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What’s The Problem?

Consider a system with m customer and n server types
There are two Infinite streams, one of customers and one of servers

The fraction of customers that are of type i equals a;, the fraction of
servers that are of type j equals 4, and Y;Z; a;=X7-; B;=1

A type | server can “match” with a type i customer if j € C,

(equivalently if I € S ;), where C; Is the set of servers who can
process type I customers (S; Is the set of customers who can be
processed by type j servers)




What’s The Problem?

Focus on problem that satisfies complete pooling conditions

o; < ZBJ‘, = 1,2,...,m

jEC,—

ﬁj = Zai, Jj= 1,2,....n

€S
f first condition not true, then not possible for servers to
process all type 1 customers

f second condition not true, type j server would be starved




What’s The Problem?

Each server in sequence is matched with the “longest
waliting” feasible customer (that is, the first as yet
unmatched customer in sequence eligible for service from
that server, aka FCFS matchlng)

the fraction of all matches that pair

Questlon what IS f,J,
type I customers with type | servers?

Easy question to pose; very difficult to solve in general!



Where Did This Problem First Come From?

¢ Boston (Massachusetts, USA) Housing
Authority allowed new applicants to state
housing project preferences as: willing to live
only in one specific project; willing to live in
one out of a specific pair of projects; willing to
ST live in one out of a specific triple of projects;

or willing to live anywhere

¢ The different project preferences correspond to
customer types, while the different housing
projects correspond to server types

¢ What are the matching rates?
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Prior Work (More Than Matching Rates)

Kaplan (1984) approached public housing problem as queueing
using simulation

Green (1985) solved problem with two customer and two server
types (general vs limited use) using matrix geometric methods
(these days known as the “N” model)

(Caldentey, Kaplan and Weiss, 2009)

Caldentey and Kaplan (2002) introduced infinite matching
approach
Talreja and Whitt (2007) focused on fluid queueing models



Prior Work (More Than Matching Rates)

Caldentey, Kaplan and Weiss (2009) solved special cases
using Markov chains (“N”, “W?”, “almost complete”
graphs), and showed matching conjectures that sometimes
work, sometimes not ©
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Two Easy Cases For Matching Rates

Suppose all server types are feasible for all customer types

Ji = aif;

Suppose compatibility graph Is a tree, e.qg.

Can just solve using flow conservation by inspection
Jo=1-p
fri=1-a
Su=1-(0-p--a)=a+p-1



lvo Adan and Gideon Weiss Solve The Problem!

Exact FCFS Matching Rates for Two Infinite
Multitype Sequences

Ivo Adan ]

Department of Mechanical Engineering. Eindhoven Univers Tech 5600 MB Eindhoven, The Netherl:

Gideon Weiss
Department of s, The Unive if:

1 formula

bipartite

Beautiful paper that
formulates a new
Markov chain, obtains
Its stationary
distribution, and uses
to obtain explicit
exact formula for
FCFS matching rates
for general graphs



So Why Work on a Solved Problem?

TueoreM 4. For each pair (c;, 5;), the matching rate v,
is given by J
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[n general formula (13) gives explicit expressions for the
matching rates. However, 1t 1s not an easy formula to cal-
culate, as it requires for every pair (c;, 5;) the calculation
of several quantities separately for every permutation of
Flaennsl 5;. It 18 not obvious that any shortcuts could be used
to reduce the computational complexity, because to obtain
r.. .. the formula requires addition of nonnegative terms for

t."-'.ll..?]l'j PCJ']TILLIEII]L’III.

We are aware of some efforts to represent the
matching rates as solutions to some optimization problems.
Such a method could present an attractive alternative to the
direct use of our formula (13) and may help in devising
approximations.

So, here we arel!!




Physical Flows

Problem can be imagined as sending water over a pipe network
linking sources (customer types) with given inflows to sinks
(server types) with given outflows

Unlike usual min cost or max flow problems, the question is
given the inflows and outflows, how does water distribute itself
over the pipe network?

Physical principles: Bernoulli equation, Kirchhoff’s laws

Classic reference: Analysis of flow in networks of conduits or
conductors (Hardy Cross, U Illinois Bulletin 34(22), 1936)



Physical Flows

Problem can be imagined as sending electricity over a
circuit linking various voltage sources (customer types)
with given current inflows to voltage sinks (server types)
with given current outflows

Question: how does the current distribute itself over the
network?

Physical principle: Ohm’s Law
Nice thing about Ohm’s Law as we will see: linearity!



Ohm’s Law




Ohm’s Law On A Bipartite Graph

m sources (customer types) and n sinks (server types)
Current inflow at source 1 equals o, current outflow at sink |
equals B;, and ;2 a;=X7—1 Bj=1

A type J server can “match” with a type I customer if | € C,
(equivalently if I € S ), where C; is the set of servers who can
process type I customers (S; Is the set of customers who can be
processed by type j servers)

Voltage at source 1 equals V;, voltage at sink j equals W,
Take resistance on link (i, j) = (a;8,) "



Ohm’s Law On A Bipartite Graph

Flows f; must all satisfy Ohm’s Law
On link (1, J) voltage drop equals V; — W; while resistance
equals (a;8;)~", thus
fi = aip;(Vi—=Wj)
Flows must also satisfy given current inflows and outflows

Zﬁj=2aiﬁj(V,‘—VVj):a,‘, [ = 1,2 ..... m

J€eCi JeCi

difi=D aBVi-W) =, j=12,...n

IeSj I ;



Ohm’s Law On Bipartite Graph

So we need to solve

:E:jb =¢:E:CL¢%(LC”— WG)3= a;, 1= 1,2 ..... m

JeCi J€C;
D Si=D aB(Vi-W)) =B, j=1,2,....n
i€S; icS;

for the unknown voltages V; and W,

Note that system above only defined to additive constant
(can add constant c to all voltages without changing flows)

Can impose any convenient restriction to solve (e.g. W, = 0)



Does It Work?

Let’s try for completely connected graph
We know answer is f; = a;f3;

Ohm’s Law says f; = a;f;(Vi— W)
Set V=1, W;=0.

Yay!!



Almost Complete Graph (n — 1 graph)

From Caldentey, Kaplan and Welss
B, (2009) as well as Adan and Welss
= (2012), we know the exact answer

oy [[ | — o]l — B3 — o 5 y
2~ (1 —a; — 8001 — o — il
v, where r; ; = f;; In our notation, and
3

3 . .
m¢& is a normalization constant



An Almost Complete Surprise
So for almost complete graph we know that f;; =

g [[ | — o] — B jl— ,lf"'.i'h.']
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Guess what? fi; = a;f;(Vi— W;) yields correct solution!
So get correct answer directly from Ohm’s Law!



What About n — 2 Graph?

D)L Each customer type connected to all but
two server types

> P2 Sad news — Ohm’s Law doesn’t work

directly
2P But can we learn anything from studying
Adan and Weiss formula for this case?
B,

4



Introducing: The Shadow Graph

Original
Graph

Start with a completely connected graph

Shadow graph iIs formed by keeping same
source and sink nodes but inserting the
complement of the links in the original
graph
Shadow graph of completely connected
graph will be empty (no links)
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The Shadow Graph

Now, as we remove links from the original graph, we add those
links to the shadow graph

For each customer node in the shadow graph, we list all connecting
servers

Similarly, for each server node in the shadow graph, we list all
connecting customers

Then, for each link in the shadow graph, we form all combinations

of customers who can be processed by the link’s server type, and
servers who can process the link’s customer type

If we find a customer/server pair that is not represented by a link in
the shadow graph, that becomes a target link for excess flow in the
original graph from the hidden link in the shadow araph
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The Shadow Graph

Ol Coreco Shadow = Eareans
Graph Graph
1 ay @ D {13
2 {2y (2 2) (2}
3 {3} (3 3) {3}
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The Shadow Graph
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The Shadow Graph
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The Shadow Graph

Orlg inal Connecting Shadow Connecting

Servers Customers

Graph Graph
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The Shadow Graph
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The Shadow Graph Procedure

Identify the i', j'"from the shadow graph

For each link i,j in the original graph, modify the flow equation by adding the
corresponding hidden link formula:

[Ny — V. |
Y Qjec, Bj) — air (Ziesj/ a;) — Bjr

Choose an approximate value for 0 < k < 1. Two suggestions are:

I.  Mid point approximation k = 0.5

1 1}
Yshadow Ai]"
Given the modified flow equations: f;; = a;5;[V; — W; + k4, ], solve for V;s and
W:s.
j

il.  Proportional approximation k = min{

Zfrj = Za:‘ﬁf(Vi— W, +kA;) =ai, i=1,2,..., m

JeCi JeCi

Zfij = Zaiﬁj(Vf_ W:,+kA;)=B;, j=1,2,..., n



Results

Given the correct value of k (which equals B/ [[}-; B; where B is
given in equation (12) of Adan and Weiss), the shadow graph
procedure produces the exact solution for any n-2 to n graph.

Suppose Fj—o and Fj_; are the solutions of the shadow graph
procedure when k = 0 and k = 1, respectively. Then, for any n-2
to n graph, the exact solutions fi,j are contained in the intervals

bounded by Fy—( and Fi—,. Moreover, f;;s are linear in k.



Idea For Approximation

Nice thing about shadow graph approach is that it yields
exact results in principle (given k) for family of graphs

|_eads to easy system of linear equations to solve (same size
as original Ohm’s Law)

So, try shadow graph approach to arbitrary networks
Simulation time



Experiments: Problem Instances

Number of Customers = 10
Number of Servers = Random between 7 and 10

Connectivity Graph

— Random
» High Density: Each customer is connected to at least 70% of servers
» Medium Density: Each customer is connected to between 40% to 70% of the servers
» Low Density: Each customer is connected to at most 40% the servers

a = {a;}, B = {B;}: Randomly generated such that they sum up to 1

Total number of problem instances = 1500:
— For each density: 20 rand. con. graph X 25 rand. a,
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Experiments: The Behavior of K

_0.6,a2=0.2, a’3 =O.1,a4 = 0.1 aq =0.1,a2=0.1, ag =01,(Z4=07
0.2,B2=0.1, ﬂ3 =O.4‘,ﬁ4 = 0.3 ﬂl =01,'82=035, ﬂ3 =04,B4_=015
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Experiments: The Behavior of K

0-6, a2=0.2, a3 =O.1,a4=0.1 a1=0.1,a2=01, as =01,(Z4=07
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Optimization: Public Housing
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Example data from Kaplan EH, A
public housing queue with reneging
and task-specific servers, Decision
Sciences 19, 1988.



Optimization: Public Housing
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Optimization:
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Optimization: Public Housing

12% difference in dropout rates across applicant types

Suppose could add just one more link (that is, allow
applicants stating preference for only one specific project to
expand their choice set to consideration of a second project)

Which single new link would have greatest impact on
difference in dropout rates across applicant types?




Optimization: Public Housing
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Optimization: Public Housing
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Optimization: Public Housing
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Optimization: Public Housing
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Summary

We started with a problem dating back (at least) to 1984

We inherited a beautiful solution from Adan and Weiss (2012) that is
computationally very difficult for all but very small problems

We imagined the matching process between customers and servers as
electric current flowing through a circuit, modeled this using Ohm’s Law,
and got exact answer for almost complete graph

We found a pattern in the Adan/Weiss formula for n — 2 graphs that could

be represented using a shadow graph that in turn directed correction terms to
Ohm’s Law; this procedure is exact conditional on knowing a constant k, but
leads to easy bounds/approximations

Showed via simulation that approach works well for more general graphs
Showed a sample optimization problem one could pursue with this method



