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What properties do your BIG 
distributions have?
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• Chooses “uniformly” at random distinct 20 
numbers in {1,…,80}. 

• Initial machine biased



Thanks to Krzysztof Onak (pointer) and Eric Price (graph)
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e.g. 1.2: New Jersey Pick 3,4 Lottery

• New Jersey Pick k ( =3,4) Lottery.
– Pick k random digits in order. 
– 10k possible values. 

• Data:
– Pick 3 - 8522 results from 5/22/75 to 10/15/00

• χ2-test (on Excel) answers  "42% confidence”
– Pick 4 - 6544 results from 9/1/77 to 10/15/00.

• fewer results than possible values
• not a good idea to run 𝜒𝜒2 test
• convergence to 𝜒𝜒2 distribution won’t kick in for small sample size
• (textbook) rule of thumb: expected number of at least 5 

observations of each element in the domain under the null 
hypothesis to run 𝜒𝜒2
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e.g.2: Linkage Disequilibrium

locus 1 locus 2 locus 𝑛𝑛

Genome

Single nucleotide polymorphisms, are they independent?

should we expect the genomes from the 1000 human genomes 
project to be sufficient? up to how many loci?

Suppose 𝑛𝑛 loci, 2 possible states each, then: 
• state of one’s genome ∈ {0,1}𝑛𝑛
• humans: some distribution 𝑝𝑝 over {0,1}𝑛𝑛

Question: Is 𝑝𝑝 a product dist’n OR    far from all product dist’ns?



e.g. 3: Outbreak of diseases

• Similar patterns in different years?    
• More prevalent near large airports?

Flu 2005

Flu 2006
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Old questions, new challenges

Domain:

1000 tosses

Asymptotic analysis
Computation not crucial

New challenges:
samples, computation, 
communication, storage

One human genome

Domain:
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A Key Question

• How many samples do you need in terms of 
domain size?
– Do you need to estimate the probabilities of each 

domain item?
-- OR --
– Can sample complexity be sublinear in  size of the 

domain?   

Rules out standard statistical 
techniques
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– Kolmogorov-Smirnov test
– Pearson’s chi-squared test
– Generalized likelihood ratio test
– …

Quantities of Interest
𝑃𝑃𝐹𝐹 = Pr 𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂 𝑤𝑤𝑤𝑤𝑤𝑤𝑤 ℎ𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇
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Focus
Consistency
Error exponents: exp −𝑠𝑠 ⋅ 𝑅𝑅 as 𝑠𝑠 → ∞

Asymptotic regime: Results kick in when 𝑠𝑠 ≫ |𝐷𝐷|

Well-studied Problem

- Sublinear
in |𝐷𝐷|?
- Strong control 
for false
negatives?
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• Number of samples required?

– Tight answer Θ 1
𝜖𝜖2

– Upper bound: compare average to 0.5, reject if farther than 𝜖𝜖
2

– Lower bound: a sleek one uses the subadditivity of Hellinger2 distance

• 𝒫𝒫 = Bernoulli 1
2
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importantly may hugely 
decrease variance
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• natural extension: test structural properties
‒ monotonicity: “PDF is monotone,” e.g. cancer vs radiation
‒ unimodality: “PDF is single-peaked,” e.g. single source of disease
‒ log-concavity: “log PDF is concave”
‒ monotone-hazard rate: “log (1 − CDF) is concave”
‒ product distribution, e.g. testing linkage disequilibrium

• Example question:
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― Sample access to 𝑝𝑝
― Is 𝑝𝑝 unimodal    OR    is 𝑝𝑝 𝜖𝜖-far from or unimodal distributions?   
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for distributions over (ordered set) 𝐷𝐷 is doable w/ 𝑂𝑂 |𝐷𝐷|
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2. Testing monotonicity/independence of a distribution over 𝐷𝐷 = 𝑚𝑚 𝑑𝑑 is doable

w/ 𝑂𝑂 𝑚𝑚𝑑𝑑/2

𝜖𝜖2
≡ 𝑂𝑂 |𝐷𝐷|

𝜖𝜖2
samples and time.

– previous best for monotonicity testing: �𝑂𝑂 𝑚𝑚𝑑𝑑−0.5

𝜖𝜖4
[Bhattacharya-Fisher-Rubinfeld-Valiant’11]

– previous best for independence: d=2, worst bounds [Batu et al.’01]

3. All bounds above are optimal
– i.e. matching lower bounds for both 1 and 2 via Le Cam Inequality.

4. Unified approach, computationally efficient tests, based on new 𝜒𝜒2-tolerant 
tester

N.B. Contemporaneous work of [Canonne et al’2015] provide a different unified approach for 
testing structure but their results are suboptimal.
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― tight control for false positives: want to be able to both assert 

and reject the null hypothesis
― accommodate sublinear sample size
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goodness-of-fit. (extends to MRFs)
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[w/ Dikkala, Kamath’16]: If unknown 𝑝𝑝 is known to be an Ising

model, then  poly 𝑛𝑛, 1
𝜖𝜖

samples suffice to test independence, 

goodness-of-fit. 

- e.g. testing independence of ferromagnets (all 𝜃𝜃𝑒𝑒 > 0) needs 𝑂𝑂 𝑚𝑚
𝜖𝜖

samples
- extends to MRFs
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e.g.4: Behavior in a Social Network

Question: Are adopted technologies a product distribution or are 
they far from being from a product distribution?
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Testing Combinatorial Structure

Is the phylogenic tree 
assumption true? 

Sapiens-Neanderthal 
early interbreeding 
[Slatkin et al’13]

Is a graphical model a tree?
[ongoing work with Acharya,Bresler]
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Testing from a Single Sample

• Given one social network, one brain, etc., how 
can we test the validity of a certain generative 
model?

• Get many samples from one sample?
• Ongoing with Rubinfeld

Thanks!
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