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What properties do your BIG
distributions have?
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e.g. 1.1: Polish MultiLotek

e Chooses “uniformly” at random distinct 20
numbers in {1,...,80}.

e |nitial machine biased
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Distribution of first 300 drawings of Polish Multilotek
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NMumber of times appearing among first 300 drawings
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Thanks to Krzysztof Onak (pointer) and Eric Price (graph)



e.g. 1.2: New Jersey Pick 3,4 Lottery

 New Jersey Pick k ( =3,4) Lottery.
— Pick k random digits in order.
— 10* possible values.



e.g. 1.2: New Jersey Pick 3,4 Lottery

 New Jersey Pick k ( =3,4) Lottery.
— Pick k random digits in order.
— 10* possible values.
 Data:
— Pick 3 - 8522 results from 5/22/75 to 10/15/00



e.g. 1.2: New Jersey Pick 3,4 Lottery

 New Jersey Pick k ( =3,4) Lottery.
— Pick k random digits in order.
— 10* possible values.

 Data:
— Pick 3 - 8522 results from 5/22/75 to 10/15/00

° Xz-test (on Excel) answers "42% confidence”



e.g. 1.2: New Jersey Pick 3,4 Lottery

 New Jersey Pick k ( =3,4) Lottery.
— Pick k random digits in order.
— 10* possible values.

 Data:
— Pick 3 - 8522 results from 5/22/75 to 10/15/00

° Xz-test (on Excel) answers "42% confidence”

— Pick 4 - 6544 results from 9/1/77 to 10/15/00.



e.g. 1.2: New Jersey Pick 3,4 Lottery

 New Jersey Pick k ( =3,4) Lottery.
— Pick k random digits in order.
— 10* possible values.
 Data:
— Pick 3 - 8522 results from 5/22/75 to 10/15/00

° Xz-test (on Excel) answers "42% confidence”

— Pick 4 - 6544 results from 9/1/77 to 10/15/00.

» fewer results than possible values
 not a good idea to run y? test



e.g. 1.2: New Jersey Pick 3,4 Lottery

 New Jersey Pick k ( =3,4) Lottery.
— Pick k random digits in order.
— 10* possible values.
e Data:
— Pick 3 - 8522 results from 5/22/75 to 10/15/00

° Xz-test (on Excel) answers "42% confidence”

— Pick 4 - 6544 results from 9/1/77 to 10/15/00.

» fewer results than possible values
 not a good idea to run y? test
* convergence to y? distribution won’t kick in for small sample size



e.g. 1.2: New Jersey Pick 3,4 Lottery

 New Jersey Pick k ( =3,4) Lottery.
— Pick k random digits in order.
— 10* possible values.

e Data:

— Pick 3 - 8522 results from 5/22/75 to 10/15/00

° Xz-test (on Excel) answers "42% confidence”

— Pick 4 - 6544 results from 9/1/77 to 10/15/00.

fewer results than possible values
not a good idea to run y? test
convergence to y? distribution won’t kick in for small sample size

(textbook) rule of thumb: expected number of at least 5
observations of each element in the domain under the null
hypothesis to run y?
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e.g.2: Linkage Disequilibrium

Genome . . .

locus 1 locus 2 locus n

Single nucleotide polymorphisms, are they independent?

Suppose n loci, 2 possible states each, then:
e state of one’s genome € {0,1}"

* humans: some distribution p over {0,1}"

Question: Is p a product dist’'n OR far from all product dist’ns?

should we expect the genomes from the 1000 human genomes
project to be sufficient? up to how many loci?



e.g. 3: Outbreak of diseases

 Similar patterns in different years?
* More prevalent near large airports?
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Old questions, new challenges

Classical Setting Modern Setting
Domain: Domain:

1000 tosses One humgenome
Small domain D Large domain D
n large,|D| small n small, |D| large
(comparatively)
Asymptotic analysis New challenges:
Computation not crucial samples, computation,

communication, storage
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A Key Question

e How many samples do you need in terms of
domain size?

— Do you need to estimate the probabilities of each
domain item?

- OR --
— Can sample complexity be sublinear in size of the

domain? \

Rules out standard statistical
techniques
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Problem formulation

Model l discrete I

P family of distributions over D

may be non-parametric, e.g. unimodal, product, log-concave

Problem ot

Given: samples from unknown p - ' t"g“:
with probability 0.9, distinguish ( .

\ \ ]« /
pEP vs d(p,P)>¢ =
Objective . fl(p,q)J
min 2
Minimize samples 1% o

Computational efficiency Sublinear

in|D|?

max [p(€) —q(&)| = dry(p,q)

events &
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(Composite) hypothesis testing
— Neyman-Pearson test
— Kolmogorov-Smirnov test
— Pearson’s chi-squared test
— Generalized likelihood ratio test

Quantities of Interest

Pr = Pr(accept when hypothesis false)
Py, = Pr(reject when hypothesis true)

Focus

Consistency

Error exponents: exp(—s - R)ass — o
Asymptotic regime: Results kick in when s > |D|



Why Most Published Research Findings Are False

John P. A. loannidis

Published: August 30, 2005 = http://dx.doi.org/10.1371/journal.pmed.0020124
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Testing by Several
Independent Teams

Corollaries

Most Research Findings
Are False for Most
Research Designs and
for Most Fields

Claimed Research
Findings May Often Be
Simply Accurate
Measures of the
Prevailing Bias

Focus

Abstract

Summary

There is increasing concern that most current published research findings are false. The
probability that a research claim is true may depend on study power and bias, the number of
other studies on the same question, and, importantly, the ratio of true to no relationships among
the relationships probed in each scientific field. In this framework, a research finding is less
likely to be true when the studies conducted in a field are smaller; when effect sizes are
smaller; when there is a greater number and lesser preselection of tested relationships; where
there is greater flexibility in designs, definitions, outcomes, and analytical modes; when there is
greater financial and other interest and prejudice; and when more teams are involved in a
scientific field in chase of statistical significance. Simulations show that for most study designs
and settings, it is more likely for a research claim to be false than true. Moreover, for many
current scientific fields, claimed research findings may often be simply accurate measures of
the prevailing bias. In this essay, | discuss the implications of these problems for the conduct
and interpretation of research.
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Study delivers bleak verdict on validity
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Of 100 studies published in top-ranking journals in 2008, 75% of social
psychology experiments and half of cognitive studies failed the replication test

Psychology experiments are failing the replication test - for good reason
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KX There are many reasons why an experiment might fail to replicate, but more than this, the study has highlighted
some issues with academic publishing and modern science. Photograph: Pere Sanz / Alamy/Alamy

A major investigation into scores of claims made in psychology research journals
has delivered a bleak verdict on the state of the science.
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Testing the Fairness of a Coin

b :unknown probability of a

Question:Is b =05 OR |b—0.5]|=>=¢?
Goal: Toss coin several times, deduce correct answer w/ prob. > 0.99
Number of samples required?

— Tight answer © (612)

— Upper bound: compare average to 0.5, reject if farther than g

— Lower bound: a sleek one uses the subadditivity of Hellinger? distance
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Testing Uniformity

e p:unknown distribution over D

— sample accesstop

T <

P p P

e Question:isp = Up or dty(p,Up) > €?

. . D :
e [Paninski’03]: ® (‘/Elz_l) samples and time
“Intuition:”
e Lower Bound: Suppose g is uniform distribution over {1, ..., m}
and p is uniform on random m/2 size subset of {1, ..., m}

e Unless Q(/m) samples are observed, there are no collisions,
hence cannot distinguish between g or p chosen as above

 Upper Bound: Collision statistics suffice to distinguish
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An Improved y?- Test

e Goal: given g and sample access to p distinguish:
Case 1: x*(p,q) < €%/2 vs Case 2: £2(p,q) = €
e Approach: Draw Poisson(m) many samples from p
— N;: # of appearances of symbol i € D
— N; ~ Poisson(m - p;)
— (N;);ep independent random variables
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m-q;
— E[Z] =m x*(p,q)
— Case1: E[Z] <m-€%/2; Case 2: E[Z] = m - €?
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An Improved y?- Test
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Side-Note:

— N;: # of appearances of symbol i € D

. e Pearson’s y? test uses
—_ Nl ~ POISSOn(m . pl) Statisticz. (Ni_m'CIi)Z
— (N;);ep independent random variabl omeg;
(Nieo P Subtracting N; in the
« g N:—m-qg; Z_N. :
e Statistic: Z = Zi( L q;) L numerator gives an

m-q; unbiased estimator and

— ElZ1 =m - v2 ' importantly may hugely
[ ] P, 9) decrease variance

— Case1:E[Z] <m-€?/2; Case 2: E[Z] =>m " €
— chug chug chug...bound variance of Z
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Testing Properties of Distributions

e so far P ={single distribution}

— restrictive, as rarely know hypothesis distribution exactly
e natural extension: test structural properties
— monotonicity: “PDF is monotone,” e.g. cancer vs radiation
— unimodality: “PDF is single-peaked,” e.g. single source of disease
— log-concavity: “log PDF is concave”
— monotone-hazard rate: “log (1 — CDF) is concave”
— product distribution, e.g. testing linkage disequilibrium
e Example question:

— P = {unimodal distributions over [m]}
— Sample access to p
— Is p unimodal OR is p e-far from or unimodal distributions?
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[w/ Acharya and Kamath NIPS’15]:
1. Testing identity, monotonicity, log-concavity, monotone hazard-rate, unimodality

/DI

€2

for distributions over (ordered set) D is doable w/ O ( ) samples and time.

2. Testing monotonicity/independence of a distribution over D = [m]¢ is doable

d/2
w/ 0O (m ) =0 (‘/m) samples and time.

€2 €2

- d—-o0.5
— previous best for monotonicity testing: O (m ) [Bhattacharya-Fisher-Rubinfeld-Valiant’11]

64'
— previous best for independence: d=2, worst bounds [Batu et al.’01]
3. All bounds above are optimal
— i.e. matching lower bounds for both 1 and 2 via Le Cam Inequality.

4. Unified approach, computationally efficient tests, based on new y?-tolerant
tester

N.B. Contemporaneous work of [Canonne et al’2015] provide a different unified approach for
testing structure but their results are suboptimal.
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Summary so far

 Hypothesis Testing in the small sample regime.

* p unknown distribution over some discrete set D

e P:set of distributions over D

e Given: ¢, 0, sample access to p

e Goal:w/prob>1—-4tell peP vs £{(p,P) > ¢
e Properties of interest: Is p uniform? unimodal? log-

1.d. ﬁ concave? MHR? product measure?
samples ﬁ ;
e All above properties can be tested w/ O ( Elz L, log E)
Test samples and time
ﬂ e Unified approach based on modified Pearson’s goodness
: L (Ni—E)*—N;
of fit test: statistic Z = ),;
Pass/Fail? Liep E;

— tight control for false positives: want to be able to both assert
and reject the null hypothesis
— accommodate sublinear sample size
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e Consider source generating n-bit strings € {0.11" B 1" 4
— 00110101C [w/ Dikkala, Kamath’16]: If unknown p is known to be an Ising bit
— 010100111 Jes

1 . .
_ 00111101¢ Model, then poly (n, E) samples suffice to test independence,

- . goodness-of-fit. (extends to MRFs)
* Are bits/pixels independent?
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62

— Our algorithms require ® < ) samples
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Ising Model

e Statistical physics, computer vision, neuroscience, social
science

* |sing model:

— Probability distribution defined in terms of a graph ¢ = (V, E),
edge potentials 6,, node potentials 6,

— State space {+1}V
pg(x) o exp Op.x,x, + z 0 xv>

e (u V)EE VEV

RO

2-D Ising Model

— High |0,|'s = strongly (anti-)correlated spins
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Isine Model: Strong vs weak ties

“low [w/ Dikkala, Kamath’16]: If unknown p is known to be an Ising

©
o—9—o
©

model, then poly (n, i) samples suffice to test independence,
goodness-of-fit.

7~/
m

2)

- e.g. testing independence of ferromagnets (all 8, > 0) needs O

samples
- extends to MRFs




e.g.4: Behavior in a Social Network




e.g.4: Behavior in a Social Network

Question: Are adopted technologies a product distribution or are
they far from being from a product distribution?
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Conclusions

[w/ Acharya, Kamath’15]: Improved y?-test, requiring
(x/ﬁ
O(—=
€
— implies testers of various distributional properties
(independence, unimodality, logconcavity, etc) from same
number of samples

Testing properties of high-dimensional distributions
requires exponentially many samples

Making assumptions about the distribution being
sampled gives leverage

[w/ Dikkala, Kamath’16]: Testing independence and
goodness-of-fit in Ising models can be done with
polynomially many samples

samples
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Testing Combinatorial Structure

Is the phylogenic tree sy, i
assumption true?

Liedr O ]

Sapiens-Neanderthal
early interbreeding

[Slatkin et aI’13]

Is a graphical model a tree? 0JO

[ongoing work with Acharya,Bresler]



Testing from a Single Sample




Testing from a Single Sample

e Given one social network, one brain, etc., how
can we test the validity of a certain generative
model?




Testing from a Single Sample

e Given one social network, one brain, etc., how
can we test the validity of a certain generative
model?

e Get many samples from one sample?




Testing from a Single Sample

e Given one social network, one brain, etc., how
can we test the validity of a certain generative
model?

e Get many samples from one sample?
 Ongoing with Rubinfeld




Testing from a Single Sample

e Given one social network, one brain, etc., how
can we test the validity of a certain generative
model?

e Get many samples from one sample?
 Ongoing with Rubinfeld




	Slide Number 42
	BIG Data
	BIG Data
	Slide Number 45
	What properties do your BIG distributions have?
	e.g.1: play the lottery?
	e.g.1: play the lottery?
	e.g. 1.1: Polish MultiLotek
	e.g. 1.1: Polish MultiLotek
	e.g. 1.1: Polish MultiLotek
	Slide Number 52
	e.g. 1.2: New Jersey Pick 3,4 Lottery
	e.g. 1.2: New Jersey Pick 3,4 Lottery
	e.g. 1.2: New Jersey Pick 3,4 Lottery
	e.g. 1.2: New Jersey Pick 3,4 Lottery
	e.g. 1.2: New Jersey Pick 3,4 Lottery
	e.g. 1.2: New Jersey Pick 3,4 Lottery
	e.g. 1.2: New Jersey Pick 3,4 Lottery
	e.g.2: Linkage Disequilibrium
	e.g.2: Linkage Disequilibrium
	e.g.2: Linkage Disequilibrium
	e.g.2: Linkage Disequilibrium
	e.g.2: Linkage Disequilibrium
	e.g.2: Linkage Disequilibrium
	e.g. 3: Outbreak of diseases
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	A Key Question
	A Key Question
	A Key Question
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Slide Number 81
	Slide Number 82
	Slide Number 83
	Slide Number 84
	Slide Number 85
	Slide Number 86
	Slide Number 87
	Slide Number 88
	Slide Number 89
	Slide Number 90
	Slide Number 91
	Slide Number 92
	Slide Number 93
	Slide Number 94
	Slide Number 95
	Testing the Fairness of a Coin
	Testing the Fairness of a Coin
	Testing the Fairness of a Coin
	Testing the Fairness of a Coin
	Testing the Fairness of a Coin
	Testing Uniformity
	Testing Uniformity
	Testing Uniformity
	Testing Uniformity
	Testing Uniformity
	Testing Uniformity
	Slide Number 107
	Identity Testing (“goodness of fit”)
	Identity Testing (“goodness of fit”)
	Identity Testing (“goodness of fit”)
	Identity Testing (“goodness of fit”)
	Identity Testing (“goodness of fit”)
	Identity Testing (“goodness of fit”)
	An Improved  𝜒 2 - Test
	An Improved  𝜒 2 - Test
	An Improved  𝜒 2 - Test
	An Improved  𝜒 2 - Test
	An Improved  𝜒 2 - Test
	An Improved  𝜒 2 - Test
	An Improved  𝜒 2 - Test
	An Improved  𝜒 2 - Test
	An Improved  𝜒 2 - Test
	An Improved  𝜒 2 - Test
	An Improved  𝜒 2 - Test
	Slide Number 125
	Slide Number 126
	Testing Properties of Distributions
	Testing Properties of Distributions
	Testing Properties of Distributions
	Testing Properties of Distributions
	Testing Properties of Distributions
	Testing Properties of Distributions
	Testing Properties of Distributions
	Testing Properties of Distributions
	Testing Properties of Distributions
	Testing Properties of Distributions
	Testing Properties of Distributions
	Testing Properties of Distributions
	Testing Properties of Distributions
	Summary so far
	Summary so far
	Summary so far
	Summary so far
	Summary so far
	Summary so far
	Summary so far
	Slide Number 147
	Slide Number 148
	High-Dimensional Distn’s
	High-Dimensional Distn’s
	High-Dimensional Distn’s
	High-Dimensional Distn’s
	High-Dimensional Distn’s
	High-Dimensional Distn’s
	High-Dimensional Distn’s
	High-Dimensional Distn’s
	Ising Model
	Ising Model
	Ising Model
	Ising Model
	Ising Model: Strong vs weak ties
	Ising Model: Strong vs weak ties
	Ising Model: Strong vs weak ties
	Ising Model: Strong vs weak ties
	Ising Model: Strong vs weak ties
	Ising Model: Strong vs weak ties
	e.g.4: Behavior in a Social Network
	e.g.4: Behavior in a Social Network
	Slide Number 169
	Slide Number 170
	Conclusions
	Conclusions
	Conclusions
	Conclusions
	Testing Combinatorial Structure
	Testing Combinatorial Structure
	Testing Combinatorial Structure
	Testing Combinatorial Structure
	Testing from a Single Sample
	Testing from a Single Sample
	Testing from a Single Sample
	Testing from a Single Sample
	Testing from a Single Sample

