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• Goal: compute max(x1,…,xn)
• Algorithm: Trivial
• But what if inputs are strategic?

– suppose input i has value xi for being selected&algorithm doesn’t know xi

– facing trivial algorithm, every input reports +∞
• A better Algorithm [Vickrey’61   ]:

– collect reported inputs: b1,…, bn (can’t enforce bi=xi a priori)
– select i* = arg max bi

– charge winner i* the 2nd highest report: arg maxj≠i* bj

• Claim: It is in every i’s best interest to report bi≡xi.
 Vickrey auction is the new max.
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– theater plays, festivals, gymnastics: ~ 3000 drachmas
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- 1200 rich Athenians were eligible to pay
- a committee selected a subset of them to cover these expenses.
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as follows:
– 1st Step: Athenian A names a non-selected Athenian Β that he 

claims is richer, asking him to pay instead. 
– 2nd Step: If B accepts to pay, then all good. Otherwise, A has the 

right to propose an exchange of properties with B before paying. 
– [If B doesn’t accept the exchange, they go to court]

- Outcome: The richest subset of Athenians pays

E.g. Computing the Max (cont’d)
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Mechanism vs Algorithm Design

• Information:
- what information does the mechanism have about the inputs?
- what information do the inputs have about each other?
- does the mechanism also have some private information whose release 

may influence the inputs’ behavior (e.g. quality of a good in an auction)?

• Complexity:
- computational, communication, …
- centralized: complexity to run the mechanism

vs distributed: complexity for each input to optimize own behavior
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With value query access to true bidder valuations can achieve 1 − 1

𝑒𝑒
-

fraction of optimal welfare in polynomial (in both 𝒎𝒎 and 𝒏𝒏) #queries/time.

• [Dughmi-Vondrak’11]: If a truthful mechanism makes value queries to 
bidders and guarantees 1

𝒎𝒎0.01 -fraction of optimal welfare, then it must 
make exponentially many queries.

• [Dobzinski-Vondrak’12]: Even if each bidder’s valuation can be succinctly 
described (w/ poly 𝒎𝒎 info), no poly-time truthful mechanism can get 
better than 1

𝒏𝒏0.01 -fraction of optimal welfare, unless NP ⊆P/poly.

• [Papadimitriou, Schapira, Singer’08; Buchfuhrer et al’10, Dughmi-Vondrak’11, 
Dobzinski’11,Dobzinski-Vondrak’12, Daniely, Schapira, Shahaf’15]:

– “Truthfulness is at odds with communication and approximation”
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• [Feldman,Gravin,Lucier’15]: 

Bayesian assumption + Demand Queries   ⇒ 𝟏𝟏
𝟐𝟐
⋅ OPT for XOS bidders

• Just Bayes: [Hartline-Lucier’10, Bei, Huang’11, Hartline-Malekian-
Kleinberg’11] provide black-box reductions from mechanism to algorithm design

• [Cai-Daskalakis-Weinberg’12-15]: for any objective fn’, e.g. revenue
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mechanisms lose polynomial factors VCG gets OPT in poly-time, poly-

communication and is truthful

with demand queries, can get 
𝑂𝑂( log𝑚𝑚)-OPT, poly-time, 

truthful mechanisms

demand queries + Bayes: 0.5-OPT, 
poly-time, truthful mechanisms
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• Non-Truthful Auction Environments
– often simple auctions are composed sequentially and in parallel resulting in 

non-truthful overall mechanism

• e.g. Simultaneous Second Price Auctions (SiSPAs)
– sell 𝑚𝑚 items in parallel using 2nd-price auctions
– Mechanism is simple to describe, but non-truthful
– Challenging for non-additive bidders to bid as they need to anticipate how 

others will
• going too strong, they may overpay; going too weak, they may lose items

• Analytical challenge: how do participants behave?
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• Classic microeconomic theory: 
Nash/Bayesian Nash equilibrium

– requires heroic modeling assumptions

– computationally hard and no 
decentralized dynamics converge
[Daskalakis, Goldberg, Papadimitriou’06, 
Hart, Mas-Colell ’03]

• Stationarity of behavior 
inconsistent with data-sets

• Natural approach: out-of-
equilibrium analysis

– mechanism design for learning 
agents

– fits well with certain auction settings 
such as online advertising
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• [Bik’99,CKS’08, BR’11, HKMN’11,FKL’12,ST’13, FFGL’13]: In SiSPAs, 
the average welfare of the outcomes selected by a no-regret learning sequence 
is at least 0.25 OPT, even when bidders are sub-additive.*

– constant factors hold for Simultaneous First Price auctions, and other types of 
smooth mechanisms

– they also hold for full information Nash, incomplete info Bayes Nash equilibrium
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mechanisms lose polynomial factors VCG gets OPT in poly-time, poly-

communication and is truthful

with demand queries, can get 
𝑂𝑂( log𝑚𝑚)-OPT, poly-time, 

truthful mechanisms

demand queries + Bayes: 0.5-OPT, 
poly-time, truthful mechanisms
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but no-regret 
learning intractable

Tractable w/ 
demand queries



Welfare Optimization (evolving summary)

additive

Sub-modular

unit-demand

Sub-additive

Truthful poly-time/poly-communication 
mechanisms lose polynomial factors VCG gets OPT in poly-time, poly-

communication and is truthful

demand queries + Bayes: 0.5-OPT, 
poly-time, truthful mechanisms

under no-regret learning, 
SiSPAs achieve 0.25-OPT

XOS

with demand queries, can get 
𝑂𝑂( log𝑚𝑚)-OPT, poly-time, 

truthful mechanisms

[w/ Syrgkanis’16]: no-regret 
learning cannot be efficiently 

implemented in SiSPAs

[w/ Syrgkanis’16]: No-
envy learning can be 
efficiently implemented 
w/demand queries; 
gives 0.5 ⋅ 𝑂𝑂𝑂𝑂𝑂𝑂
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Computational approach to system engineering

• On the intellectual front, the pursuit can be condensed to the question:
– “How much more difficult are optimization problems on strategic 

input compared to honest input?” [Nisan-Ronen’99]

• In Bayesian settings, the answer is “essentially not at all” [Cai-
Daskalakis-Weinberg’12-’15]

• In non-Bayesian settings, intense research effort, but mostly negative 
results, even for the paradigmatic question of welfare optimization in 
combinatorial auctions [Papadimitriou, Schapira, Singer’08; 
Buchfuhrer et al’10, Dughmi-Vondrak’11, Dobzinski’11,Dobzinski-
Vondrak’12, Daniely, Schapira, Shahaf’15]
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Summary

• Approximation theory has shed light into the welfare guarantees of 
simple, non-truthful combinatorial auctions, such as simultaneous 
second price auctions (SiSPAs)
– constant factor approximations to OPT welfare, even for subadditive bidders, 

even when looking at no-regret learning outcomes
– holds for a large class of smooth mechanisms

• We show that no-regret learning is intractable in SiSPAs, even for unit-
demand bidders with the same value for all items, and who play against a 
stationary opponent

• We propose a different notion of learning, called no-envy
– No-envy learning is efficiently implementable for XOS bidders in SiSPAS, 

using demand queries
– No-envy learning outcomes is a larger set than no-regret outcomes
– No-envy learning outcomes still guarantee half of optimal welfare
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World view for XOS bidders in SiSPAs

Nash Eq.

Correlated 
Eq.

Coarse 
correlated Eq.≡

No-Regret 
Learning 

Outcomes 

≥ 0.5 ⋅ OPT
welfare

Still ≥ 0.5 ⋅ OPT
welfare

but no-regret 
learning intractable

and no-envy 
learning tractable
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Summary (cont’d)

• Approximation theory has shed light into the welfare guarantees of 
simple, non-truthful combinatorial auctions

• We show that no-regret learning is intractable in SiSPAs, even for unit-
demand bidders who play against a stationary opponent

• We propose a different notion of learning, called no-envy, which is 
efficiently implementable for XOS bidders in SiSPAS, and discovers 
outcomes that approximately optimal

• Beyond SiSPAs, our upper bounds extend to a broad class of smooth 
mechanisms, including Simultaneous First Price and All-Pay auctions

• Open Problems: 
– go beyond XOS
– go beyond welfare optimization
– apply to practice, e.g. Uber, Urban Engines
– interact with data

Thanks!
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