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What’s The Problem?
 Consider a system with m customer and n server types
 There are two infinite streams, one of customers and one of servers
 The fraction of customers that are of type i equals i, the fraction of 

servers that are of type j equals j, and ∑ =∑ =
 A type j server can “match” with a type i customer if j Ci

(equivalently if i S j), where Ci is the set of servers who can 
process type i customers (Sj is the set of customers who can be 
processed by type j servers)

http://stat.haifa.ac.il/~gweiss/presentations/ParallelServersFCFSMatching141108.pdf



What’s The Problem?

Focus on problem that satisfies complete pooling conditions

 If first condition not true, then not possible for servers to 
process all type i customers

 If second condition not true, type j server would be starved



What’s The Problem?
Each server in sequence is matched with the “longest 

waiting” feasible customer (that is, the first as yet 
unmatched customer in sequence eligible for service from 
that server, aka FCFS matching)

Question: what is fij, the fraction of all matches that pair 
type i customers with type j servers?

Easy question to pose; very difficult to solve in general!
http://stat.haifa.ac.il/~gweiss/presentations/ParallelServersFCFSMatching141108.pdf



Where Did This Problem First Come From?
 Boston (Massachusetts, USA) Housing 

Authority allowed new applicants to state 
housing project preferences as: willing to live 
only in one specific project; willing to live in 
one out of a specific pair of projects; willing to 
live in one out of a specific triple of projects; 
or willing to live anywhere

 The different project preferences correspond to 
customer types, while the different housing 
projects correspond to server types

What are the matching rates?



Prior Work (More Than Matching Rates)
Kaplan (1984) approached public housing problem as queueing 

using simulation
Green (1985) solved problem with two customer and two server 

types (general vs limited use) using matrix geometric methods 
(these days known as the “N” model)

Caldentey and Kaplan (2002) introduced infinite matching 
approach

Talreja and Whitt (2007) focused on fluid queueing models

(Caldentey, Kaplan and Weiss, 2009)



Prior Work (More Than Matching Rates)

Caldentey, Kaplan and Weiss (2009) solved special cases 
using Markov chains (“N”, “W”, “almost complete” 
graphs), and showed matching conjectures that sometimes 
work, sometimes not 



Two Easy Cases For Matching Rates

Suppose all server types are feasible for all customer types

Suppose compatibility graph is a tree, e.g. 

Can just solve using flow conservation by inspection 



Ivo Adan and Gideon Weiss Solve The Problem!

Beautiful paper that 
formulates a new 
Markov chain, obtains 
its stationary 
distribution, and uses 
to obtain explicit 
exact formula for 
FCFS matching rates 
for general graphs



So Why Work on a Solved Problem?

So, here we are!!



Physical Flows
Problem can be imagined as sending water over a pipe network 

linking sources (customer types) with given inflows to sinks 
(server types) with given outflows

Unlike usual min cost or max flow problems, the question is 
given the inflows and outflows, how does water distribute itself 
over the pipe network?

Physical principles: Bernoulli equation, Kirchhoff’s laws
Classic reference: Analysis of flow in networks of conduits or 

conductors (Hardy Cross, U Illinois Bulletin 34(22), 1936)



Physical Flows

Problem can be imagined as sending electricity over a 
circuit linking various voltage sources (customer types) 
with given current inflows to voltage sinks (server types)
with given current outflows

Question: how does the current distribute itself over the 
network?

Physical principle: Ohm’s Law
Nice thing about Ohm’s Law as we will see: linearity!



Ohm’s Law
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Ohm’s Law On A Bipartite Graph
m sources (customer types) and n sinks (server types)
Current inflow at source i equals i, current outflow at sink j

equals j, and ∑ =∑ =
A type j server can “match” with a type i customer if j Ci

(equivalently if i S j), where Ci is the set of servers who can 
process type i customers (Sj is the set of customers who can be 
processed by type j servers)

Voltage at source i equals Vi, voltage at sink j equals Wj

Take resistance on link (i, j) = (



Ohm’s Law On A Bipartite Graph

Flows fij must all satisfy Ohm’s Law
On link (i, j) voltage drop equals Vi  Wj while resistance 

equals ( , thus 

Flows must also satisfy given current inflows and outflows

∆



Ohm’s Law On Bipartite Graph
So we need to solve

for the unknown voltages Vi and Wj

Note that system above only defined to additive constant 
(can add constant c to all voltages without changing flows)

Can impose any convenient restriction to solve (e.g. Wn = 0)



Does It Work?

Let’s try for completely connected graph
We know answer is
Ohm’s Law says
Set Vi = , Wj = 0.
Yay!!  
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Almost Complete Graph (n   graph)

From Caldentey, Kaplan and Weiss 
(2009) as well as Adan and Weiss 
(2012), we know the exact answer

where , in our notation, and
is a normalization constant
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An Almost Complete Surprise
So for almost complete graph we know that fij =

Let

Guess what?                                 yields correct solution!
So get correct answer directly from Ohm’s Law!  



What About n  2 Graph?

Each customer type connected to all but 
two server types

Sad news – Ohm’s Law doesn’t work 
directly

But can we learn anything from studying 
Adan and Weiss formula for this case?
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Introducing: The Shadow Graph
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Start with a completely connected graph
Shadow graph is formed by keeping same 

source and sink nodes but inserting the 
complement of the links in the original 
graph

Shadow graph of completely connected 
graph will be empty (no links)



The Shadow Graph
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The Shadow Graph
 Now, as we remove links from the original graph, we add those 

links to the shadow graph
 For each customer node in the shadow graph, we list all connecting 

servers
 Similarly, for each server node in the shadow graph, we list all 

connecting customers
 Then, for each link in the shadow graph, we form all combinations 

of customers who can be processed by the link’s server type, and 
servers who can process the link’s customer type

 If we find a customer/server pair that is not represented by a link in 
the shadow graph, that becomes a target link for excess flow in the 
original graph from the hidden link in the shadow graph 



The Shadow Graph
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The Shadow Graph
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The Shadow Graph
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The Shadow Graph
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The Shadow Graph
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Reroute

The Shadow Graph
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Reroute

The Shadow Graph
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The Shadow Graph
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The Shadow Graph Procedure 
1. Identify the hidden links , from the shadow graph
2. For each link i,j in the original graph, modify the flow equation by adding the 

corresponding hidden link formula:

3. Choose an approximate value for 0 1. Two suggestions are: 

i. Mid point approximation 0.5	

ii. Proportional approximation min	 ∑ ∆
, 1

4. Given the modified flow equations: f ∆ , , solve for  s and 
s.

∆ ∑ ∈ ∑ ∈



Results
 Given the correct value of k (which equals  /∏ where B is 
given in equation (12) of Adan and Weiss), the shadow graph 
procedure produces the exact solution for any n‐2 to n graph.   

 Suppose and are the solutions of the shadow graph 
procedure when 0 and 1, respectively. Then, for any n‐2 
to n graph, the exact solutions  , are contained in the intervals 
bounded by  and . Moreover,  are linear in k.



Idea For Approximation

Nice thing about shadow graph approach is that it yields 
exact results in principle (given k) for family of graphs

Leads to easy system of linear equations to solve (same size 
as original Ohm’s Law)

So, try shadow graph approach to arbitrary networks
Simulation time



Experiments: Problem Instances
Number of Customers = 10
Number of Servers = Random between 7 and 10
Connectivity Graph

– Random
» High Density: Each customer is connected to at least 70% of servers
» Medium Density: Each customer is connected to between 40% to 70% of the servers
» Low Density: Each customer is connected to at most 40% the servers

 	, : Randomly generated such that they sum up to 1

Total number of problem instances = 1500:
– For each density: 20 rand. con. graph  25 rand.  ,



Experiments: High Density
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Experiments: Medium Density

0

50

100

150

200

250

Medium Density: Mean Error

Ohm k=sum_delta k=0.5

0

50

100

150

200

250

Medium Density: Max Error

Ohm k=sum_delta K=0.5

Ohm k=sum_delta k=0.5
Ave. Max. Error 0.0045 0.0036 0.0030
Mean Ave. Error 0.0011 0.0009 0.0008



Experiments: Low Density
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Experiments: The Behavior of K
0.1	, 	 0.1	, 0.1	, 0.7
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Experiments: The Behavior of K



Optimization: Public Housing
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and task-specific servers, Decision 
Sciences 19, 1988.



Optimization: Public Housing
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Optimization: Public Housing
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Optimization: Public Housing

12% difference in dropout rates across applicant types
Suppose could add just one more link (that is, allow 

applicants stating preference for only one specific project to 
expand their choice set to consideration of a second project)

Which single new link would have greatest impact on 
difference in dropout rates across applicant types?



Optimization: Public Housing
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Optimization: Public Housing
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Optimization: Public Housing
Kickham

Morse

O’Shea

Any

Kickham

Morse

O’Shea

Dropout

0.3

0.2

0.1

0.4

0.010808

0.038111

0.923777

0.027304

Kickham

Morse

O’Shea

Any

Kickham

Morse

O’Shea

Dropout

0.3

0.2

0.1

0.4

0.010808

0.038111

0.923777

0.027304

: 0.985545
: 0.952151
: 0.908439
: 0.867099

Pr{Dropout}

.
⇒

: 0.983680
: 0.958492
: 0.884879
: 0.871217

Pr{Dropout}

.
⇒



Optimization: Public Housing
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Summary
 We started with a problem dating back (at least) to 1984
 We inherited a beautiful solution from Adan and Weiss (2012) that is 

computationally very difficult for all but very small problems
 We imagined the matching process between customers and servers as 

electric current flowing through a circuit, modeled this using Ohm’s Law, 
and got exact answer for almost complete graph

 We found a pattern in the Adan/Weiss formula for n  graphs that could 
be represented using a shadow graph that in turn directed correction terms to 
Ohm’s Law; this procedure is exact conditional on knowing a constant k, but 
leads to easy bounds/approximations

 Showed via simulation that approach works well for more general graphs
 Showed a sample optimization problem one could pursue with this method


