planck ins|
i p B0 g pakinint Corvs 18721

Decomposable Permutations

°Y A A 4-decomposable

°. permutation.
(J

» k-decomposable = avoid all non-decomposable
permutations of size kK + 1 or more.

= OPT serves k-decomposable permutations with cost
O(nlog k). A new challenge!!!

Proof Technique: We introduce an offline variant of GREEDY
and analyse its behavior on k-decomposable permutations.

HITULES
inf ati

CGKMS 19/21

Decomposable Permutations

°, A A 4-decomposable

o .
: permutation.
°
o

= k-decomposable = avoid all non-decomposable
permutations of size k + 1 or more.

» OPT serves k-decomposable permutations with cost
O(nlog k). A new challenge!!!

= GREEDY serves k-decomposable sequences with cost

)O(k

O(n2+(M~7),

= GREEDY with chosen initial tree matches performance of OPT.

CGKMS 19/21

l l I I I max planck institu
in natik

lacono-Langermann (SODA 2016): Dynamic Finger
Property

GREEDY has dynamic finger property, i.e., total search cost is
O(3_;10g [X; — Xi—1]).

Cole has previously proven dynamic finger property for splay
trees (80 page paper, complex proof).

Proof for GREEDY is 10 pages and easy to check.

lanck ins|
ini p B0 g pakinint - Carvs 2021

Summary

* A wide class of BSTs with logarithmic access cost, static
optimality, working set and static finger property.

HTULES
inf at

CGKMS 21/21

Summary

* A wide class of BSTs with logarithmic access cost, static
optimality, working set and static finger property.

= GREEDY does well on inputs that avoid patterns. In particular,

= Traversal conjecture almost holds for GREEDY.
= Traversal conjecture holds for GREEDY with chosen initial
tree.

ini p B0 g pakinint Carvs 21/21

Summary

* A wide class of BSTs with logarithmic access cost, static
optimality, working set and static finger property.

= GREEDY does well on inputs that avoid patterns. In particular,

= Traversal conjecture almost holds for GREEDY.
= Traversal conjecture holds for GREEDY with chosen initial
tree.

= New challenges for self-adjusting BSTs: OPT serves any
sequence that can be decomposed into kK monotone sequences
with cost O(nlog k).

= Next steps:

= Show that GREEDY does well on k-monotone sequences
= Traversal conjecture for arbitrary initial tree.

ini p B0 g pakinint Carvs 21/21

