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Binary Search Trees (BSTs)

A search for x in a binary search tree
walks down a path. If x is equal to the
key stored in the current node, we have
found x . If x is smaller than the key
stored in the node, we go left. If x is
larger than the key stored in the node,
we go right.
Different flavors of BSTs:

static BSTs
balanced BSTs: AVL-trees, 2-4-trees,
red-black trees, . . .
self-adjusting BSTs: Splay trees.

CGKMS 2/21



The Self-Adjusting BST-Model

After an access, replace the
search path by an arbitrary tree
(the after-tree ) on the same
set of nodes rooted at the
accessed element.
Reattach the dangling subtrees
(uniquely defined).
Cost = length of search path.

Question: Which re-arrangements lead to an efficient
online algorithm?

OPT = cost of the offline optimum.

OPT knows the entire access sequence in advance and can act
accordingly. The online algorithm has to rebuild without
knowing future accesses.
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The Dynamic Optimality Conjecture (Sleator/Tarjan
’85)

Splay trees are O(1)-competitive , i.e., for every
access sequence X , the cost of serving X by splay trees is at
most a constant factor larger than serving X optimally.

A path towards proving or disproving the conjecture:

Understand better which variants of splay trees might also
work.

Show special cases of the dynamic optimality conjecture.

Exhibit easy sequences, i.e., sequences which OPT serves
in time o(n log n).

ESA-paper addresses the first item.
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Self-Adjusting BSTs: What Makes them Tick? (ESA
2015)

Splay trees have many nice properties, e.g.,

Logarithmic access cost Static optimality
Working set property Static finger property

Sequential access Dynamic finger property

We give sufficient (and necessary) conditions for the first four
properties.

Previous work: Sleator, Tarjan, Subramanian, Georgakopoulos,
McClurkin prove first four properties for splay-trees and variants
thereof.

All of these results are corollaries of the main theorem in the
ESA paper. Also prove new results about depth-halving.
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Main Result

Characteristic quantities of the search path and the after-tree.

length of the search path: |P|
12
number of side changes: z 4
number of leaves: ` 5
max left-depth of left subtree
(max right-depth of right
subtree): d 3

Theorem: If accessed element goes to root, d = O(1), and ` =
Ω(|P| − z), then the BST has the first four properties.

We also have a partial converse (more later).
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Application I: Splay Trees

Split the search path at s and swap adjacent odd-even pairs.
This is a global view on splay trees; seems to be new.
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Application I: Splay Trees

accessed element becomes root
max right-(left) depth is d = 2
z + ` ≥ |P|/2− 1

Proof: There are |P|/2− 1 odd-even pairs. Each side
change can move the elements of one pair to different sides.
Each odd-even pair on the same side creates a leaf. Thus

# of leaves ≥ |P|/2− 1− # of side changes
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Depth Halving

In splay every node on the search path roughly halves its depth.

Sleator: is this property sufficient?

We don’t know, but strict depth-halving is sufficient: the
accessed element becomes the root and every node x on the
search path loses at least (1/2 + ε)d(x)−O(1) ancestors and
gains at most O(1) new descendants.
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Partial Converses

If the after-tree may have non-constant left-depth or right-depth,
then the good properties (logarithmic access, static optimality,
. . . ) cannot be shown with the sum-of-logs potential function.

If the number of leaves of the after-tree is allowed to be
o(|P| − number of side changes), then the traversal conjecture
does not hold.
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The Dynamic Optimality Conjecture (Sleator/Tarjan
’85)

Splay trees are O(1)-competitive , i.e., for every
access sequence X , the cost of serving X by splay trees is at
most a constant factor larger than serving X optimally.

A path towards proving or disproving the conjecture:
Understand better which variants of splay trees might also
work.
Show special cases of the dynamic optimality conjecture.
Exhibit additional easy sequences, i.e., sequences which
OPT serves in time o(n log n).

FOCS-paper addresses items 2 and 3.

Traversal conjecture: Let X be the preorder traversal of a tree
T . Process X starting with a tree T ′. OPT = O(n).

Only shown for T ′ = T or X = 1,2, . . . ,n.
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Pattern Avoiding Accesses (FOCS 2015)

An access sequence X avoids a pattern P if there is no
subsequence of X that is order-isomorphic to P.

X = 1,2, . . . ,n avoids 2,1.

Preorder traversal of a tree avoids 2,3,1.
Special cases of the optimality conjecture.

GREEDY serves any sequence that avoids a permutation
pattern of size k with cost O(2α(n)O(k2) · n).
GREEDY with chosen initial tree serves any such sequence
with cost O(2O(k2) · n).
Traversal conjecture: k = 3.

New easy sequences.

OPT serves any k -decomposable sequence with cost
O(n log k).
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Satisfied Point Sets

1  2  3  4  5  6  7  8  9 10 11 1  2  3  4  5  6  7  8  9 10 11

M = a {0,1}-matrix (a point set).

Ignore the colors for the moment.

pq = closed rectangle with corners p
and q.

M is satisfied if for any two points
p,q ∈ M with distinct x and y
coordinates there is another point
from M in the rectangle.

Access sequence X → matrix X .
Point (x , t) ∈ X iff the element x is
accessed at time t .

A tree T gives rise to a matrix T .
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Geometric BSTs (Demaine, Harmon, Iacono, Kane,
Patrascu (SODA ’09))

Cost = 8

Geometric BST A on input
[

X
T

]
outputs a

satisfied matrix
[AT (X)

T

]
, where

AT (X ) ⊇ X .

Chosen initial tree: On input X outputs
A(X ).

Cost = number of points (ones) in AT (X ).

Offline versus online

Theorem(DHIKP): (online) geometric-BSTs = (online) BSTs.
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Greedy (Lucas, Munro, DHIKP)

• • • •
• •

• •
• •
•

Accessed points
in black.

Points added by
Greedy in blue.

After access to x at time t add exactly the
(y , t) that are needed for satisfaction.

Greedy is not optimal.

Conjecture (Lucas, Munro, DHIKP):
Greedy is O(1)-competitive.

Theorem: Greedy almost satisfies
traversal conjecture (cost n · 2α(n)O(1)

).
Greedy with chosen initial tree satisfies
traversal conjecture.
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Forbidden Matrix Theory

contains
• •

• •
•

Let M and P be n × n and k × k matrices s.t. M avoids P.
(Marcus, Tardos, Fox): If P is a permutation matrix, the
number of ones in M is at most n2O(k).
(Klasar, Keszegh): If P is light (only one 1 per column), the

number of ones in M is at most n2α(n)O(k2)
.

S. Pettie pioneered the use of forbidden matrix theory for the
study of data structures.
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Greedy and Forbidden Matrices I

Theorem
If the access sequence X avoids a pattern P, then for any initial
tree T , GREEDY(X ) avoids P ⊗ Cap, where Cap = ( •

• • ).

For P =
( •

•
•

)
, P ⊗ Cap =

( •
• •

•
• •

•
• •

)
.

Proof: Assume that at time t columns a and b are touched. If
all accesses after time t are to columns ≤ a or ≥ b, then
columns a + 1 to b − 1 will not be touched after time t .

Thus, if GREEDY(X ) contains a point in
[a + 1, . . . , b − 1]× [t + 1, . . .], X must contain a point in this set.

In particular, if GREEDY(X ) contains P ⊗ capture then X
contains P.
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Theorem
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• • ).

For P =
( •

•
•

)
, P ⊗ Cap =

( •
• •

•
• •

•
• •

)
.

For preorder sequence X , GREEDY(X ) avoids a light 6× 9
matrix.

Theorem
GREEDY with arbitrary initial tree serves preorder sequences
with cost n · 2α(n)O(1)

.
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Greedy and Forbidden Matrices II

Theorem
If access sequence X avoids a pattern P, then GREEDY(X ) with
chosen initial tree avoids P ⊗ P ′, where P ′ is a particular
permutation matrix (of the same size as P).

This proof is more involved.

For P =
( •

•
•

)
, P ⊗ P ′ is 9× 9.

Theorem
Greedy with chosen initial tree satisfies traversal conjecture.
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Decomposable Permutations

3142

1 12 21 12

1 21

1 1

1 1 11

A 4-decomposable
permutation.

k -decomposable = avoid all non-decomposable
permutations of size k + 1 or more.

OPT serves k -decomposable permutations with cost
O(n log k). A new challenge!!!

Proof Technique: We introduce an offline variant of GREEDY

and analyse its behavior on k -decomposable permutations.
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A 4-decomposable
permutation.

k -decomposable = avoid all non-decomposable
permutations of size k + 1 or more.

OPT serves k -decomposable permutations with cost
O(n log k). A new challenge!!!

Theorem

GREEDY serves k-decomposable sequences with cost
O(n2α(n)O(k2)

).

GREEDY with chosen initial tree matches performance of OPT.
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Iacono-Langermann (SODA 2016): Dynamic Finger
Property

GREEDY has dynamic finger property, i.e., total search cost is
O(
∑

i log |xi − xi−1|).

Cole has previously proven dynamic finger property for splay
trees (80 page paper, complex proof).

Proof for GREEDY is 10 pages and easy to check.
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Summary

A wide class of BSTs with logarithmic access cost, static
optimality, working set and static finger property.
GREEDY does well on inputs that avoid patterns. In particular,

Traversal conjecture almost holds for GREEDY.
Traversal conjecture holds for GREEDY with chosen initial
tree.

New challenges for self-adjusting BSTs: OPT serves any
sequence that can be decomposed into k monotone sequences
with cost O(n log k).

Next steps:

Show that GREEDY does well on k -monotone sequences
Traversal conjecture for arbitrary initial tree.
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