
Delay, memory, and messaging tradeo↵s

in distribured service systems

John N. Tsitsiklis

(with D. Gamarnik and M. Zubeldia)

October 2015

HajekFest

Delay, memory, and messaging tradeo↵s

in distribured service systems

John N. Tsitsiklis

(with D. Gamarnik and M. Zubeldia)

October 2015

HajekFest

Delay, memory, and messaging tradeo↵s

in distributed service systems

John N. Tsitsiklis

(with D. Gamarnik and M. Zubeldia)

October 2015

HajekFest

Delay, memory, and messaging tradeo↵s

in distributed service systems

John N. Tsitsiklis

(with D. Gamarnik and M. Zubeldia)

October 2015

January 2016

HajekFest

Motivation

• Many modern queueing systems are large scale

• Operating optimally requires large scale resources

• Understand the best performance under limited resource availability

• Our context: Dispatching policies with limited memory and limited in-
formation exchange in a many-server queueing system
(supermarket model)

Motivation

• Many modern queueing systems are large scale

• Operating optimally requires large scale resources

• Understand the best performance under limited resource availability

• Our context: Dispatching policies with limited memory and limited in-
formation exchange in a many-server queueing system
(supermarket model)

Motivation

• Many modern queueing systems are large scale

• Operating optimally requires large scale resources

• Understand the best performance under limited resource availability

• Our context: Dispatching policies with limited memory and limited in-
formation exchange in a many-server queueing system
(supermarket model)

Motivation

• Many modern queueing systems are large scale

• Operating optimally requires large scale resources

• Understand the best performance
under limited resource availability

• Our context: Dispatching policies with limited memory and limited in-
formation exchange in a many-server queueing system
(supermarket model)

Motivation

• Many modern queueing systems are large scale

• Operating optimally requires large scale resources

• Understand the best performance
under limited resource availability

• Our context: Dispatching policies
with limited memory and limited information exchange
in a many-server queueing system
(supermarket model)

Outline

• The supermarket model

– overview and comparison of some policies

• A (somewhat) new policy

– performance in three regimes

• Lower bound on resources required

• Conclusion

Outline

• The supermarket model

– overview and comparison of some policies

• A (somewhat) new policy

– performance in three regimes

• Lower bound on resources required

• Technical details

• Conclusion

3

References . 74

Author’s addresses . 76

1. Introduction. The subject of this paper is the study of the tradeo↵s

between various measures of performance (delay, message complexity and

memory) in the context of the supermarket model [13], a basic service system

that involves a stream of incoming jobs that are to be dispatched to the

queue associated with one of multiple servers; see Figure 1.

Incoming jobs

Dispatcher ... Multiple servers

Fig 1. The basic setting.

There is a variety of ways that this system can be operated, which cor-

respond to di↵erent system architectures and policies with di↵erent delay

performance. At one extreme, incoming jobs can be sent to a random queue.

This policy has no informational requirements but incurs a substantial de-

lay because it does not take advantage of resource pooling. At the other

extreme, incoming jobs can be sent to a shortest queue. This policy has

very good performance (small queueing delay), but relies on a substantial

The model

• Poisson Rate �n 0 < � < 1

3

References . 74

Author’s addresses . 76

1. Introduction. The subject of this paper is the study of the tradeo↵s

between various measures of performance (delay, message complexity and

memory) in the context of the supermarket model [13], a basic service system

that involves a stream of incoming jobs that are to be dispatched to the

queue associated with one of multiple servers; see Figure 1.

Incoming jobs

Dispatcher ... Multiple servers

Fig 1. The basic setting.

There is a variety of ways that this system can be operated, which cor-

respond to di↵erent system architectures and policies with di↵erent delay

performance. At one extreme, incoming jobs can be sent to a random queue.

This policy has no informational requirements but incurs a substantial de-

lay because it does not take advantage of resource pooling. At the other

extreme, incoming jobs can be sent to a shortest queue. This policy has

very good performance (small queueing delay), but relies on a substantial

3

References . 74

Author’s addresses . 76

1. Introduction. The subject of this paper is the study of the tradeo↵s

between various measures of performance (delay, message complexity and

memory) in the context of the supermarket model [13], a basic service system

that involves a stream of incoming jobs that are to be dispatched to the

queue associated with one of multiple servers; see Figure 1.

Incoming jobs

Dispatcher ... Multiple servers

Fig 1. The basic setting.

There is a variety of ways that this system can be operated, which cor-

respond to di↵erent system architectures and policies with di↵erent delay

performance. At one extreme, incoming jobs can be sent to a random queue.

This policy has no informational requirements but incurs a substantial de-

lay because it does not take advantage of resource pooling. At the other

extreme, incoming jobs can be sent to a shortest queue. This policy has

very good performance (small queueing delay), but relies on a substantial

The model

• Poisson Rate �n 0 < � < 1

The model

• Poisson rate: � · n 0 < � < 1
The model

• Poisson rate: � · n 0 < � < 1
The model

• Poisson rate: � · n 0 < � < 1

3

References . 74

Author’s addresses . 76

1. Introduction. The subject of this paper is the study of the tradeo↵s

between various measures of performance (delay, message complexity and

memory) in the context of the supermarket model [13], a basic service system

that involves a stream of incoming jobs that are to be dispatched to the

queue associated with one of multiple servers; see Figure 1.

Incoming jobs

Dispatcher ... Multiple servers

Fig 1. The basic setting.

There is a variety of ways that this system can be operated, which cor-

respond to di↵erent system architectures and policies with di↵erent delay

performance. At one extreme, incoming jobs can be sent to a random queue.

This policy has no informational requirements but incurs a substantial de-

lay because it does not take advantage of resource pooling. At the other

extreme, incoming jobs can be sent to a shortest queue. This policy has

very good performance (small queueing delay), but relies on a substantial

3

References . 74

Author’s addresses . 76

1. Introduction. The subject of this paper is the study of the tradeo↵s

between various measures of performance (delay, message complexity and

memory) in the context of the supermarket model [13], a basic service system

that involves a stream of incoming jobs that are to be dispatched to the

queue associated with one of multiple servers; see Figure 1.

Incoming jobs

Dispatcher ... Multiple servers

Fig 1. The basic setting.

There is a variety of ways that this system can be operated, which cor-

respond to di↵erent system architectures and policies with di↵erent delay

performance. At one extreme, incoming jobs can be sent to a random queue.

This policy has no informational requirements but incurs a substantial de-

lay because it does not take advantage of resource pooling. At the other

extreme, incoming jobs can be sent to a shortest queue. This policy has

very good performance (small queueing delay), but relies on a substantial

The model

• Poisson Rate �n 0 < � < 1

The model

• Poisson rate: � · n 0 < � < 1
The model

• Poisson rate: � · n 0 < � < 1
The model

• Poisson rate: � · n 0 < � < 1

The model

• Poisson rate: � · n 0 < � < 1

n servers
exponential
rate: 1

3

References . 74

Author’s addresses . 76

1. Introduction. The subject of this paper is the study of the tradeo↵s

between various measures of performance (delay, message complexity and

memory) in the context of the supermarket model [13], a basic service system

that involves a stream of incoming jobs that are to be dispatched to the

queue associated with one of multiple servers; see Figure 1.

Incoming jobs

Dispatcher ... Multiple servers

Fig 1. The basic setting.

There is a variety of ways that this system can be operated, which cor-

respond to di↵erent system architectures and policies with di↵erent delay

performance. At one extreme, incoming jobs can be sent to a random queue.

This policy has no informational requirements but incurs a substantial de-

lay because it does not take advantage of resource pooling. At the other

extreme, incoming jobs can be sent to a shortest queue. This policy has

very good performance (small queueing delay), but relies on a substantial

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

High memory regime

� logn

High memory regime

� logn � 1

High memory regime

Parsimonious regime

� logn � 1 ⇥(1)

High memory regime

Parsimonious regime

� logn � 1 ⇥(logn)

Extensions, variations

• Allow queue at the dispatcher, queue capacity ! 1

– can get vanishing delay with constant message rate and zero memory
(essentially M/M/n queue)

– but this is like the large memory case

• Allow finite capacity queue at the dispatcher

– same negative result [high probability conjecture]

• Messages are instantaneous, but we do not allow
arbitrary number of back-and-forth messages in zero time

• Conjecture: the impossibility result holds
for arbitrary (non-symmetric) policies

⇥(n)

3

References . 74

Author’s addresses . 76

1. Introduction. The subject of this paper is the study of the tradeo↵s

between various measures of performance (delay, message complexity and

memory) in the context of the supermarket model [13], a basic service system

that involves a stream of incoming jobs that are to be dispatched to the

queue associated with one of multiple servers; see Figure 1.

Incoming jobs

Dispatcher ... Multiple servers

Fig 1. The basic setting.

There is a variety of ways that this system can be operated, which cor-

respond to di↵erent system architectures and policies with di↵erent delay

performance. At one extreme, incoming jobs can be sent to a random queue.

This policy has no informational requirements but incurs a substantial de-

lay because it does not take advantage of resource pooling. At the other

extreme, incoming jobs can be sent to a shortest queue. This policy has

very good performance (small queueing delay), but relies on a substantial

The model

• Poisson rate: � · n 0 < � < 1
The model

• Poisson rate: � · n 0 < � < 1
The model

• Poisson rate: � · n 0 < � < 1

The model

• Poisson rate: � · n 0 < � < 1

n servers
exponential
rate: 1

3

References . 74

Author’s addresses . 76

1. Introduction. The subject of this paper is the study of the tradeo↵s

between various measures of performance (delay, message complexity and

memory) in the context of the supermarket model [13], a basic service system

that involves a stream of incoming jobs that are to be dispatched to the

queue associated with one of multiple servers; see Figure 1.

Incoming jobs

Dispatcher ... Multiple servers

Fig 1. The basic setting.

There is a variety of ways that this system can be operated, which cor-

respond to di↵erent system architectures and policies with di↵erent delay

performance. At one extreme, incoming jobs can be sent to a random queue.

This policy has no informational requirements but incurs a substantial de-

lay because it does not take advantage of resource pooling. At the other

extreme, incoming jobs can be sent to a shortest queue. This policy has

very good performance (small queueing delay), but relies on a substantial

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

High memory regime

� logn

High memory regime

� logn � 1

High memory regime

Parsimonious regime

� logn � 1 ⇥(1)

High memory regime

Parsimonious regime

� logn � 1 ⇥(logn)

Extensions, variations

• Allow queue at the dispatcher, queue capacity ! 1

– can get vanishing delay with constant message rate and zero memory
(essentially M/M/n queue)

– but this is like the large memory case

• Allow finite capacity queue at the dispatcher

– same negative result [high probability conjecture]

• Messages are instantaneous, but we do not allow
arbitrary number of back-and-forth messages in zero time

• Conjecture: the impossibility result holds
for arbitrary (non-symmetric) policies

⇥(n)

3

References . 74

Author’s addresses . 76

1. Introduction. The subject of this paper is the study of the tradeo↵s

between various measures of performance (delay, message complexity and

memory) in the context of the supermarket model [13], a basic service system

that involves a stream of incoming jobs that are to be dispatched to the

queue associated with one of multiple servers; see Figure 1.

Incoming jobs

Dispatcher ... Multiple servers

Fig 1. The basic setting.

There is a variety of ways that this system can be operated, which cor-

respond to di↵erent system architectures and policies with di↵erent delay

performance. At one extreme, incoming jobs can be sent to a random queue.

This policy has no informational requirements but incurs a substantial de-

lay because it does not take advantage of resource pooling. At the other

extreme, incoming jobs can be sent to a shortest queue. This policy has

very good performance (small queueing delay), but relies on a substantial

The model

• Poisson rate: � · n 0 < � < 1
The model

• Poisson rate: � · n 0 < � < 1
The model

• Poisson rate: � · n 0 < � < 1

The model

• Poisson rate: � · n 0 < � < 1

n servers
exponential
rate: 1

3

References . 74

Author’s addresses . 76

1. Introduction. The subject of this paper is the study of the tradeo↵s

between various measures of performance (delay, message complexity and

memory) in the context of the supermarket model [13], a basic service system

that involves a stream of incoming jobs that are to be dispatched to the

queue associated with one of multiple servers; see Figure 1.

Incoming jobs

Dispatcher ... Multiple servers

Fig 1. The basic setting.

There is a variety of ways that this system can be operated, which cor-

respond to di↵erent system architectures and policies with di↵erent delay

performance. At one extreme, incoming jobs can be sent to a random queue.

This policy has no informational requirements but incurs a substantial de-

lay because it does not take advantage of resource pooling. At the other

extreme, incoming jobs can be sent to a shortest queue. This policy has

very good performance (small queueing delay), but relies on a substantial

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

High memory regime

� logn

High memory regime

� logn � 1

High memory regime

Parsimonious regime

� logn � 1 ⇥(1)

High memory regime

Parsimonious regime

� logn � 1 ⇥(logn)

Extensions, variations

• Allow queue at the dispatcher, queue capacity ! 1

– can get vanishing delay with constant message rate and zero memory
(essentially M/M/n queue)

– but this is like the large memory case

• Allow finite capacity queue at the dispatcher

– same negative result [high probability conjecture]

• Messages are instantaneous, but we do not allow
arbitrary number of back-and-forth messages in zero time

• Conjecture: the impossibility result holds
for arbitrary (non-symmetric) policies

⇥(n)

3

References . 74

Author’s addresses . 76

1. Introduction. The subject of this paper is the study of the tradeo↵s

between various measures of performance (delay, message complexity and

memory) in the context of the supermarket model [13], a basic service system

that involves a stream of incoming jobs that are to be dispatched to the

queue associated with one of multiple servers; see Figure 1.

Incoming jobs

Dispatcher ... Multiple servers

Fig 1. The basic setting.

There is a variety of ways that this system can be operated, which cor-

respond to di↵erent system architectures and policies with di↵erent delay

performance. At one extreme, incoming jobs can be sent to a random queue.

This policy has no informational requirements but incurs a substantial de-

lay because it does not take advantage of resource pooling. At the other

extreme, incoming jobs can be sent to a shortest queue. This policy has

very good performance (small queueing delay), but relies on a substantial

The model

• Poisson rate: � · n 0 < � < 1
The model

• Poisson rate: � · n 0 < � < 1
The model

• Poisson rate: � · n 0 < � < 1

The model

• Poisson rate: � · n 0 < � < 1

n servers
exponential
rate: 1

3

References . 74

Author’s addresses . 76

1. Introduction. The subject of this paper is the study of the tradeo↵s

between various measures of performance (delay, message complexity and

memory) in the context of the supermarket model [13], a basic service system

that involves a stream of incoming jobs that are to be dispatched to the

queue associated with one of multiple servers; see Figure 1.

Incoming jobs

Dispatcher ... Multiple servers

Fig 1. The basic setting.

There is a variety of ways that this system can be operated, which cor-

respond to di↵erent system architectures and policies with di↵erent delay

performance. At one extreme, incoming jobs can be sent to a random queue.

This policy has no informational requirements but incurs a substantial de-

lay because it does not take advantage of resource pooling. At the other

extreme, incoming jobs can be sent to a shortest queue. This policy has

very good performance (small queueing delay), but relies on a substantial

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0
A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

High memory regime

� logn

High memory regime

� logn � 1

High memory regime

Parsimonious regime

� logn � 1 ⇥(1)

High memory regime

Parsimonious regime

� logn � 1 ⇥(logn)

Extensions, variations

• Allow queue at the dispatcher, queue capacity ! 1

– can get vanishing delay with constant message rate and zero memory
(essentially M/M/n queue)

– but this is like the large memory case

• Allow finite capacity queue at the dispatcher

– same negative result [high probability conjecture]

• Messages are instantaneous, but we do not allow
arbitrary number of back-and-forth messages in zero time

• Conjecture: the impossibility result holds
for arbitrary (non-symmetric) policies

⇥(n)

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

3

References . 74

Author’s addresses . 76

1. Introduction. The subject of this paper is the study of the tradeo↵s

between various measures of performance (delay, message complexity and

memory) in the context of the supermarket model [13], a basic service system

that involves a stream of incoming jobs that are to be dispatched to the

queue associated with one of multiple servers; see Figure 1.

Incoming jobs

Dispatcher ... Multiple servers

Fig 1. The basic setting.

There is a variety of ways that this system can be operated, which cor-

respond to di↵erent system architectures and policies with di↵erent delay

performance. At one extreme, incoming jobs can be sent to a random queue.

This policy has no informational requirements but incurs a substantial de-

lay because it does not take advantage of resource pooling. At the other

extreme, incoming jobs can be sent to a shortest queue. This policy has

very good performance (small queueing delay), but relies on a substantial

The model

• Poisson rate: � · n 0 < � < 1
The model

• Poisson rate: � · n 0 < � < 1
The model

• Poisson rate: � · n 0 < � < 1

The model

• Poisson rate: � · n 0 < � < 1

n servers
exponential
rate: 1

3

References . 74

Author’s addresses . 76

1. Introduction. The subject of this paper is the study of the tradeo↵s

between various measures of performance (delay, message complexity and

memory) in the context of the supermarket model [13], a basic service system

that involves a stream of incoming jobs that are to be dispatched to the

queue associated with one of multiple servers; see Figure 1.

Incoming jobs

Dispatcher ... Multiple servers

Fig 1. The basic setting.

There is a variety of ways that this system can be operated, which cor-

respond to di↵erent system architectures and policies with di↵erent delay

performance. At one extreme, incoming jobs can be sent to a random queue.

This policy has no informational requirements but incurs a substantial de-

lay because it does not take advantage of resource pooling. At the other

extreme, incoming jobs can be sent to a shortest queue. This policy has

very good performance (small queueing delay), but relies on a substantial

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0
A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

High memory regime

� logn

High memory regime

� logn � 1

High memory regime

Parsimonious regime

� logn � 1 ⇥(1)

High memory regime

Parsimonious regime

� logn � 1 ⇥(logn)

Extensions, variations

• Allow queue at the dispatcher, queue capacity ! 1

– can get vanishing delay with constant message rate and zero memory
(essentially M/M/n queue)

– but this is like the large memory case

• Allow finite capacity queue at the dispatcher

– same negative result [high probability conjecture]

• Messages are instantaneous, but we do not allow
arbitrary number of back-and-forth messages in zero time

• Conjecture: the impossibility result holds
for arbitrary (non-symmetric) policies

⇥(n)

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

3

References . 74

Author’s addresses . 76

1. Introduction. The subject of this paper is the study of the tradeo↵s

between various measures of performance (delay, message complexity and

memory) in the context of the supermarket model [13], a basic service system

that involves a stream of incoming jobs that are to be dispatched to the

queue associated with one of multiple servers; see Figure 1.

Incoming jobs

Dispatcher ... Multiple servers

Fig 1. The basic setting.

There is a variety of ways that this system can be operated, which cor-

respond to di↵erent system architectures and policies with di↵erent delay

performance. At one extreme, incoming jobs can be sent to a random queue.

This policy has no informational requirements but incurs a substantial de-

lay because it does not take advantage of resource pooling. At the other

extreme, incoming jobs can be sent to a shortest queue. This policy has

very good performance (small queueing delay), but relies on a substantial

The model

• Poisson rate: � · n 0 < � < 1
The model

• Poisson rate: � · n 0 < � < 1
The model

• Poisson rate: � · n 0 < � < 1

The model

• Poisson rate: � · n 0 < � < 1

n servers
exponential
rate: 1

3

References . 74

Author’s addresses . 76

1. Introduction. The subject of this paper is the study of the tradeo↵s

between various measures of performance (delay, message complexity and

memory) in the context of the supermarket model [13], a basic service system

that involves a stream of incoming jobs that are to be dispatched to the

queue associated with one of multiple servers; see Figure 1.

Incoming jobs

Dispatcher ... Multiple servers

Fig 1. The basic setting.

There is a variety of ways that this system can be operated, which cor-

respond to di↵erent system architectures and policies with di↵erent delay

performance. At one extreme, incoming jobs can be sent to a random queue.

This policy has no informational requirements but incurs a substantial de-

lay because it does not take advantage of resource pooling. At the other

extreme, incoming jobs can be sent to a shortest queue. This policy has

very good performance (small queueing delay), but relies on a substantial

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

• Round robin (RR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

High memory regime

� logn

High memory regime

� logn � 1

High memory regime

Parsimonious regime

� logn � 1 ⇥(1)

High memory regime

Parsimonious regime

� logn � 1 ⇥(logn)

Extensions, variations

• Allow queue at the dispatcher, queue capacity ! 1

– can get vanishing delay with constant message rate and zero memory
(essentially M/M/n queue)

– but this is like the large memory case

• Allow finite capacity queue at the dispatcher

– same negative result [high probability conjecture]

• Messages are instantaneous, but we do not allow
arbitrary number of back-and-forth messages in zero time

• Conjecture: the impossibility result holds
for arbitrary (non-symmetric) policies

⇥(n)

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

3

References . 74

Author’s addresses . 76

1. Introduction. The subject of this paper is the study of the tradeo↵s

between various measures of performance (delay, message complexity and

memory) in the context of the supermarket model [13], a basic service system

that involves a stream of incoming jobs that are to be dispatched to the

queue associated with one of multiple servers; see Figure 1.

Incoming jobs

Dispatcher ... Multiple servers

Fig 1. The basic setting.

There is a variety of ways that this system can be operated, which cor-

respond to di↵erent system architectures and policies with di↵erent delay

performance. At one extreme, incoming jobs can be sent to a random queue.

This policy has no informational requirements but incurs a substantial de-

lay because it does not take advantage of resource pooling. At the other

extreme, incoming jobs can be sent to a shortest queue. This policy has

very good performance (small queueing delay), but relies on a substantial

The model

• Poisson rate: � · n 0 < � < 1
The model

• Poisson rate: � · n 0 < � < 1
The model

• Poisson rate: � · n 0 < � < 1

The model

• Poisson rate: � · n 0 < � < 1

n servers
exponential
rate: 1

3

References . 74

Author’s addresses . 76

1. Introduction. The subject of this paper is the study of the tradeo↵s

between various measures of performance (delay, message complexity and

memory) in the context of the supermarket model [13], a basic service system

that involves a stream of incoming jobs that are to be dispatched to the

queue associated with one of multiple servers; see Figure 1.

Incoming jobs

Dispatcher ... Multiple servers

Fig 1. The basic setting.

There is a variety of ways that this system can be operated, which cor-

respond to di↵erent system architectures and policies with di↵erent delay

performance. At one extreme, incoming jobs can be sent to a random queue.

This policy has no informational requirements but incurs a substantial de-

lay because it does not take advantage of resource pooling. At the other

extreme, incoming jobs can be sent to a shortest queue. This policy has

very good performance (small queueing delay), but relies on a substantial

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

• Round robin (RR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

High memory regime

� logn

High memory regime

� logn � 1

High memory regime

Parsimonious regime

� logn � 1 ⇥(1)

High memory regime

Parsimonious regime

� logn � 1 ⇥(logn)

Extensions, variations

• Allow queue at the dispatcher, queue capacity ! 1

– can get vanishing delay with constant message rate and zero memory
(essentially M/M/n queue)

– but this is like the large memory case

• Allow finite capacity queue at the dispatcher

– same negative result [high probability conjecture]

• Messages are instantaneous, but we do not allow
arbitrary number of back-and-forth messages in zero time

• Conjecture: the impossibility result holds
for arbitrary (non-symmetric) policies

⇥(n)

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

3

References . 74

Author’s addresses . 76

1. Introduction. The subject of this paper is the study of the tradeo↵s

between various measures of performance (delay, message complexity and

memory) in the context of the supermarket model [13], a basic service system

that involves a stream of incoming jobs that are to be dispatched to the

queue associated with one of multiple servers; see Figure 1.

Incoming jobs

Dispatcher ... Multiple servers

Fig 1. The basic setting.

There is a variety of ways that this system can be operated, which cor-

respond to di↵erent system architectures and policies with di↵erent delay

performance. At one extreme, incoming jobs can be sent to a random queue.

This policy has no informational requirements but incurs a substantial de-

lay because it does not take advantage of resource pooling. At the other

extreme, incoming jobs can be sent to a shortest queue. This policy has

very good performance (small queueing delay), but relies on a substantial

The model

• Poisson rate: � · n 0 < � < 1
The model

• Poisson rate: � · n 0 < � < 1
The model

• Poisson rate: � · n 0 < � < 1

The model

• Poisson rate: � · n 0 < � < 1

n servers
exponential
rate: 1

3

References . 74

Author’s addresses . 76

1. Introduction. The subject of this paper is the study of the tradeo↵s

between various measures of performance (delay, message complexity and

memory) in the context of the supermarket model [13], a basic service system

that involves a stream of incoming jobs that are to be dispatched to the

queue associated with one of multiple servers; see Figure 1.

Incoming jobs

Dispatcher ... Multiple servers

Fig 1. The basic setting.

There is a variety of ways that this system can be operated, which cor-

respond to di↵erent system architectures and policies with di↵erent delay

performance. At one extreme, incoming jobs can be sent to a random queue.

This policy has no informational requirements but incurs a substantial de-

lay because it does not take advantage of resource pooling. At the other

extreme, incoming jobs can be sent to a shortest queue. This policy has

very good performance (small queueing delay), but relies on a substantial

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

• Round robin (RR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

High memory regime

� logn

High memory regime

� logn � 1

High memory regime

Parsimonious regime

� logn � 1 ⇥(1)

High memory regime

Parsimonious regime

� logn � 1 ⇥(logn)

Extensions, variations

• Allow queue at the dispatcher, queue capacity ! 1

– can get vanishing delay with constant message rate and zero memory
(essentially M/M/n queue)

– but this is like the large memory case

• Allow finite capacity queue at the dispatcher

– same negative result [high probability conjecture]

• Messages are instantaneous, but we do not allow
arbitrary number of back-and-forth messages in zero time

• Conjecture: the impossibility result holds
for arbitrary (non-symmetric) policies

⇥(n)

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

3

References . 74

Author’s addresses . 76

1. Introduction. The subject of this paper is the study of the tradeo↵s

between various measures of performance (delay, message complexity and

memory) in the context of the supermarket model [13], a basic service system

that involves a stream of incoming jobs that are to be dispatched to the

queue associated with one of multiple servers; see Figure 1.

Incoming jobs

Dispatcher ... Multiple servers

Fig 1. The basic setting.

There is a variety of ways that this system can be operated, which cor-

respond to di↵erent system architectures and policies with di↵erent delay

performance. At one extreme, incoming jobs can be sent to a random queue.

This policy has no informational requirements but incurs a substantial de-

lay because it does not take advantage of resource pooling. At the other

extreme, incoming jobs can be sent to a shortest queue. This policy has

very good performance (small queueing delay), but relies on a substantial

The model

• Poisson rate: � · n 0 < � < 1
The model

• Poisson rate: � · n 0 < � < 1
The model

• Poisson rate: � · n 0 < � < 1

The model

• Poisson rate: � · n 0 < � < 1

n servers
exponential
rate: 1

3

References . 74

Author’s addresses . 76

1. Introduction. The subject of this paper is the study of the tradeo↵s

between various measures of performance (delay, message complexity and

memory) in the context of the supermarket model [13], a basic service system

that involves a stream of incoming jobs that are to be dispatched to the

queue associated with one of multiple servers; see Figure 1.

Incoming jobs

Dispatcher ... Multiple servers

Fig 1. The basic setting.

There is a variety of ways that this system can be operated, which cor-

respond to di↵erent system architectures and policies with di↵erent delay

performance. At one extreme, incoming jobs can be sent to a random queue.

This policy has no informational requirements but incurs a substantial de-

lay because it does not take advantage of resource pooling. At the other

extreme, incoming jobs can be sent to a shortest queue. This policy has

very good performance (small queueing delay), but relies on a substantial

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

• Round robin (RR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

High memory regime

� logn

High memory regime

� logn � 1

High memory regime

Parsimonious regime

� logn � 1 ⇥(1)

High memory regime

Parsimonious regime

� logn � 1 ⇥(logn)

Extensions, variations

• Allow queue at the dispatcher, queue capacity ! 1

– can get vanishing delay with constant message rate and zero memory
(essentially M/M/n queue)

– but this is like the large memory case

• Allow finite capacity queue at the dispatcher

– same negative result [high probability conjecture]

• Messages are instantaneous, but we do not allow
arbitrary number of back-and-forth messages in zero time

• Conjecture: the impossibility result holds
for arbitrary (non-symmetric) policies

⇥(n)

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

3

References . 74

Author’s addresses . 76

1. Introduction. The subject of this paper is the study of the tradeo↵s

between various measures of performance (delay, message complexity and

memory) in the context of the supermarket model [13], a basic service system

that involves a stream of incoming jobs that are to be dispatched to the

queue associated with one of multiple servers; see Figure 1.

Incoming jobs

Dispatcher ... Multiple servers

Fig 1. The basic setting.

There is a variety of ways that this system can be operated, which cor-

respond to di↵erent system architectures and policies with di↵erent delay

performance. At one extreme, incoming jobs can be sent to a random queue.

This policy has no informational requirements but incurs a substantial de-

lay because it does not take advantage of resource pooling. At the other

extreme, incoming jobs can be sent to a shortest queue. This policy has

very good performance (small queueing delay), but relies on a substantial

The model

• Poisson rate: � · n 0 < � < 1
The model

• Poisson rate: � · n 0 < � < 1
The model

• Poisson rate: � · n 0 < � < 1

The model

• Poisson rate: � · n 0 < � < 1

n servers
exponential
rate: 1

3

References . 74

Author’s addresses . 76

1. Introduction. The subject of this paper is the study of the tradeo↵s

between various measures of performance (delay, message complexity and

memory) in the context of the supermarket model [13], a basic service system

that involves a stream of incoming jobs that are to be dispatched to the

queue associated with one of multiple servers; see Figure 1.

Incoming jobs

Dispatcher ... Multiple servers

Fig 1. The basic setting.

There is a variety of ways that this system can be operated, which cor-

respond to di↵erent system architectures and policies with di↵erent delay

performance. At one extreme, incoming jobs can be sent to a random queue.

This policy has no informational requirements but incurs a substantial de-

lay because it does not take advantage of resource pooling. At the other

extreme, incoming jobs can be sent to a shortest queue. This policy has

very good performance (small queueing delay), but relies on a substantial

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

• Round robin (RR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

• Join shortest of d (JSQ(d))

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

Badonnel & Burgess (2008) Y. Lu et al. (2011) Stolyar (2015),

Vvedenskaya et al. (1996), Mitzenmacher (1996)

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

High memory regime

� logn

High memory regime

� logn � 1

High memory regime

Parsimonious regime

� logn � 1 ⇥(1)

High memory regime

Parsimonious regime

� logn � 1 ⇥(logn)

Extensions, variations

• Allow queue at the dispatcher, queue capacity ! 1

– can get vanishing delay with constant message rate and zero memory
(essentially M/M/n queue)

– but this is like the large memory case

• Allow finite capacity queue at the dispatcher

– same negative result [high probability conjecture]

• Messages are instantaneous, but we do not allow
arbitrary number of back-and-forth messages in zero time

• Conjecture: the impossibility result holds
for arbitrary (non-symmetric) policies

⇥(n)

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

3

References . 74

Author’s addresses . 76

1. Introduction. The subject of this paper is the study of the tradeo↵s

between various measures of performance (delay, message complexity and

memory) in the context of the supermarket model [13], a basic service system

that involves a stream of incoming jobs that are to be dispatched to the

queue associated with one of multiple servers; see Figure 1.

Incoming jobs

Dispatcher ... Multiple servers

Fig 1. The basic setting.

There is a variety of ways that this system can be operated, which cor-

respond to di↵erent system architectures and policies with di↵erent delay

performance. At one extreme, incoming jobs can be sent to a random queue.

This policy has no informational requirements but incurs a substantial de-

lay because it does not take advantage of resource pooling. At the other

extreme, incoming jobs can be sent to a shortest queue. This policy has

very good performance (small queueing delay), but relies on a substantial

The model

• Poisson rate: � · n 0 < � < 1
The model

• Poisson rate: � · n 0 < � < 1
The model

• Poisson rate: � · n 0 < � < 1

The model

• Poisson rate: � · n 0 < � < 1

n servers
exponential
rate: 1

3

References . 74

Author’s addresses . 76

1. Introduction. The subject of this paper is the study of the tradeo↵s

between various measures of performance (delay, message complexity and

memory) in the context of the supermarket model [13], a basic service system

that involves a stream of incoming jobs that are to be dispatched to the

queue associated with one of multiple servers; see Figure 1.

Incoming jobs

Dispatcher ... Multiple servers

Fig 1. The basic setting.

There is a variety of ways that this system can be operated, which cor-

respond to di↵erent system architectures and policies with di↵erent delay

performance. At one extreme, incoming jobs can be sent to a random queue.

This policy has no informational requirements but incurs a substantial de-

lay because it does not take advantage of resource pooling. At the other

extreme, incoming jobs can be sent to a shortest queue. This policy has

very good performance (small queueing delay), but relies on a substantial

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

• Round robin (RR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

• Join shortest of d (JSQ(d))

messages per job
memory (bits) d d logn

delay � c > 0

�! n!1 0

logn

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

• Join shortest of d (JSQ(d))

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

Badonnel & Burgess (2008) Y. Lu et al. (2011) Stolyar (2015),

Vvedenskaya et al. (1996), Mitzenmacher (1996)

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

High memory regime

� logn

High memory regime

� logn � 1

High memory regime

Parsimonious regime

� logn � 1 ⇥(1)

High memory regime

Parsimonious regime

� logn � 1 ⇥(logn)

Extensions, variations

• Allow queue at the dispatcher, queue capacity ! 1

– can get vanishing delay with constant message rate and zero memory
(essentially M/M/n queue)

– but this is like the large memory case

• Allow finite capacity queue at the dispatcher

– same negative result [high probability conjecture]

• Messages are instantaneous, but we do not allow
arbitrary number of back-and-forth messages in zero time

• Conjecture: the impossibility result holds
for arbitrary (non-symmetric) policies

⇥(n)

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

3

References . 74

Author’s addresses . 76

1. Introduction. The subject of this paper is the study of the tradeo↵s

between various measures of performance (delay, message complexity and

memory) in the context of the supermarket model [13], a basic service system

that involves a stream of incoming jobs that are to be dispatched to the

queue associated with one of multiple servers; see Figure 1.

Incoming jobs

Dispatcher ... Multiple servers

Fig 1. The basic setting.

There is a variety of ways that this system can be operated, which cor-

respond to di↵erent system architectures and policies with di↵erent delay

performance. At one extreme, incoming jobs can be sent to a random queue.

This policy has no informational requirements but incurs a substantial de-

lay because it does not take advantage of resource pooling. At the other

extreme, incoming jobs can be sent to a shortest queue. This policy has

very good performance (small queueing delay), but relies on a substantial

The model

• Poisson rate: � · n 0 < � < 1
The model

• Poisson rate: � · n 0 < � < 1
The model

• Poisson rate: � · n 0 < � < 1

The model

• Poisson rate: � · n 0 < � < 1

n servers
exponential
rate: 1

3

References . 74

Author’s addresses . 76

1. Introduction. The subject of this paper is the study of the tradeo↵s

between various measures of performance (delay, message complexity and

memory) in the context of the supermarket model [13], a basic service system

that involves a stream of incoming jobs that are to be dispatched to the

queue associated with one of multiple servers; see Figure 1.

Incoming jobs

Dispatcher ... Multiple servers

Fig 1. The basic setting.

There is a variety of ways that this system can be operated, which cor-

respond to di↵erent system architectures and policies with di↵erent delay

performance. At one extreme, incoming jobs can be sent to a random queue.

This policy has no informational requirements but incurs a substantial de-

lay because it does not take advantage of resource pooling. At the other

extreme, incoming jobs can be sent to a shortest queue. This policy has

very good performance (small queueing delay), but relies on a substantial

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

• Round robin (RR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

• Join shortest of d (JSQ(d))

messages per job
memory (bits) d d logn

delay � c > 0

�! n!1 0

logn

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

• Join shortest of d (JSQ(d))

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

Badonnel & Burgess (2008) Y. Lu et al. (2011) Stolyar (2015),

Vvedenskaya et al. (1996), Mitzenmacher (1996)

Badonnel & Burgess (2008), Y. Lu et al. (2011), Stolyar (2015),

Vvedenskaya et al. (1996), Mitzenmacher (1996)

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

• Join shortest of d (JSQ(d))

• Idle servers pull jobs (Pull)

• Ours

messages per job
memory (bits) d d logn 1
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

High memory regime

� logn

High memory regime

� logn � 1

High memory regime

Parsimonious regime

� logn � 1 ⇥(1)

High memory regime

Parsimonious regime

� logn � 1 ⇥(logn)

Extensions, variations

• Allow queue at the dispatcher, queue capacity ! 1

– can get vanishing delay with constant message rate and zero memory
(essentially M/M/n queue)

– but this is like the large memory case

• Allow finite capacity queue at the dispatcher

– same negative result [high probability conjecture]

• Messages are instantaneous, but we do not allow
arbitrary number of back-and-forth messages in zero time

• Conjecture: the impossibility result holds
for arbitrary (non-symmetric) policies

⇥(n)

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

3

References . 74

Author’s addresses . 76

1. Introduction. The subject of this paper is the study of the tradeo↵s

between various measures of performance (delay, message complexity and

memory) in the context of the supermarket model [13], a basic service system

that involves a stream of incoming jobs that are to be dispatched to the

queue associated with one of multiple servers; see Figure 1.

Incoming jobs

Dispatcher ... Multiple servers

Fig 1. The basic setting.

There is a variety of ways that this system can be operated, which cor-

respond to di↵erent system architectures and policies with di↵erent delay

performance. At one extreme, incoming jobs can be sent to a random queue.

This policy has no informational requirements but incurs a substantial de-

lay because it does not take advantage of resource pooling. At the other

extreme, incoming jobs can be sent to a shortest queue. This policy has

very good performance (small queueing delay), but relies on a substantial

The model

• Poisson rate: � · n 0 < � < 1
The model

• Poisson rate: � · n 0 < � < 1
The model

• Poisson rate: � · n 0 < � < 1

The model

• Poisson rate: � · n 0 < � < 1

n servers
exponential
rate: 1

3

References . 74

Author’s addresses . 76

1. Introduction. The subject of this paper is the study of the tradeo↵s

between various measures of performance (delay, message complexity and

memory) in the context of the supermarket model [13], a basic service system

that involves a stream of incoming jobs that are to be dispatched to the

queue associated with one of multiple servers; see Figure 1.

Incoming jobs

Dispatcher ... Multiple servers

Fig 1. The basic setting.

There is a variety of ways that this system can be operated, which cor-

respond to di↵erent system architectures and policies with di↵erent delay

performance. At one extreme, incoming jobs can be sent to a random queue.

This policy has no informational requirements but incurs a substantial de-

lay because it does not take advantage of resource pooling. At the other

extreme, incoming jobs can be sent to a shortest queue. This policy has

very good performance (small queueing delay), but relies on a substantial

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

• Round robin (RR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

• Join shortest of d (JSQ(d))

messages per job
memory (bits) d d logn

delay � c > 0

�! n!1 0

logn

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

High memory regime

Parsimonious regime

� logn � 1 ⇥(logn) Pull

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

• Join shortest of d (JSQ(d))

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

Badonnel & Burgess (2008) Y. Lu et al. (2011) Stolyar (2015),

Vvedenskaya et al. (1996), Mitzenmacher (1996)

Badonnel & Burgess (2008), Y. Lu et al. (2011), Stolyar (2015),

Vvedenskaya et al. (1996), Mitzenmacher (1996)

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

• Join shortest of d (JSQ(d))

• Idle servers pull jobs (Pull)

• Ours

messages per job
memory (bits) d d logn 1
delay � c > 0

�! n!1 0

Our policy

logn

10

patcher as a Poisson process of rate µ(N) to inform or remind the dispatcher

of its idleness. When the dispatcher receives a message, it adds the ID of

the server that sent the message to the virtual queue of tokens that is kept

in the memory, unless this ID is already stored or the virtual queue is full,

in which case it discards the new message. When a new job arrives, if there

is at least one server ID in the virtual queue, the job goes to the queue of

a server chosen uniformly at random from the virtual queue and the corre-

sponding token is deleted. If there are no tokens present, the job is sent to

a queue chosen uniformly at random. This policy is depicted in Figure 2.

N�

Dispatcher

C(N)

Queue of tokens

Jobs to

empty queues

Messages from

idle servers

... N servers

Fig 2. Resource constrained pull-based policy. Jobs are sent to queues associated with idle
servers, based on tokens on the virtual queue. If no tokens are present, a queue is chosen
at random.

Note that in our policy no messages are sent from the dispatcher to the

servers, which is why we call it a “pull-based” policy. We present a summary

of the results for the three variants of our policy in Table 1.

For variant (a) we actually impose the further constraint that C(N) 2

The model

• Poisson rate: � · n 0 < � < 1

n servers
exponential
rate: 1

The model

• Poisson rate: � · n 0 < � < 1

n servers
exponential
rate: 1

Our policy

cn

• idle processors send messages at rate ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

3

References . 74

Author’s addresses . 76

1. Introduction. The subject of this paper is the study of the tradeo↵s

between various measures of performance (delay, message complexity and

memory) in the context of the supermarket model [13], a basic service system

that involves a stream of incoming jobs that are to be dispatched to the

queue associated with one of multiple servers; see Figure 1.

Incoming jobs

Dispatcher ... Multiple servers

Fig 1. The basic setting.

There is a variety of ways that this system can be operated, which cor-

respond to di↵erent system architectures and policies with di↵erent delay

performance. At one extreme, incoming jobs can be sent to a random queue.

This policy has no informational requirements but incurs a substantial de-

lay because it does not take advantage of resource pooling. At the other

extreme, incoming jobs can be sent to a shortest queue. This policy has

very good performance (small queueing delay), but relies on a substantial

Our policy

logn

10

patcher as a Poisson process of rate µ(N) to inform or remind the dispatcher

of its idleness. When the dispatcher receives a message, it adds the ID of

the server that sent the message to the virtual queue of tokens that is kept

in the memory, unless this ID is already stored or the virtual queue is full,

in which case it discards the new message. When a new job arrives, if there

is at least one server ID in the virtual queue, the job goes to the queue of

a server chosen uniformly at random from the virtual queue and the corre-

sponding token is deleted. If there are no tokens present, the job is sent to

a queue chosen uniformly at random. This policy is depicted in Figure 2.

N�

Dispatcher

C(N)

Queue of tokens

Jobs to

empty queues

Messages from

idle servers

... N servers

Fig 2. Resource constrained pull-based policy. Jobs are sent to queues associated with idle
servers, based on tokens on the virtual queue. If no tokens are present, a queue is chosen
at random.

Note that in our policy no messages are sent from the dispatcher to the

servers, which is why we call it a “pull-based” policy. We present a summary

of the results for the three variants of our policy in Table 1.

For variant (a) we actually impose the further constraint that C(N) 2

The model

• Poisson rate: � · n 0 < � < 1

n servers
exponential
rate: 1

The model

• Poisson rate: � · n 0 < � < 1

n servers
exponential
rate: 1

Our policy

cn

• idle processors send messages at rate ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

Our policy

cn

• idle processors send messages at rate ⌫n

– message rate per job ⇡ ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

Our policy

cn

• idle processors send messages at rate ⌫n

– message rate per job ⇡ ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

3

References . 74

Author’s addresses . 76

1. Introduction. The subject of this paper is the study of the tradeo↵s

between various measures of performance (delay, message complexity and

memory) in the context of the supermarket model [13], a basic service system

that involves a stream of incoming jobs that are to be dispatched to the

queue associated with one of multiple servers; see Figure 1.

Incoming jobs

Dispatcher ... Multiple servers

Fig 1. The basic setting.

There is a variety of ways that this system can be operated, which cor-

respond to di↵erent system architectures and policies with di↵erent delay

performance. At one extreme, incoming jobs can be sent to a random queue.

This policy has no informational requirements but incurs a substantial de-

lay because it does not take advantage of resource pooling. At the other

extreme, incoming jobs can be sent to a shortest queue. This policy has

very good performance (small queueing delay), but relies on a substantial

Our policy

logn

10

patcher as a Poisson process of rate µ(N) to inform or remind the dispatcher

of its idleness. When the dispatcher receives a message, it adds the ID of

the server that sent the message to the virtual queue of tokens that is kept

in the memory, unless this ID is already stored or the virtual queue is full,

in which case it discards the new message. When a new job arrives, if there

is at least one server ID in the virtual queue, the job goes to the queue of

a server chosen uniformly at random from the virtual queue and the corre-

sponding token is deleted. If there are no tokens present, the job is sent to

a queue chosen uniformly at random. This policy is depicted in Figure 2.

N�

Dispatcher

C(N)

Queue of tokens

Jobs to

empty queues

Messages from

idle servers

... N servers

Fig 2. Resource constrained pull-based policy. Jobs are sent to queues associated with idle
servers, based on tokens on the virtual queue. If no tokens are present, a queue is chosen
at random.

Note that in our policy no messages are sent from the dispatcher to the

servers, which is why we call it a “pull-based” policy. We present a summary

of the results for the three variants of our policy in Table 1.

For variant (a) we actually impose the further constraint that C(N) 2

The model

• Poisson rate: � · n 0 < � < 1

n servers
exponential
rate: 1

The model

• Poisson rate: � · n 0 < � < 1

n servers
exponential
rate: 1

Our policy

cn

• idle processors send messages at rate ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

Our policy

cn

• idle processors send messages at rate ⌫n

– message rate per job ⇡ ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

Our policy

cn

• idle processors send messages at rate ⌫n

– message rate per job ⇡ ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

Our policy

cn

• idle processors send messages at rate ⌫n

– message rate per job ⇡ ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

3

References . 74

Author’s addresses . 76

1. Introduction. The subject of this paper is the study of the tradeo↵s

between various measures of performance (delay, message complexity and

memory) in the context of the supermarket model [13], a basic service system

that involves a stream of incoming jobs that are to be dispatched to the

queue associated with one of multiple servers; see Figure 1.

Incoming jobs

Dispatcher ... Multiple servers

Fig 1. The basic setting.

There is a variety of ways that this system can be operated, which cor-

respond to di↵erent system architectures and policies with di↵erent delay

performance. At one extreme, incoming jobs can be sent to a random queue.

This policy has no informational requirements but incurs a substantial de-

lay because it does not take advantage of resource pooling. At the other

extreme, incoming jobs can be sent to a shortest queue. This policy has

very good performance (small queueing delay), but relies on a substantial

Our policy

logn

10

patcher as a Poisson process of rate µ(N) to inform or remind the dispatcher

of its idleness. When the dispatcher receives a message, it adds the ID of

the server that sent the message to the virtual queue of tokens that is kept

in the memory, unless this ID is already stored or the virtual queue is full,

in which case it discards the new message. When a new job arrives, if there

is at least one server ID in the virtual queue, the job goes to the queue of

a server chosen uniformly at random from the virtual queue and the corre-

sponding token is deleted. If there are no tokens present, the job is sent to

a queue chosen uniformly at random. This policy is depicted in Figure 2.

N�

Dispatcher

C(N)

Queue of tokens

Jobs to

empty queues

Messages from

idle servers

... N servers

Fig 2. Resource constrained pull-based policy. Jobs are sent to queues associated with idle
servers, based on tokens on the virtual queue. If no tokens are present, a queue is chosen
at random.

Note that in our policy no messages are sent from the dispatcher to the

servers, which is why we call it a “pull-based” policy. We present a summary

of the results for the three variants of our policy in Table 1.

For variant (a) we actually impose the further constraint that C(N) 2

The model

• Poisson rate: � · n 0 < � < 1

n servers
exponential
rate: 1

The model

• Poisson rate: � · n 0 < � < 1

n servers
exponential
rate: 1

Our policy

cn

• idle processors send messages at rate ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

Our policy

cn

• idle processors send messages at rate ⌫n

– message rate per job ⇡ ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

Our policy

cn

• idle processors send messages at rate ⌫n

– message rate per job ⇡ ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

Our policy

cn

• idle processors send messages at rate ⌫n

– message rate per job ⇡ ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

3

References . 74

Author’s addresses . 76

1. Introduction. The subject of this paper is the study of the tradeo↵s

between various measures of performance (delay, message complexity and

memory) in the context of the supermarket model [13], a basic service system

that involves a stream of incoming jobs that are to be dispatched to the

queue associated with one of multiple servers; see Figure 1.

Incoming jobs

Dispatcher ... Multiple servers

Fig 1. The basic setting.

There is a variety of ways that this system can be operated, which cor-

respond to di↵erent system architectures and policies with di↵erent delay

performance. At one extreme, incoming jobs can be sent to a random queue.

This policy has no informational requirements but incurs a substantial de-

lay because it does not take advantage of resource pooling. At the other

extreme, incoming jobs can be sent to a shortest queue. This policy has

very good performance (small queueing delay), but relies on a substantial

Our policy

logn

10

patcher as a Poisson process of rate µ(N) to inform or remind the dispatcher

of its idleness. When the dispatcher receives a message, it adds the ID of

the server that sent the message to the virtual queue of tokens that is kept

in the memory, unless this ID is already stored or the virtual queue is full,

in which case it discards the new message. When a new job arrives, if there

is at least one server ID in the virtual queue, the job goes to the queue of

a server chosen uniformly at random from the virtual queue and the corre-

sponding token is deleted. If there are no tokens present, the job is sent to

a queue chosen uniformly at random. This policy is depicted in Figure 2.

N�

Dispatcher

C(N)

Queue of tokens

Jobs to

empty queues

Messages from

idle servers

... N servers

Fig 2. Resource constrained pull-based policy. Jobs are sent to queues associated with idle
servers, based on tokens on the virtual queue. If no tokens are present, a queue is chosen
at random.

Note that in our policy no messages are sent from the dispatcher to the

servers, which is why we call it a “pull-based” policy. We present a summary

of the results for the three variants of our policy in Table 1.

For variant (a) we actually impose the further constraint that C(N) 2

The model

• Poisson rate: � · n 0 < � < 1

n servers
exponential
rate: 1

The model

• Poisson rate: � · n 0 < � < 1

n servers
exponential
rate: 1

Our policy

cn

• idle processors send messages at rate ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

Our policy

cn

• idle processors send messages at rate ⌫n

– message rate per job ⇡ ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

Our policy

cn

• idle processors send messages at rate ⌫n

– message rate per job ⇡ ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

Our policy

cn

• idle processors send messages at rate ⌫n

– message rate per job ⇡ ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

Our policy

cn

• idle processors send messages at rate ⌫n

– message rate per job ⇡ ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

Our policy

cn

• idle processors send messages at rate ⌫n

– message rate per job ⇡ ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

3

References . 74

Author’s addresses . 76

1. Introduction. The subject of this paper is the study of the tradeo↵s

between various measures of performance (delay, message complexity and

memory) in the context of the supermarket model [13], a basic service system

that involves a stream of incoming jobs that are to be dispatched to the

queue associated with one of multiple servers; see Figure 1.

Incoming jobs

Dispatcher ... Multiple servers

Fig 1. The basic setting.

There is a variety of ways that this system can be operated, which cor-

respond to di↵erent system architectures and policies with di↵erent delay

performance. At one extreme, incoming jobs can be sent to a random queue.

This policy has no informational requirements but incurs a substantial de-

lay because it does not take advantage of resource pooling. At the other

extreme, incoming jobs can be sent to a shortest queue. This policy has

very good performance (small queueing delay), but relies on a substantial

Our policy

logn

10

patcher as a Poisson process of rate µ(N) to inform or remind the dispatcher

of its idleness. When the dispatcher receives a message, it adds the ID of

the server that sent the message to the virtual queue of tokens that is kept

in the memory, unless this ID is already stored or the virtual queue is full,

in which case it discards the new message. When a new job arrives, if there

is at least one server ID in the virtual queue, the job goes to the queue of

a server chosen uniformly at random from the virtual queue and the corre-

sponding token is deleted. If there are no tokens present, the job is sent to

a queue chosen uniformly at random. This policy is depicted in Figure 2.

N�

Dispatcher

C(N)

Queue of tokens

Jobs to

empty queues

Messages from

idle servers

... N servers

Fig 2. Resource constrained pull-based policy. Jobs are sent to queues associated with idle
servers, based on tokens on the virtual queue. If no tokens are present, a queue is chosen
at random.

Note that in our policy no messages are sent from the dispatcher to the

servers, which is why we call it a “pull-based” policy. We present a summary

of the results for the three variants of our policy in Table 1.

For variant (a) we actually impose the further constraint that C(N) 2

The model

• Poisson rate: � · n 0 < � < 1

n servers
exponential
rate: 1

The model

• Poisson rate: � · n 0 < � < 1

n servers
exponential
rate: 1

Our policy

cn

• idle processors send messages at rate ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

Our policy

cn

• idle processors send messages at rate ⌫n

– message rate per job ⇡ ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

Our policy

cn

• idle processors send messages at rate ⌫n

– message rate per job ⇡ ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

Our policy

cn

• idle processors send messages at rate ⌫n

– message rate per job ⇡ ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

Our policy

cn

• idle processors send messages at rate ⌫n

– message rate per job ⇡ ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

Our policy

cn

• idle processors send messages at rate ⌫n

– message rate per job ⇡ ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

Our policy

cn

• idle processors send messages at rate ⌫n

– message rate per job ⇡ ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

Our policy

cn

• idle processors send messages at rate ⌫n

– message rate per job ⇡ ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

Our policy

cn

• idle processors send messages at rate ⌫n

– message rate per job ⇡ ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

3

References . 74

Author’s addresses . 76

1. Introduction. The subject of this paper is the study of the tradeo↵s

between various measures of performance (delay, message complexity and

memory) in the context of the supermarket model [13], a basic service system

that involves a stream of incoming jobs that are to be dispatched to the

queue associated with one of multiple servers; see Figure 1.

Incoming jobs

Dispatcher ... Multiple servers

Fig 1. The basic setting.

There is a variety of ways that this system can be operated, which cor-

respond to di↵erent system architectures and policies with di↵erent delay

performance. At one extreme, incoming jobs can be sent to a random queue.

This policy has no informational requirements but incurs a substantial de-

lay because it does not take advantage of resource pooling. At the other

extreme, incoming jobs can be sent to a shortest queue. This policy has

very good performance (small queueing delay), but relies on a substantial

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

• Join shortest of d (JSQ(d))

• Idle servers pull jobs (P)

messages per job
memory (bits) d d logn 1
delay � c > 0

�! n!1 0

logn

High memory regime

� logn

High memory regime

� logn � 1

High memory regime

Parsimonious regime

� logn � 1 ⇥(1)

High memory regime

Parsimonious regime

� logn � 1 ⇥(logn)

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

• Join shortest of d (JSQ(d))

messages per job
memory (bits) d d logn

delay � c > 0

�! n!1 0

logn

Extensions, variations

• Allow queue at the dispatcher, queue capacity ! 1

– can get vanishing delay with constant message rate and zero memory
(essentially M/M/n queue)

– but this is like the large memory case

• Allow finite capacity queue at the dispatcher

– same negative result [high probability conjecture]

• Messages are instantaneous, but we do not allow
arbitrary number of back-and-forth messages in zero time

• Conjecture: the impossibility result holds
for arbitrary (non-symmetric) policies

⇥(n)

10

patcher as a Poisson process of rate µ(N) to inform or remind the dispatcher

of its idleness. When the dispatcher receives a message, it adds the ID of

the server that sent the message to the virtual queue of tokens that is kept

in the memory, unless this ID is already stored or the virtual queue is full,

in which case it discards the new message. When a new job arrives, if there

is at least one server ID in the virtual queue, the job goes to the queue of

a server chosen uniformly at random from the virtual queue and the corre-

sponding token is deleted. If there are no tokens present, the job is sent to

a queue chosen uniformly at random. This policy is depicted in Figure 2.

N�

Dispatcher

C(N)

Queue of tokens

Jobs to

empty queues

Messages from

idle servers

... N servers

Fig 2. Resource constrained pull-based policy. Jobs are sent to queues associated with idle
servers, based on tokens on the virtual queue. If no tokens are present, a queue is chosen
at random.

Note that in our policy no messages are sent from the dispatcher to the

servers, which is why we call it a “pull-based” policy. We present a summary

of the results for the three variants of our policy in Table 1.

For variant (a) we actually impose the further constraint that C(N) 2

The model

• Poisson rate: � · n 0 < � < 1

n servers
exponential
rate: 1

The model

• Poisson rate: � · n 0 < � < 1

n servers
exponential
rate: 1

Our policy

cn

• idle processors send messages at rate ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

Our policy

cn

• idle processors send messages at rate ⌫n

– message rate per job ⇡ ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

3

References . 74

Author’s addresses . 76

1. Introduction. The subject of this paper is the study of the tradeo↵s

between various measures of performance (delay, message complexity and

memory) in the context of the supermarket model [13], a basic service system

that involves a stream of incoming jobs that are to be dispatched to the

queue associated with one of multiple servers; see Figure 1.

Incoming jobs

Dispatcher ... Multiple servers

Fig 1. The basic setting.

There is a variety of ways that this system can be operated, which cor-

respond to di↵erent system architectures and policies with di↵erent delay

performance. At one extreme, incoming jobs can be sent to a random queue.

This policy has no informational requirements but incurs a substantial de-

lay because it does not take advantage of resource pooling. At the other

extreme, incoming jobs can be sent to a shortest queue. This policy has

very good performance (small queueing delay), but relies on a substantial

High message rate regime

• cn =constant� 1

• ⌫n ! 1

• queueing delay ! 0

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

High memory regime

Parsimonious regime

� logn � 1 ⇥(logn) Pull

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

• Join shortest of d (JSQ(d))

• Idle servers pull jobs (P)

messages per job
memory (bits) d d logn 1
delay � c > 0

�! n!1 0

logn

High memory regime

� logn

High memory regime

� logn � 1

High memory regime

Parsimonious regime

� logn � 1 ⇥(1)

High memory regime

Parsimonious regime

� logn � 1 ⇥(logn)

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

• Join shortest of d (JSQ(d))

messages per job
memory (bits) d d logn

delay � c > 0

�! n!1 0

logn

Extensions, variations

• Allow queue at the dispatcher, queue capacity ! 1

– can get vanishing delay with constant message rate and zero memory
(essentially M/M/n queue)

– but this is like the large memory case

• Allow finite capacity queue at the dispatcher

– same negative result [high probability conjecture]

• Messages are instantaneous, but we do not allow
arbitrary number of back-and-forth messages in zero time

• Conjecture: the impossibility result holds
for arbitrary (non-symmetric) policies

⇥(n)

10

patcher as a Poisson process of rate µ(N) to inform or remind the dispatcher

of its idleness. When the dispatcher receives a message, it adds the ID of

the server that sent the message to the virtual queue of tokens that is kept

in the memory, unless this ID is already stored or the virtual queue is full,

in which case it discards the new message. When a new job arrives, if there

is at least one server ID in the virtual queue, the job goes to the queue of

a server chosen uniformly at random from the virtual queue and the corre-

sponding token is deleted. If there are no tokens present, the job is sent to

a queue chosen uniformly at random. This policy is depicted in Figure 2.

N�

Dispatcher

C(N)

Queue of tokens

Jobs to

empty queues

Messages from

idle servers

... N servers

Fig 2. Resource constrained pull-based policy. Jobs are sent to queues associated with idle
servers, based on tokens on the virtual queue. If no tokens are present, a queue is chosen
at random.

Note that in our policy no messages are sent from the dispatcher to the

servers, which is why we call it a “pull-based” policy. We present a summary

of the results for the three variants of our policy in Table 1.

For variant (a) we actually impose the further constraint that C(N) 2

The model

• Poisson rate: � · n 0 < � < 1

n servers
exponential
rate: 1

The model

• Poisson rate: � · n 0 < � < 1

n servers
exponential
rate: 1

Our policy

cn

• idle processors send messages at rate ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

Our policy

cn

• idle processors send messages at rate ⌫n

– message rate per job ⇡ ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

3

References . 74

Author’s addresses . 76

1. Introduction. The subject of this paper is the study of the tradeo↵s

between various measures of performance (delay, message complexity and

memory) in the context of the supermarket model [13], a basic service system

that involves a stream of incoming jobs that are to be dispatched to the

queue associated with one of multiple servers; see Figure 1.

Incoming jobs

Dispatcher ... Multiple servers

Fig 1. The basic setting.

There is a variety of ways that this system can be operated, which cor-

respond to di↵erent system architectures and policies with di↵erent delay

performance. At one extreme, incoming jobs can be sent to a random queue.

This policy has no informational requirements but incurs a substantial de-

lay because it does not take advantage of resource pooling. At the other

extreme, incoming jobs can be sent to a shortest queue. This policy has

very good performance (small queueing delay), but relies on a substantial

High message rate regime

• cn =constant� 1

• ⌫n ! 1

• queueing delay ! 0

Many messages regime

• cn =constant� 1

• ⌫n ! 1

• queueing delay ! 0

High message rate regime

• cn =constant� 1

• ⌫n ! 1

• queueing delay ! 0

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

High memory regime

Parsimonious regime

� logn � 1 ⇥(logn) Pull

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

• Join shortest of d (JSQ(d))

• Idle servers pull jobs (P)

messages per job
memory (bits) d d logn 1
delay � c > 0

�! n!1 0

logn

High memory regime

� logn

High memory regime

� logn � 1

High memory regime

Parsimonious regime

� logn � 1 ⇥(1)

High memory regime

Parsimonious regime

� logn � 1 ⇥(logn)

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

• Join shortest of d (JSQ(d))

messages per job
memory (bits) d d logn

delay � c > 0

�! n!1 0

logn

Extensions, variations

• Allow queue at the dispatcher, queue capacity ! 1

– can get vanishing delay with constant message rate and zero memory
(essentially M/M/n queue)

– but this is like the large memory case

• Allow finite capacity queue at the dispatcher

– same negative result [high probability conjecture]

• Messages are instantaneous, but we do not allow
arbitrary number of back-and-forth messages in zero time

• Conjecture: the impossibility result holds
for arbitrary (non-symmetric) policies

⇥(n)

10

patcher as a Poisson process of rate µ(N) to inform or remind the dispatcher

of its idleness. When the dispatcher receives a message, it adds the ID of

the server that sent the message to the virtual queue of tokens that is kept

in the memory, unless this ID is already stored or the virtual queue is full,

in which case it discards the new message. When a new job arrives, if there

is at least one server ID in the virtual queue, the job goes to the queue of

a server chosen uniformly at random from the virtual queue and the corre-

sponding token is deleted. If there are no tokens present, the job is sent to

a queue chosen uniformly at random. This policy is depicted in Figure 2.

N�

Dispatcher

C(N)

Queue of tokens

Jobs to

empty queues

Messages from

idle servers

... N servers

Fig 2. Resource constrained pull-based policy. Jobs are sent to queues associated with idle
servers, based on tokens on the virtual queue. If no tokens are present, a queue is chosen
at random.

Note that in our policy no messages are sent from the dispatcher to the

servers, which is why we call it a “pull-based” policy. We present a summary

of the results for the three variants of our policy in Table 1.

For variant (a) we actually impose the further constraint that C(N) 2

The model

• Poisson rate: � · n 0 < � < 1

n servers
exponential
rate: 1

The model

• Poisson rate: � · n 0 < � < 1

n servers
exponential
rate: 1

Our policy

cn

• idle processors send messages at rate ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

Our policy

cn

• idle processors send messages at rate ⌫n

– message rate per job ⇡ ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

3

References . 74

Author’s addresses . 76

1. Introduction. The subject of this paper is the study of the tradeo↵s

between various measures of performance (delay, message complexity and

memory) in the context of the supermarket model [13], a basic service system

that involves a stream of incoming jobs that are to be dispatched to the

queue associated with one of multiple servers; see Figure 1.

Incoming jobs

Dispatcher ... Multiple servers

Fig 1. The basic setting.

There is a variety of ways that this system can be operated, which cor-

respond to di↵erent system architectures and policies with di↵erent delay

performance. At one extreme, incoming jobs can be sent to a random queue.

This policy has no informational requirements but incurs a substantial de-

lay because it does not take advantage of resource pooling. At the other

extreme, incoming jobs can be sent to a shortest queue. This policy has

very good performance (small queueing delay), but relies on a substantial

High message rate regime

• cn =constant� 1

• ⌫n ! 1

• queueing delay ! 0

Many messages regime

• cn =constant� 1

• ⌫n ! 1

• queueing delay ! 0

High message rate regime

• cn =constant� 1

• ⌫n ! 1

• queueing delay ! 0

High message rate regime

• cn =constant� 1

• ⌫n ! 1

• queueing delay ! 0

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

High memory regime

Parsimonious regime

� logn � 1 ⇥(logn) Pull

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

• Join shortest of d (JSQ(d))

• Idle servers pull jobs (P)

messages per job
memory (bits) d d logn 1
delay � c > 0

�! n!1 0

logn

High memory regime

� logn

High memory regime

� logn � 1

High memory regime

Parsimonious regime

� logn � 1 ⇥(1)

High memory regime

Parsimonious regime

� logn � 1 ⇥(logn)

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

• Join shortest of d (JSQ(d))

messages per job
memory (bits) d d logn

delay � c > 0

�! n!1 0

logn

Extensions, variations

• Allow queue at the dispatcher, queue capacity ! 1

– can get vanishing delay with constant message rate and zero memory
(essentially M/M/n queue)

– but this is like the large memory case

• Allow finite capacity queue at the dispatcher

– same negative result [high probability conjecture]

• Messages are instantaneous, but we do not allow
arbitrary number of back-and-forth messages in zero time

• Conjecture: the impossibility result holds
for arbitrary (non-symmetric) policies

⇥(n)

10

patcher as a Poisson process of rate µ(N) to inform or remind the dispatcher

of its idleness. When the dispatcher receives a message, it adds the ID of

the server that sent the message to the virtual queue of tokens that is kept

in the memory, unless this ID is already stored or the virtual queue is full,

in which case it discards the new message. When a new job arrives, if there

is at least one server ID in the virtual queue, the job goes to the queue of

a server chosen uniformly at random from the virtual queue and the corre-

sponding token is deleted. If there are no tokens present, the job is sent to

a queue chosen uniformly at random. This policy is depicted in Figure 2.

N�

Dispatcher

C(N)

Queue of tokens

Jobs to

empty queues

Messages from

idle servers

... N servers

Fig 2. Resource constrained pull-based policy. Jobs are sent to queues associated with idle
servers, based on tokens on the virtual queue. If no tokens are present, a queue is chosen
at random.

Note that in our policy no messages are sent from the dispatcher to the

servers, which is why we call it a “pull-based” policy. We present a summary

of the results for the three variants of our policy in Table 1.

For variant (a) we actually impose the further constraint that C(N) 2

The model

• Poisson rate: � · n 0 < � < 1

n servers
exponential
rate: 1

The model

• Poisson rate: � · n 0 < � < 1

n servers
exponential
rate: 1

Our policy

cn

• idle processors send messages at rate ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

Our policy

cn

• idle processors send messages at rate ⌫n

– message rate per job ⇡ ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

3

References . 74

Author’s addresses . 76

1. Introduction. The subject of this paper is the study of the tradeo↵s

between various measures of performance (delay, message complexity and

memory) in the context of the supermarket model [13], a basic service system

that involves a stream of incoming jobs that are to be dispatched to the

queue associated with one of multiple servers; see Figure 1.

Incoming jobs

Dispatcher ... Multiple servers

Fig 1. The basic setting.

There is a variety of ways that this system can be operated, which cor-

respond to di↵erent system architectures and policies with di↵erent delay

performance. At one extreme, incoming jobs can be sent to a random queue.

This policy has no informational requirements but incurs a substantial de-

lay because it does not take advantage of resource pooling. At the other

extreme, incoming jobs can be sent to a shortest queue. This policy has

very good performance (small queueing delay), but relies on a substantial

High message rate regime

• cn =constant� 1

• ⌫n ! 1

• queueing delay ! 0

Many messages regime

• cn =constant� 1

• ⌫n ! 1

• queueing delay ! 0

High message rate regime

• cn =constant� 1

• ⌫n ! 1

• queueing delay ! 0

High message rate regime

• cn =constant� 1

• ⌫n ! 1

• queueing delay ! 0
High message rate regime

• ⌫n =constant�
�

1� �

• cn ! 1

• queueing delay ! 0

Our

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

High memory regime

Parsimonious regime

� logn � 1 ⇥(logn) Pull

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

High memory regime

� logn

High memory regime

� logn � 1

High message rate regime

• ⌫n =constant�
�

1� �

• cn ! 1

• queueing delay ! 0

Our

High memory regime

Parsimonious regime

� logn � 1 ⇥(1)

High memory regime

Parsimonious regime

� logn � 1 ⇥(logn)

Extensions, variations

• Allow queue at the dispatcher, queue capacity ! 1

– can get vanishing delay with constant message rate and zero memory
(essentially M/M/n queue)

– but this is like the large memory case

• Allow finite capacity queue at the dispatcher

– same negative result [high probability conjecture]

• Messages are instantaneous, but we do not allow
arbitrary number of back-and-forth messages in zero time

• Conjecture: the impossibility result holds
for arbitrary (non-symmetric) policies

⇥(n)

10

patcher as a Poisson process of rate µ(N) to inform or remind the dispatcher

of its idleness. When the dispatcher receives a message, it adds the ID of

the server that sent the message to the virtual queue of tokens that is kept

in the memory, unless this ID is already stored or the virtual queue is full,

in which case it discards the new message. When a new job arrives, if there

is at least one server ID in the virtual queue, the job goes to the queue of

a server chosen uniformly at random from the virtual queue and the corre-

sponding token is deleted. If there are no tokens present, the job is sent to

a queue chosen uniformly at random. This policy is depicted in Figure 2.

N�

Dispatcher

C(N)

Queue of tokens

Jobs to

empty queues

Messages from

idle servers

... N servers

Fig 2. Resource constrained pull-based policy. Jobs are sent to queues associated with idle
servers, based on tokens on the virtual queue. If no tokens are present, a queue is chosen
at random.

Note that in our policy no messages are sent from the dispatcher to the

servers, which is why we call it a “pull-based” policy. We present a summary

of the results for the three variants of our policy in Table 1.

For variant (a) we actually impose the further constraint that C(N) 2

The model

• Poisson rate: � · n 0 < � < 1

n servers
exponential
rate: 1

The model

• Poisson rate: � · n 0 < � < 1

n servers
exponential
rate: 1

Our policy

cn

• idle processors send messages at rate ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

Our policy

cn

• idle processors send messages at rate ⌫n

– message rate per job ⇡ ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

3

References . 74

Author’s addresses . 76

1. Introduction. The subject of this paper is the study of the tradeo↵s

between various measures of performance (delay, message complexity and

memory) in the context of the supermarket model [13], a basic service system

that involves a stream of incoming jobs that are to be dispatched to the

queue associated with one of multiple servers; see Figure 1.

Incoming jobs

Dispatcher ... Multiple servers

Fig 1. The basic setting.

There is a variety of ways that this system can be operated, which cor-

respond to di↵erent system architectures and policies with di↵erent delay

performance. At one extreme, incoming jobs can be sent to a random queue.

This policy has no informational requirements but incurs a substantial de-

lay because it does not take advantage of resource pooling. At the other

extreme, incoming jobs can be sent to a shortest queue. This policy has

very good performance (small queueing delay), but relies on a substantial

High memory regime

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

High memory regime

Parsimonious regime

� logn � 1 ⇥(logn) Pull
A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

• Join shortest of d (JSQ(d))

messages per job
memory (bits) d d logn

delay � c > 0

�! n!1 0

logn

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

High memory regime

� logn

High memory regime

� logn � 1

High message rate regime

• ⌫n =constant�
�

1� �

• cn ! 1

• queueing delay ! 0

Our

High memory regime

Parsimonious regime

� logn � 1 ⇥(1)

High memory regime

Parsimonious regime

� logn � 1 ⇥(logn)

Extensions, variations

• Allow queue at the dispatcher, queue capacity ! 1

– can get vanishing delay with constant message rate and zero memory
(essentially M/M/n queue)

– but this is like the large memory case

• Allow finite capacity queue at the dispatcher

– same negative result [high probability conjecture]

• Messages are instantaneous, but we do not allow
arbitrary number of back-and-forth messages in zero time

• Conjecture: the impossibility result holds
for arbitrary (non-symmetric) policies

⇥(n)

10

patcher as a Poisson process of rate µ(N) to inform or remind the dispatcher

of its idleness. When the dispatcher receives a message, it adds the ID of

the server that sent the message to the virtual queue of tokens that is kept

in the memory, unless this ID is already stored or the virtual queue is full,

in which case it discards the new message. When a new job arrives, if there

is at least one server ID in the virtual queue, the job goes to the queue of

a server chosen uniformly at random from the virtual queue and the corre-

sponding token is deleted. If there are no tokens present, the job is sent to

a queue chosen uniformly at random. This policy is depicted in Figure 2.

N�

Dispatcher

C(N)

Queue of tokens

Jobs to

empty queues

Messages from

idle servers

... N servers

Fig 2. Resource constrained pull-based policy. Jobs are sent to queues associated with idle
servers, based on tokens on the virtual queue. If no tokens are present, a queue is chosen
at random.

Note that in our policy no messages are sent from the dispatcher to the

servers, which is why we call it a “pull-based” policy. We present a summary

of the results for the three variants of our policy in Table 1.

For variant (a) we actually impose the further constraint that C(N) 2

The model

• Poisson rate: � · n 0 < � < 1

n servers
exponential
rate: 1

The model

• Poisson rate: � · n 0 < � < 1

n servers
exponential
rate: 1

Our policy

cn

• idle processors send messages at rate ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

Our policy

cn

• idle processors send messages at rate ⌫n

– message rate per job ⇡ ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

3

References . 74

Author’s addresses . 76

1. Introduction. The subject of this paper is the study of the tradeo↵s

between various measures of performance (delay, message complexity and

memory) in the context of the supermarket model [13], a basic service system

that involves a stream of incoming jobs that are to be dispatched to the

queue associated with one of multiple servers; see Figure 1.

Incoming jobs

Dispatcher ... Multiple servers

Fig 1. The basic setting.

There is a variety of ways that this system can be operated, which cor-

respond to di↵erent system architectures and policies with di↵erent delay

performance. At one extreme, incoming jobs can be sent to a random queue.

This policy has no informational requirements but incurs a substantial de-

lay because it does not take advantage of resource pooling. At the other

extreme, incoming jobs can be sent to a shortest queue. This policy has

very good performance (small queueing delay), but relies on a substantial

High memory regimeHigh message rate regime

• ⌫n =constant�
�

1� �

• cn ! 1

• queueing delay ! 0

Our

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

High memory regime

Parsimonious regime

� logn � 1 ⇥(logn) Pull
A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

• Join shortest of d (JSQ(d))

messages per job
memory (bits) d d logn

delay � c > 0

�! n!1 0

logn

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

High memory regime

� logn

High memory regime

� logn � 1

High message rate regime

• ⌫n =constant�
�

1� �

• cn ! 1

• queueing delay ! 0

Our

High memory regime

Parsimonious regime

� logn � 1 ⇥(1)

High memory regime

Parsimonious regime

� logn � 1 ⇥(logn)

Extensions, variations

• Allow queue at the dispatcher, queue capacity ! 1

– can get vanishing delay with constant message rate and zero memory
(essentially M/M/n queue)

– but this is like the large memory case

• Allow finite capacity queue at the dispatcher

– same negative result [high probability conjecture]

• Messages are instantaneous, but we do not allow
arbitrary number of back-and-forth messages in zero time

• Conjecture: the impossibility result holds
for arbitrary (non-symmetric) policies

⇥(n)

10

patcher as a Poisson process of rate µ(N) to inform or remind the dispatcher

of its idleness. When the dispatcher receives a message, it adds the ID of

the server that sent the message to the virtual queue of tokens that is kept

in the memory, unless this ID is already stored or the virtual queue is full,

in which case it discards the new message. When a new job arrives, if there

is at least one server ID in the virtual queue, the job goes to the queue of

a server chosen uniformly at random from the virtual queue and the corre-

sponding token is deleted. If there are no tokens present, the job is sent to

a queue chosen uniformly at random. This policy is depicted in Figure 2.

N�

Dispatcher

C(N)

Queue of tokens

Jobs to

empty queues

Messages from

idle servers

... N servers

Fig 2. Resource constrained pull-based policy. Jobs are sent to queues associated with idle
servers, based on tokens on the virtual queue. If no tokens are present, a queue is chosen
at random.

Note that in our policy no messages are sent from the dispatcher to the

servers, which is why we call it a “pull-based” policy. We present a summary

of the results for the three variants of our policy in Table 1.

For variant (a) we actually impose the further constraint that C(N) 2

The model

• Poisson rate: � · n 0 < � < 1

n servers
exponential
rate: 1

The model

• Poisson rate: � · n 0 < � < 1

n servers
exponential
rate: 1

Our policy

cn

• idle processors send messages at rate ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

Our policy

cn

• idle processors send messages at rate ⌫n

– message rate per job ⇡ ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

3

References . 74

Author’s addresses . 76

1. Introduction. The subject of this paper is the study of the tradeo↵s

between various measures of performance (delay, message complexity and

memory) in the context of the supermarket model [13], a basic service system

that involves a stream of incoming jobs that are to be dispatched to the

queue associated with one of multiple servers; see Figure 1.

Incoming jobs

Dispatcher ... Multiple servers

Fig 1. The basic setting.

There is a variety of ways that this system can be operated, which cor-

respond to di↵erent system architectures and policies with di↵erent delay

performance. At one extreme, incoming jobs can be sent to a random queue.

This policy has no informational requirements but incurs a substantial de-

lay because it does not take advantage of resource pooling. At the other

extreme, incoming jobs can be sent to a shortest queue. This policy has

very good performance (small queueing delay), but relies on a substantial

High memory regimeHigh message rate regime

• ⌫n =constant�
�

1� �

• cn ! 1

• queueing delay ! 0

Our

High message rate regime

• ⌫n =constant�
�

1� �

• cn ! 1

• queueing delay ! 0

Our

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

High memory regime

Parsimonious regime

� logn � 1 ⇥(logn) Pull
A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

• Join shortest of d (JSQ(d))

messages per job
memory (bits) d d logn

delay � c > 0

�! n!1 0

logn

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

High memory regime

� logn

High memory regime

� logn � 1

High message rate regime

• ⌫n =constant�
�

1� �

• cn ! 1

• queueing delay ! 0

Our

High memory regime

Parsimonious regime

� logn � 1 ⇥(1)

High memory regime

Parsimonious regime

� logn � 1 ⇥(logn)

Extensions, variations

• Allow queue at the dispatcher, queue capacity ! 1

– can get vanishing delay with constant message rate and zero memory
(essentially M/M/n queue)

– but this is like the large memory case

• Allow finite capacity queue at the dispatcher

– same negative result [high probability conjecture]

• Messages are instantaneous, but we do not allow
arbitrary number of back-and-forth messages in zero time

• Conjecture: the impossibility result holds
for arbitrary (non-symmetric) policies

⇥(n)

10

patcher as a Poisson process of rate µ(N) to inform or remind the dispatcher

of its idleness. When the dispatcher receives a message, it adds the ID of

the server that sent the message to the virtual queue of tokens that is kept

in the memory, unless this ID is already stored or the virtual queue is full,

in which case it discards the new message. When a new job arrives, if there

is at least one server ID in the virtual queue, the job goes to the queue of

a server chosen uniformly at random from the virtual queue and the corre-

sponding token is deleted. If there are no tokens present, the job is sent to

a queue chosen uniformly at random. This policy is depicted in Figure 2.

N�

Dispatcher

C(N)

Queue of tokens

Jobs to

empty queues

Messages from

idle servers

... N servers

Fig 2. Resource constrained pull-based policy. Jobs are sent to queues associated with idle
servers, based on tokens on the virtual queue. If no tokens are present, a queue is chosen
at random.

Note that in our policy no messages are sent from the dispatcher to the

servers, which is why we call it a “pull-based” policy. We present a summary

of the results for the three variants of our policy in Table 1.

For variant (a) we actually impose the further constraint that C(N) 2

The model

• Poisson rate: � · n 0 < � < 1

n servers
exponential
rate: 1

The model

• Poisson rate: � · n 0 < � < 1

n servers
exponential
rate: 1

Our policy

cn

• idle processors send messages at rate ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

Our policy

cn

• idle processors send messages at rate ⌫n

– message rate per job ⇡ ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

3

References . 74

Author’s addresses . 76

1. Introduction. The subject of this paper is the study of the tradeo↵s

between various measures of performance (delay, message complexity and

memory) in the context of the supermarket model [13], a basic service system

that involves a stream of incoming jobs that are to be dispatched to the

queue associated with one of multiple servers; see Figure 1.

Incoming jobs

Dispatcher ... Multiple servers

Fig 1. The basic setting.

There is a variety of ways that this system can be operated, which cor-

respond to di↵erent system architectures and policies with di↵erent delay

performance. At one extreme, incoming jobs can be sent to a random queue.

This policy has no informational requirements but incurs a substantial de-

lay because it does not take advantage of resource pooling. At the other

extreme, incoming jobs can be sent to a shortest queue. This policy has

very good performance (small queueing delay), but relies on a substantial

High message rate regime

• cn =constant� 1

• ⌫n ! 1

• queueing delay ! 0

High memory regimeHigh message rate regime

• ⌫n =constant�
�

1� �

• cn ! 1

• queueing delay ! 0

Our

High message rate regime

• ⌫n =constant�
�

1� �

• cn ! 1

• queueing delay ! 0

Our

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

High memory regime

Parsimonious regime

� logn � 1 ⇥(logn) Pull
A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

• Join shortest of d (JSQ(d))

messages per job
memory (bits) d d logn

delay � c > 0

�! n!1 0

logn

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

High memory regime

� logn

High memory regime

� logn � 1

High message rate regime

• ⌫n =constant�
�

1� �

• cn ! 1

• queueing delay ! 0

Our

High memory regime

Parsimonious regime

� logn � 1 ⇥(1)

High memory regime

Parsimonious regime

� logn � 1 ⇥(logn)

Extensions, variations

• Allow queue at the dispatcher, queue capacity ! 1

– can get vanishing delay with constant message rate and zero memory
(essentially M/M/n queue)

– but this is like the large memory case

• Allow finite capacity queue at the dispatcher

– same negative result [high probability conjecture]

• Messages are instantaneous, but we do not allow
arbitrary number of back-and-forth messages in zero time

• Conjecture: the impossibility result holds
for arbitrary (non-symmetric) policies

⇥(n)

10

patcher as a Poisson process of rate µ(N) to inform or remind the dispatcher

of its idleness. When the dispatcher receives a message, it adds the ID of

the server that sent the message to the virtual queue of tokens that is kept

in the memory, unless this ID is already stored or the virtual queue is full,

in which case it discards the new message. When a new job arrives, if there

is at least one server ID in the virtual queue, the job goes to the queue of

a server chosen uniformly at random from the virtual queue and the corre-

sponding token is deleted. If there are no tokens present, the job is sent to

a queue chosen uniformly at random. This policy is depicted in Figure 2.

N�

Dispatcher

C(N)

Queue of tokens

Jobs to

empty queues

Messages from

idle servers

... N servers

Fig 2. Resource constrained pull-based policy. Jobs are sent to queues associated with idle
servers, based on tokens on the virtual queue. If no tokens are present, a queue is chosen
at random.

Note that in our policy no messages are sent from the dispatcher to the

servers, which is why we call it a “pull-based” policy. We present a summary

of the results for the three variants of our policy in Table 1.

For variant (a) we actually impose the further constraint that C(N) 2

The model

• Poisson rate: � · n 0 < � < 1

n servers
exponential
rate: 1

The model

• Poisson rate: � · n 0 < � < 1

n servers
exponential
rate: 1

Our policy

cn

• idle processors send messages at rate ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

Our policy

cn

• idle processors send messages at rate ⌫n

– message rate per job ⇡ ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

3

References . 74

Author’s addresses . 76

1. Introduction. The subject of this paper is the study of the tradeo↵s

between various measures of performance (delay, message complexity and

memory) in the context of the supermarket model [13], a basic service system

that involves a stream of incoming jobs that are to be dispatched to the

queue associated with one of multiple servers; see Figure 1.

Incoming jobs

Dispatcher ... Multiple servers

Fig 1. The basic setting.

There is a variety of ways that this system can be operated, which cor-

respond to di↵erent system architectures and policies with di↵erent delay

performance. At one extreme, incoming jobs can be sent to a random queue.

This policy has no informational requirements but incurs a substantial de-

lay because it does not take advantage of resource pooling. At the other

extreme, incoming jobs can be sent to a shortest queue. This policy has

very good performance (small queueing delay), but relies on a substantial

High message rate regime

• cn =constant� 1

• ⌫n ! 1

• queueing delay ! 0

High memory regimeHigh message rate regime

• ⌫n =constant�
�

1� �

• cn ! 1

• queueing delay ! 0

Our

High message rate regime

• ⌫n =constant�
�

1� �

• cn ! 1

• queueing delay ! 0

Our

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

High memory regime

Parsimonious regime

� logn � 1 ⇥(logn) Pull

High message rate regime

• ⌫n =constant�
�

1� �

• cn ! 1

• queueing delay ! 0

Our

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

• Join shortest of d (JSQ(d))

messages per job
memory (bits) d d logn

delay � c > 0

�! n!1 0

logn

10

patcher as a Poisson process of rate µ(N) to inform or remind the dispatcher

of its idleness. When the dispatcher receives a message, it adds the ID of

the server that sent the message to the virtual queue of tokens that is kept

in the memory, unless this ID is already stored or the virtual queue is full,

in which case it discards the new message. When a new job arrives, if there

is at least one server ID in the virtual queue, the job goes to the queue of

a server chosen uniformly at random from the virtual queue and the corre-

sponding token is deleted. If there are no tokens present, the job is sent to

a queue chosen uniformly at random. This policy is depicted in Figure 2.

N�

Dispatcher

C(N)

Queue of tokens

Jobs to

empty queues

Messages from

idle servers

... N servers

Fig 2. Resource constrained pull-based policy. Jobs are sent to queues associated with idle
servers, based on tokens on the virtual queue. If no tokens are present, a queue is chosen
at random.

Note that in our policy no messages are sent from the dispatcher to the

servers, which is why we call it a “pull-based” policy. We present a summary

of the results for the three variants of our policy in Table 1.

For variant (a) we actually impose the further constraint that C(N) 2

The model

• Poisson rate: � · n 0 < � < 1

n servers
exponential
rate: 1

The model

• Poisson rate: � · n 0 < � < 1

n servers
exponential
rate: 1

Our policy

cn

• idle processors send messages at rate ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

Our policy

cn

• idle processors send messages at rate ⌫n

– message rate per job ⇡ ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

3

References . 74

Author’s addresses . 76

1. Introduction. The subject of this paper is the study of the tradeo↵s

between various measures of performance (delay, message complexity and

memory) in the context of the supermarket model [13], a basic service system

that involves a stream of incoming jobs that are to be dispatched to the

queue associated with one of multiple servers; see Figure 1.

Incoming jobs

Dispatcher ... Multiple servers

Fig 1. The basic setting.

There is a variety of ways that this system can be operated, which cor-

respond to di↵erent system architectures and policies with di↵erent delay

performance. At one extreme, incoming jobs can be sent to a random queue.

This policy has no informational requirements but incurs a substantial de-

lay because it does not take advantage of resource pooling. At the other

extreme, incoming jobs can be sent to a shortest queue. This policy has

very good performance (small queueing delay), but relies on a substantial

High memory regime

Parsimonious regime

� logn � 1

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

High memory regime

� logn

High memory regime

� logn � 1

High message rate regime

• ⌫n =constant�
�

1� �

• cn ! 1

• queueing delay ! 0

Our

High memory regime

Parsimonious regime

� logn � 1 ⇥(logn)

Extensions, variations

• Allow queue at the dispatcher, queue capacity ! 1

– can get vanishing delay with constant message rate and zero memory
(essentially M/M/n queue)

– but this is like the large memory case

• Allow finite capacity queue at the dispatcher

– same negative result [high probability conjecture]

• Messages are instantaneous, but we do not allow
arbitrary number of back-and-forth messages in zero time

• Conjecture: the impossibility result holds
for arbitrary (non-symmetric) policies

⇥(n)
A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

High memory regime

Parsimonious regime

� logn � 1 ⇥(logn) Pull

High message rate regime

• ⌫n =constant�
�

1� �

• cn ! 1

• queueing delay ! 0

Our

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

High memory regime

Parsimonious regime

� logn � 1 ⇥(1)

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

• Join shortest of d (JSQ(d))

messages per job
memory (bits) d d logn

delay � c > 0

�! n!1 0

logn

10

patcher as a Poisson process of rate µ(N) to inform or remind the dispatcher

of its idleness. When the dispatcher receives a message, it adds the ID of

the server that sent the message to the virtual queue of tokens that is kept

in the memory, unless this ID is already stored or the virtual queue is full,

in which case it discards the new message. When a new job arrives, if there

is at least one server ID in the virtual queue, the job goes to the queue of

a server chosen uniformly at random from the virtual queue and the corre-

sponding token is deleted. If there are no tokens present, the job is sent to

a queue chosen uniformly at random. This policy is depicted in Figure 2.

N�

Dispatcher

C(N)

Queue of tokens

Jobs to

empty queues

Messages from

idle servers

... N servers

Fig 2. Resource constrained pull-based policy. Jobs are sent to queues associated with idle
servers, based on tokens on the virtual queue. If no tokens are present, a queue is chosen
at random.

Note that in our policy no messages are sent from the dispatcher to the

servers, which is why we call it a “pull-based” policy. We present a summary

of the results for the three variants of our policy in Table 1.

For variant (a) we actually impose the further constraint that C(N) 2

The model

• Poisson rate: � · n 0 < � < 1

n servers
exponential
rate: 1

The model

• Poisson rate: � · n 0 < � < 1

n servers
exponential
rate: 1

Our policy

cn

• idle processors send messages at rate ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

Our policy

cn

• idle processors send messages at rate ⌫n

– message rate per job ⇡ ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

3

References . 74

Author’s addresses . 76

1. Introduction. The subject of this paper is the study of the tradeo↵s

between various measures of performance (delay, message complexity and

memory) in the context of the supermarket model [13], a basic service system

that involves a stream of incoming jobs that are to be dispatched to the

queue associated with one of multiple servers; see Figure 1.

Incoming jobs

Dispatcher ... Multiple servers

Fig 1. The basic setting.

There is a variety of ways that this system can be operated, which cor-

respond to di↵erent system architectures and policies with di↵erent delay

performance. At one extreme, incoming jobs can be sent to a random queue.

This policy has no informational requirements but incurs a substantial de-

lay because it does not take advantage of resource pooling. At the other

extreme, incoming jobs can be sent to a shortest queue. This policy has

very good performance (small queueing delay), but relies on a substantial

High memory regime

Parsimonious regime

� logn � 1

High message rate regime

• ⌫n =constant�
�

1� �

• cn ! 1

• queueing delay ! 0

Our

High message rate regime

• cn =constant�
�

1� �

• cn ! 1

• queueing delay 6! 0

Our

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

High memory regime

� logn

High memory regime

� logn � 1

High message rate regime

• ⌫n =constant�
�

1� �

• cn ! 1

• queueing delay ! 0

Our

High memory regime

Parsimonious regime

� logn � 1 ⇥(logn)

Extensions, variations

• Allow queue at the dispatcher, queue capacity ! 1

– can get vanishing delay with constant message rate and zero memory
(essentially M/M/n queue)

– but this is like the large memory case

• Allow finite capacity queue at the dispatcher

– same negative result [high probability conjecture]

• Messages are instantaneous, but we do not allow
arbitrary number of back-and-forth messages in zero time

• Conjecture: the impossibility result holds
for arbitrary (non-symmetric) policies

⇥(n)
A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

High memory regime

Parsimonious regime

� logn � 1 ⇥(logn) Pull

High message rate regime

• ⌫n =constant�
�

1� �

• cn ! 1

• queueing delay ! 0

Our

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

High memory regime

Parsimonious regime

� logn � 1 ⇥(1)

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

• Join shortest of d (JSQ(d))

messages per job
memory (bits) d d logn

delay � c > 0

�! n!1 0

logn

10

patcher as a Poisson process of rate µ(N) to inform or remind the dispatcher

of its idleness. When the dispatcher receives a message, it adds the ID of

the server that sent the message to the virtual queue of tokens that is kept

in the memory, unless this ID is already stored or the virtual queue is full,

in which case it discards the new message. When a new job arrives, if there

is at least one server ID in the virtual queue, the job goes to the queue of

a server chosen uniformly at random from the virtual queue and the corre-

sponding token is deleted. If there are no tokens present, the job is sent to

a queue chosen uniformly at random. This policy is depicted in Figure 2.

N�

Dispatcher

C(N)

Queue of tokens

Jobs to

empty queues

Messages from

idle servers

... N servers

Fig 2. Resource constrained pull-based policy. Jobs are sent to queues associated with idle
servers, based on tokens on the virtual queue. If no tokens are present, a queue is chosen
at random.

Note that in our policy no messages are sent from the dispatcher to the

servers, which is why we call it a “pull-based” policy. We present a summary

of the results for the three variants of our policy in Table 1.

For variant (a) we actually impose the further constraint that C(N) 2

The model

• Poisson rate: � · n 0 < � < 1

n servers
exponential
rate: 1

The model

• Poisson rate: � · n 0 < � < 1

n servers
exponential
rate: 1

Our policy

cn

• idle processors send messages at rate ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

Our policy

cn

• idle processors send messages at rate ⌫n

– message rate per job ⇡ ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

3

References . 74

Author’s addresses . 76

1. Introduction. The subject of this paper is the study of the tradeo↵s

between various measures of performance (delay, message complexity and

memory) in the context of the supermarket model [13], a basic service system

that involves a stream of incoming jobs that are to be dispatched to the

queue associated with one of multiple servers; see Figure 1.

Incoming jobs

Dispatcher ... Multiple servers

Fig 1. The basic setting.

There is a variety of ways that this system can be operated, which cor-

respond to di↵erent system architectures and policies with di↵erent delay

performance. At one extreme, incoming jobs can be sent to a random queue.

This policy has no informational requirements but incurs a substantial de-

lay because it does not take advantage of resource pooling. At the other

extreme, incoming jobs can be sent to a shortest queue. This policy has

very good performance (small queueing delay), but relies on a substantial

High memory regime

Parsimonious regime

� logn � 1

High message rate regime

• ⌫n =constant�
�

1� �

• cn ! 1

• queueing delay ! 0

Our

High message rate regime

• cn =constant�
�

1� �

• cn ! 1

• queueing delay 6! 0

Our

High message rate regime

• cn =constant�
�

1� �

• cn ! 1

• queueing delay 6! 0

Our

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

High memory regime

� logn

High memory regime

� logn � 1

High message rate regime

• ⌫n =constant�
�

1� �

• cn ! 1

• queueing delay ! 0

Our

High memory regime

Parsimonious regime

� logn � 1 ⇥(logn)

Extensions, variations

• Allow queue at the dispatcher, queue capacity ! 1

– can get vanishing delay with constant message rate and zero memory
(essentially M/M/n queue)

– but this is like the large memory case

• Allow finite capacity queue at the dispatcher

– same negative result [high probability conjecture]

• Messages are instantaneous, but we do not allow
arbitrary number of back-and-forth messages in zero time

• Conjecture: the impossibility result holds
for arbitrary (non-symmetric) policies

⇥(n)
A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

High memory regime

Parsimonious regime

� logn � 1 ⇥(logn) Pull

High message rate regime

• ⌫n =constant�
�

1� �

• cn ! 1

• queueing delay ! 0

Our

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

High memory regime

Parsimonious regime

� logn � 1 ⇥(1)

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

• Join shortest of d (JSQ(d))

messages per job
memory (bits) d d logn

delay � c > 0

�! n!1 0

logn

10

patcher as a Poisson process of rate µ(N) to inform or remind the dispatcher

of its idleness. When the dispatcher receives a message, it adds the ID of

the server that sent the message to the virtual queue of tokens that is kept

in the memory, unless this ID is already stored or the virtual queue is full,

in which case it discards the new message. When a new job arrives, if there

is at least one server ID in the virtual queue, the job goes to the queue of

a server chosen uniformly at random from the virtual queue and the corre-

sponding token is deleted. If there are no tokens present, the job is sent to

a queue chosen uniformly at random. This policy is depicted in Figure 2.

N�

Dispatcher

C(N)

Queue of tokens

Jobs to

empty queues

Messages from

idle servers

... N servers

Fig 2. Resource constrained pull-based policy. Jobs are sent to queues associated with idle
servers, based on tokens on the virtual queue. If no tokens are present, a queue is chosen
at random.

Note that in our policy no messages are sent from the dispatcher to the

servers, which is why we call it a “pull-based” policy. We present a summary

of the results for the three variants of our policy in Table 1.

For variant (a) we actually impose the further constraint that C(N) 2

The model

• Poisson rate: � · n 0 < � < 1

n servers
exponential
rate: 1

The model

• Poisson rate: � · n 0 < � < 1

n servers
exponential
rate: 1

Our policy

cn

• idle processors send messages at rate ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

Our policy

cn

• idle processors send messages at rate ⌫n

– message rate per job ⇡ ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

3

References . 74

Author’s addresses . 76

1. Introduction. The subject of this paper is the study of the tradeo↵s

between various measures of performance (delay, message complexity and

memory) in the context of the supermarket model [13], a basic service system

that involves a stream of incoming jobs that are to be dispatched to the

queue associated with one of multiple servers; see Figure 1.

Incoming jobs

Dispatcher ... Multiple servers

Fig 1. The basic setting.

There is a variety of ways that this system can be operated, which cor-

respond to di↵erent system architectures and policies with di↵erent delay

performance. At one extreme, incoming jobs can be sent to a random queue.

This policy has no informational requirements but incurs a substantial de-

lay because it does not take advantage of resource pooling. At the other

extreme, incoming jobs can be sent to a shortest queue. This policy has

very good performance (small queueing delay), but relies on a substantial

High memory regime

Parsimonious regime

� logn � 1

High message rate regime

• ⌫n =constant�
�

1� �

• cn ! 1

• queueing delay ! 0

Our

High message rate regime

• cn =constant�
�

1� �

• cn ! 1

• queueing delay 6! 0

Our

High message rate regime

• cn =constant�
�

1� �

• cn ! 1

• queueing delay 6! 0

Our

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

High memory regime

� logn

High memory regime

� logn � 1

High message rate regime

• ⌫n =constant�
�

1� �

• cn ! 1

• queueing delay ! 0

Our

High memory regime

Parsimonious regime

� logn � 1 ⇥(logn)

Extensions, variations

• Allow queue at the dispatcher, queue capacity ! 1

– can get vanishing delay with constant message rate and zero memory
(essentially M/M/n queue)

– but this is like the large memory case

• Allow finite capacity queue at the dispatcher

– same negative result [high probability conjecture]

• Messages are instantaneous, but we do not allow
arbitrary number of back-and-forth messages in zero time

• Conjecture: the impossibility result holds
for arbitrary (non-symmetric) policies

⇥(n)
A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

High memory regime

Parsimonious regime

� logn � 1 ⇥(logn) Pull

High message rate regime

• ⌫n =constant�
�

1� �

• cn ! 1

• queueing delay ! 0

Our

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

High memory regime

Parsimonious regime

� logn � 1 ⇥(1)

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

• Join shortest of d (JSQ(d))

messages per job
memory (bits) d d logn

delay � c > 0

�! n!1 0

logn

High message rate regime

• ⌫n =constant�
�

1� �

• cn ! 1

• queueing delay ! 0

Our

10

patcher as a Poisson process of rate µ(N) to inform or remind the dispatcher

of its idleness. When the dispatcher receives a message, it adds the ID of

the server that sent the message to the virtual queue of tokens that is kept

in the memory, unless this ID is already stored or the virtual queue is full,

in which case it discards the new message. When a new job arrives, if there

is at least one server ID in the virtual queue, the job goes to the queue of

a server chosen uniformly at random from the virtual queue and the corre-

sponding token is deleted. If there are no tokens present, the job is sent to

a queue chosen uniformly at random. This policy is depicted in Figure 2.

N�

Dispatcher

C(N)

Queue of tokens

Jobs to

empty queues

Messages from

idle servers

... N servers

Fig 2. Resource constrained pull-based policy. Jobs are sent to queues associated with idle
servers, based on tokens on the virtual queue. If no tokens are present, a queue is chosen
at random.

Note that in our policy no messages are sent from the dispatcher to the

servers, which is why we call it a “pull-based” policy. We present a summary

of the results for the three variants of our policy in Table 1.

For variant (a) we actually impose the further constraint that C(N) 2

The model

• Poisson rate: � · n 0 < � < 1

n servers
exponential
rate: 1

The model

• Poisson rate: � · n 0 < � < 1

n servers
exponential
rate: 1

Our policy

cn

• idle processors send messages at rate ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

Our policy

cn

• idle processors send messages at rate ⌫n

– message rate per job ⇡ ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

3

References . 74

Author’s addresses . 76

1. Introduction. The subject of this paper is the study of the tradeo↵s

between various measures of performance (delay, message complexity and

memory) in the context of the supermarket model [13], a basic service system

that involves a stream of incoming jobs that are to be dispatched to the

queue associated with one of multiple servers; see Figure 1.

Incoming jobs

Dispatcher ... Multiple servers

Fig 1. The basic setting.

There is a variety of ways that this system can be operated, which cor-

respond to di↵erent system architectures and policies with di↵erent delay

performance. At one extreme, incoming jobs can be sent to a random queue.

This policy has no informational requirements but incurs a substantial de-

lay because it does not take advantage of resource pooling. At the other

extreme, incoming jobs can be sent to a shortest queue. This policy has

very good performance (small queueing delay), but relies on a substantial

High memory regime

Parsimonious regime

� logn � 1

High message rate regime

• ⌫n =constant�
�

1� �

• cn ! 1

• queueing delay ! 0

Our

High message rate regime

• cn =constant�
�

1� �

• cn ! 1

• queueing delay 6! 0

Our

High message rate regime

• cn =constant�
�

1� �

• cn ! 1

• queueing delay 6! 0

Our

High memory regime

Parsimonious regime

� logn � 1 ⇥(logn) Pull ,

• Expressions for delay via fluid models

High memory regime

Parsimonious regime

� logn � 1 ⇥(logn) Pull ,

• Expressions for delay via fluid models

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

High memory regime

� logn

High memory regime

� logn � 1

High message rate regime

• ⌫n =constant�
�

1� �

• cn ! 1

• queueing delay ! 0

Our

High memory regime

Parsimonious regime

� logn � 1 ⇥(logn)

Extensions, variations

• Allow queue at the dispatcher, queue capacity ! 1

– can get vanishing delay with constant message rate and zero memory
(essentially M/M/n queue)

– but this is like the large memory case

• Allow finite capacity queue at the dispatcher

– same negative result [high probability conjecture]

• Messages are instantaneous, but we do not allow
arbitrary number of back-and-forth messages in zero time

• Conjecture: the impossibility result holds
for arbitrary (non-symmetric) policies

⇥(n)
A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

High memory regime

Parsimonious regime

� logn � 1 ⇥(logn) Pull

High message rate regime

• ⌫n =constant�
�

1� �

• cn ! 1

• queueing delay ! 0

Our

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

High memory regime

Parsimonious regime

� logn � 1 ⇥(1)

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

• Join shortest of d (JSQ(d))

messages per job
memory (bits) d d logn

delay � c > 0

�! n!1 0

logn

High message rate regime

• ⌫n =constant�
�

1� �

• cn ! 1

• queueing delay ! 0

Our

10

patcher as a Poisson process of rate µ(N) to inform or remind the dispatcher

of its idleness. When the dispatcher receives a message, it adds the ID of

the server that sent the message to the virtual queue of tokens that is kept

in the memory, unless this ID is already stored or the virtual queue is full,

in which case it discards the new message. When a new job arrives, if there

is at least one server ID in the virtual queue, the job goes to the queue of

a server chosen uniformly at random from the virtual queue and the corre-

sponding token is deleted. If there are no tokens present, the job is sent to

a queue chosen uniformly at random. This policy is depicted in Figure 2.

N�

Dispatcher

C(N)

Queue of tokens

Jobs to

empty queues

Messages from

idle servers

... N servers

Fig 2. Resource constrained pull-based policy. Jobs are sent to queues associated with idle
servers, based on tokens on the virtual queue. If no tokens are present, a queue is chosen
at random.

Note that in our policy no messages are sent from the dispatcher to the

servers, which is why we call it a “pull-based” policy. We present a summary

of the results for the three variants of our policy in Table 1.

For variant (a) we actually impose the further constraint that C(N) 2

The model

• Poisson rate: � · n 0 < � < 1

n servers
exponential
rate: 1

The model

• Poisson rate: � · n 0 < � < 1

n servers
exponential
rate: 1

Our policy

cn

• idle processors send messages at rate ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

Our policy

cn

• idle processors send messages at rate ⌫n

– message rate per job ⇡ ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

3

References . 74

Author’s addresses . 76

1. Introduction. The subject of this paper is the study of the tradeo↵s

between various measures of performance (delay, message complexity and

memory) in the context of the supermarket model [13], a basic service system

that involves a stream of incoming jobs that are to be dispatched to the

queue associated with one of multiple servers; see Figure 1.

Incoming jobs

Dispatcher ... Multiple servers

Fig 1. The basic setting.

There is a variety of ways that this system can be operated, which cor-

respond to di↵erent system architectures and policies with di↵erent delay

performance. At one extreme, incoming jobs can be sent to a random queue.

This policy has no informational requirements but incurs a substantial de-

lay because it does not take advantage of resource pooling. At the other

extreme, incoming jobs can be sent to a shortest queue. This policy has

very good performance (small queueing delay), but relies on a substantial

High memory regime

Parsimonious regime

� logn � 1

High message rate regime

• ⌫n =constant�
�

1� �

• cn ! 1

• queueing delay ! 0

Our

High message rate regime

• cn =constant�
�

1� �

• cn ! 1

• queueing delay 6! 0

Our

High message rate regime

• cn =constant�
�

1� �

• cn ! 1

• queueing delay 6! 0

Our

High memory regime

Parsimonious regime

� logn � 1 ⇥(logn) Pull ,

• Expressions for delay via fluid models

High memory regime

Parsimonious regime

� logn � 1 ⇥(logn) Pull ,

• Expressions for delay via fluid models

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

High memory regime

� logn

High memory regime

� logn � 1

High message rate regime

• ⌫n =constant�
�

1� �

• cn ! 1

• queueing delay ! 0

Our

High memory regime

Parsimonious regime

� logn � 1 ⇥(logn)

Extensions, variations

• Allow queue at the dispatcher, queue capacity ! 1

– can get vanishing delay with constant message rate and zero memory
(essentially M/M/n queue)

– but this is like the large memory case

• Allow finite capacity queue at the dispatcher

– same negative result [high probability conjecture]

• Messages are instantaneous, but we do not allow
arbitrary number of back-and-forth messages in zero time

• Conjecture: the impossibility result holds
for arbitrary (non-symmetric) policies

⇥(n)

High memory regime

Parsimonious regime

Cannot do better

� logn � 1 ⇥(logn) Pull ,

• Expressions for delay via fluid models

• Bounded delay as � ! 1

• Better than JSQ(d)

• ⇥(logn) memory

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

High memory regime

Parsimonious regime

� logn � 1 ⇥(logn) Pull

High message rate regime

• ⌫n =constant�
�

1� �

• cn ! 1

• queueing delay ! 0

Our

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

High memory regime

Parsimonious regime

� logn � 1 ⇥(1)

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

• Join shortest of d (JSQ(d))

messages per job
memory (bits) d d logn

delay � c > 0

�! n!1 0

logn

High message rate regime

• ⌫n =constant�
�

1� �

• cn ! 1

• queueing delay ! 0

Our

10

patcher as a Poisson process of rate µ(N) to inform or remind the dispatcher

of its idleness. When the dispatcher receives a message, it adds the ID of

the server that sent the message to the virtual queue of tokens that is kept

in the memory, unless this ID is already stored or the virtual queue is full,

in which case it discards the new message. When a new job arrives, if there

is at least one server ID in the virtual queue, the job goes to the queue of

a server chosen uniformly at random from the virtual queue and the corre-

sponding token is deleted. If there are no tokens present, the job is sent to

a queue chosen uniformly at random. This policy is depicted in Figure 2.

N�

Dispatcher

C(N)

Queue of tokens

Jobs to

empty queues

Messages from

idle servers

... N servers

Fig 2. Resource constrained pull-based policy. Jobs are sent to queues associated with idle
servers, based on tokens on the virtual queue. If no tokens are present, a queue is chosen
at random.

Note that in our policy no messages are sent from the dispatcher to the

servers, which is why we call it a “pull-based” policy. We present a summary

of the results for the three variants of our policy in Table 1.

For variant (a) we actually impose the further constraint that C(N) 2

The model

• Poisson rate: � · n 0 < � < 1

n servers
exponential
rate: 1

The model

• Poisson rate: � · n 0 < � < 1

n servers
exponential
rate: 1

Our policy

cn

• idle processors send messages at rate ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

Our policy

cn

• idle processors send messages at rate ⌫n

– message rate per job ⇡ ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

3

References . 74

Author’s addresses . 76

1. Introduction. The subject of this paper is the study of the tradeo↵s

between various measures of performance (delay, message complexity and

memory) in the context of the supermarket model [13], a basic service system

that involves a stream of incoming jobs that are to be dispatched to the

queue associated with one of multiple servers; see Figure 1.

Incoming jobs

Dispatcher ... Multiple servers

Fig 1. The basic setting.

There is a variety of ways that this system can be operated, which cor-

respond to di↵erent system architectures and policies with di↵erent delay

performance. At one extreme, incoming jobs can be sent to a random queue.

This policy has no informational requirements but incurs a substantial de-

lay because it does not take advantage of resource pooling. At the other

extreme, incoming jobs can be sent to a shortest queue. This policy has

very good performance (small queueing delay), but relies on a substantial

High memory regime

Parsimonious regime

� logn � 1

High message rate regime

• ⌫n =constant�
�

1� �

• cn ! 1

• queueing delay ! 0

Our

High message rate regime

• cn =constant�
�

1� �

• cn ! 1

• queueing delay 6! 0

Our

High message rate regime

• cn =constant�
�

1� �

• cn ! 1

• queueing delay 6! 0

Our

High memory regime

Parsimonious regime

� logn � 1 ⇥(logn) Pull ,

• Expressions for delay via fluid models

High memory regime

Parsimonious regime

� logn � 1 ⇥(logn) Pull ,

• Expressions for delay via fluid models

High memory regime

Parsimonious regime

� logn � 1 ⇥(logn) Pull ,

• Expressions for delay via fluid models

• Better than JSQ(d)

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

High memory regime

� logn

High memory regime

� logn � 1

High message rate regime

• ⌫n =constant�
�

1� �

• cn ! 1

• queueing delay ! 0

Our

High memory regime

Parsimonious regime

� logn � 1 ⇥(logn)

Extensions, variations

• Allow queue at the dispatcher, queue capacity ! 1

– can get vanishing delay with constant message rate and zero memory
(essentially M/M/n queue)

– but this is like the large memory case

• Allow finite capacity queue at the dispatcher

– same negative result [high probability conjecture]

• Messages are instantaneous, but we do not allow
arbitrary number of back-and-forth messages in zero time

• Conjecture: the impossibility result holds
for arbitrary (non-symmetric) policies

⇥(n)

High memory regime

Parsimonious regime

Cannot do better

� logn � 1 ⇥(logn) Pull ,

• Expressions for delay via fluid models

• Bounded delay as � ! 1

• Better than JSQ(d)

• ⇥(logn) memory

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

High memory regime

Parsimonious regime

� logn � 1 ⇥(logn) Pull

High message rate regime

• ⌫n =constant�
�

1� �

• cn ! 1

• queueing delay ! 0

Our

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

High memory regime

Parsimonious regime

� logn � 1 ⇥(1)

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

• Join shortest of d (JSQ(d))

messages per job
memory (bits) d d logn

delay � c > 0

�! n!1 0

logn

High message rate regime

• ⌫n =constant�
�

1� �

• cn ! 1

• queueing delay ! 0

Our

10

patcher as a Poisson process of rate µ(N) to inform or remind the dispatcher

of its idleness. When the dispatcher receives a message, it adds the ID of

the server that sent the message to the virtual queue of tokens that is kept

in the memory, unless this ID is already stored or the virtual queue is full,

in which case it discards the new message. When a new job arrives, if there

is at least one server ID in the virtual queue, the job goes to the queue of

a server chosen uniformly at random from the virtual queue and the corre-

sponding token is deleted. If there are no tokens present, the job is sent to

a queue chosen uniformly at random. This policy is depicted in Figure 2.

N�

Dispatcher

C(N)

Queue of tokens

Jobs to

empty queues

Messages from

idle servers

... N servers

Fig 2. Resource constrained pull-based policy. Jobs are sent to queues associated with idle
servers, based on tokens on the virtual queue. If no tokens are present, a queue is chosen
at random.

Note that in our policy no messages are sent from the dispatcher to the

servers, which is why we call it a “pull-based” policy. We present a summary

of the results for the three variants of our policy in Table 1.

For variant (a) we actually impose the further constraint that C(N) 2

The model

• Poisson rate: � · n 0 < � < 1

n servers
exponential
rate: 1

The model

• Poisson rate: � · n 0 < � < 1

n servers
exponential
rate: 1

Our policy

cn

• idle processors send messages at rate ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

Our policy

cn

• idle processors send messages at rate ⌫n

– message rate per job ⇡ ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

3

References . 74

Author’s addresses . 76

1. Introduction. The subject of this paper is the study of the tradeo↵s

between various measures of performance (delay, message complexity and

memory) in the context of the supermarket model [13], a basic service system

that involves a stream of incoming jobs that are to be dispatched to the

queue associated with one of multiple servers; see Figure 1.

Incoming jobs

Dispatcher ... Multiple servers

Fig 1. The basic setting.

There is a variety of ways that this system can be operated, which cor-

respond to di↵erent system architectures and policies with di↵erent delay

performance. At one extreme, incoming jobs can be sent to a random queue.

This policy has no informational requirements but incurs a substantial de-

lay because it does not take advantage of resource pooling. At the other

extreme, incoming jobs can be sent to a shortest queue. This policy has

very good performance (small queueing delay), but relies on a substantial

High memory regime

Parsimonious regime

� logn � 1

High message rate regime

• ⌫n =constant�
�

1� �

• cn ! 1

• queueing delay ! 0

Our

High message rate regime

• cn =constant�
�

1� �

• cn ! 1

• queueing delay 6! 0

Our

High message rate regime

• cn =constant�
�

1� �

• cn ! 1

• queueing delay 6! 0

Our

High memory regime

Parsimonious regime

� logn � 1 ⇥(logn) Pull ,

• Expressions for delay via fluid models

High memory regime

Parsimonious regime

� logn � 1 ⇥(logn) Pull ,

• Expressions for delay via fluid models

21

Fig 4. Average queueing delay of the power-of-2-choices (red circles) vs. our policy (blue
squares).

(iii) the dispatcher has just dispatched a job.

In order to simplify notation, we define the set of memory states M ,
�

1, . . . , 2CN

and the set of possible states at each queue (the vector of the

remaining workloads of jobs) Q , RZ+
+

. We define next a broad class of

memory-based dispatching policies.

Definition 3.3 (Memory-based dispatching policy). For a fixed N , a

memory-based dispatching policy ⌘N has five components:

1. (Process of messages from servers) For each server n 2 N we have a

bounded rate function µN

n

: Q ! R
+

which defines a set of modulated

High memory regime

Parsimonious regime

� logn � 1 ⇥(logn) Pull ,

• Expressions for delay via fluid models

• Better than JSQ(d)

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

High memory regime

� logn

High memory regime

� logn � 1

High message rate regime

• ⌫n =constant�
�

1� �

• cn ! 1

• queueing delay ! 0

Our

High memory regime

Parsimonious regime

� logn � 1 ⇥(logn)

Extensions, variations

• Allow queue at the dispatcher, queue capacity ! 1

– can get vanishing delay with constant message rate and zero memory
(essentially M/M/n queue)

– but this is like the large memory case

• Allow finite capacity queue at the dispatcher

– same negative result [high probability conjecture]

• Messages are instantaneous, but we do not allow
arbitrary number of back-and-forth messages in zero time

• Conjecture: the impossibility result holds
for arbitrary (non-symmetric) policies

⇥(n)

High memory regime

Parsimonious regime

Cannot do better

� logn � 1 ⇥(logn) Pull ,

• Expressions for delay via fluid models

• Bounded delay as � ! 1

• Better than JSQ(d)

• ⇥(logn) memory

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

High memory regime

Parsimonious regime

� logn � 1 ⇥(logn) Pull

High message rate regime

• ⌫n =constant�
�

1� �

• cn ! 1

• queueing delay ! 0

Our

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

High memory regime

Parsimonious regime

� logn � 1 ⇥(1)

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

• Join shortest of d (JSQ(d))

messages per job
memory (bits) d d logn

delay � c > 0

�! n!1 0

logn

High message rate regime

• ⌫n =constant�
�

1� �

• cn ! 1

• queueing delay ! 0

Our

High memory regime

Parsimonious regime

Cannot do better

� logn � 1 ⇥(logn) Pull ,

• Expressions for delay via fluid models

• Better than JSQ(d)

10

patcher as a Poisson process of rate µ(N) to inform or remind the dispatcher

of its idleness. When the dispatcher receives a message, it adds the ID of

the server that sent the message to the virtual queue of tokens that is kept

in the memory, unless this ID is already stored or the virtual queue is full,

in which case it discards the new message. When a new job arrives, if there

is at least one server ID in the virtual queue, the job goes to the queue of

a server chosen uniformly at random from the virtual queue and the corre-

sponding token is deleted. If there are no tokens present, the job is sent to

a queue chosen uniformly at random. This policy is depicted in Figure 2.

N�

Dispatcher

C(N)

Queue of tokens

Jobs to

empty queues

Messages from

idle servers

... N servers

Fig 2. Resource constrained pull-based policy. Jobs are sent to queues associated with idle
servers, based on tokens on the virtual queue. If no tokens are present, a queue is chosen
at random.

Note that in our policy no messages are sent from the dispatcher to the

servers, which is why we call it a “pull-based” policy. We present a summary

of the results for the three variants of our policy in Table 1.

For variant (a) we actually impose the further constraint that C(N) 2

The model

• Poisson rate: � · n 0 < � < 1

n servers
exponential
rate: 1

The model

• Poisson rate: � · n 0 < � < 1

n servers
exponential
rate: 1

Our policy

cn

• idle processors send messages at rate ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

Our policy

cn

• idle processors send messages at rate ⌫n

– message rate per job ⇡ ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

3

References . 74

Author’s addresses . 76

1. Introduction. The subject of this paper is the study of the tradeo↵s

between various measures of performance (delay, message complexity and

memory) in the context of the supermarket model [13], a basic service system

that involves a stream of incoming jobs that are to be dispatched to the

queue associated with one of multiple servers; see Figure 1.

Incoming jobs

Dispatcher ... Multiple servers

Fig 1. The basic setting.

There is a variety of ways that this system can be operated, which cor-

respond to di↵erent system architectures and policies with di↵erent delay

performance. At one extreme, incoming jobs can be sent to a random queue.

This policy has no informational requirements but incurs a substantial de-

lay because it does not take advantage of resource pooling. At the other

extreme, incoming jobs can be sent to a shortest queue. This policy has

very good performance (small queueing delay), but relies on a substantial

High memory regime

Parsimonious regime

Cannot do better

� logn � 1 ⇥(logn) Pull ,

• Expressions for delay via fluid models

• Better than JSQ(d)

• ⇥(logn) memory

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

High memory regime

� logn

High memory regime

� logn � 1

High message rate regime

• ⌫n =constant�
�

1� �

• cn ! 1

• queueing delay ! 0

Our

High memory regime

Parsimonious regime

� logn � 1 ⇥(logn)

Extensions, variations

• Allow queue at the dispatcher, queue capacity ! 1

– can get vanishing delay with constant message rate and zero memory
(essentially M/M/n queue)

– but this is like the large memory case

• Allow finite capacity queue at the dispatcher

– same negative result [high probability conjecture]

• Messages are instantaneous, but we do not allow
arbitrary number of back-and-forth messages in zero time

• Conjecture: the impossibility result holds
for arbitrary (non-symmetric) policies

⇥(n)
A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

High memory regime

Parsimonious regime

� logn � 1 ⇥(logn) Pull

High message rate regime

• ⌫n =constant�
�

1� �

• cn ! 1

• queueing delay ! 0

Our

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

High memory regime

Parsimonious regime

� logn � 1 ⇥(1)

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

• Join shortest of d (JSQ(d))

messages per job
memory (bits) d d logn

delay � c > 0

�! n!1 0

logn

High message rate regime

• ⌫n =constant�
�

1� �

• cn ! 1

• queueing delay ! 0

Our

High memory regime

Parsimonious regime

Cannot do better

� logn � 1 ⇥(logn) Pull ,

• Expressions for delay via fluid models

• Better than JSQ(d)

High message rate regime

• ⌫n =constant�
�

1� �

• cn ! 1

• queueing delay ! 0

Our

High memory regime

Parsimonious regime

Cannot do better

� logn � 1 ⇥(logn) Pull ,

• Expressions for delay via fluid models

• Better than JSQ(d)

• ⇥(logn) memory

10

patcher as a Poisson process of rate µ(N) to inform or remind the dispatcher

of its idleness. When the dispatcher receives a message, it adds the ID of

the server that sent the message to the virtual queue of tokens that is kept

in the memory, unless this ID is already stored or the virtual queue is full,

in which case it discards the new message. When a new job arrives, if there

is at least one server ID in the virtual queue, the job goes to the queue of

a server chosen uniformly at random from the virtual queue and the corre-

sponding token is deleted. If there are no tokens present, the job is sent to

a queue chosen uniformly at random. This policy is depicted in Figure 2.

N�

Dispatcher

C(N)

Queue of tokens

Jobs to

empty queues

Messages from

idle servers

... N servers

Fig 2. Resource constrained pull-based policy. Jobs are sent to queues associated with idle
servers, based on tokens on the virtual queue. If no tokens are present, a queue is chosen
at random.

Note that in our policy no messages are sent from the dispatcher to the

servers, which is why we call it a “pull-based” policy. We present a summary

of the results for the three variants of our policy in Table 1.

For variant (a) we actually impose the further constraint that C(N) 2

The model

• Poisson rate: � · n 0 < � < 1

n servers
exponential
rate: 1

The model

• Poisson rate: � · n 0 < � < 1

n servers
exponential
rate: 1

Our policy

cn

• idle processors send messages at rate ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

Our policy

cn

• idle processors send messages at rate ⌫n

– message rate per job ⇡ ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

3

References . 74

Author’s addresses . 76

1. Introduction. The subject of this paper is the study of the tradeo↵s

between various measures of performance (delay, message complexity and

memory) in the context of the supermarket model [13], a basic service system

that involves a stream of incoming jobs that are to be dispatched to the

queue associated with one of multiple servers; see Figure 1.

Incoming jobs

Dispatcher ... Multiple servers

Fig 1. The basic setting.

There is a variety of ways that this system can be operated, which cor-

respond to di↵erent system architectures and policies with di↵erent delay

performance. At one extreme, incoming jobs can be sent to a random queue.

This policy has no informational requirements but incurs a substantial de-

lay because it does not take advantage of resource pooling. At the other

extreme, incoming jobs can be sent to a shortest queue. This policy has

very good performance (small queueing delay), but relies on a substantial

High memory regime

Parsimonious regime

Cannot do better

� logn � 1 ⇥(logn) Pull ,

• Expressions for delay via fluid models

• Better than JSQ(d)

• ⇥(logn) memory

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

High memory regime

� logn

High memory regime

� logn � 1

High message rate regime

• ⌫n =constant�
�

1� �

• cn ! 1

• queueing delay ! 0

Our

High memory regime

Parsimonious regime

� logn � 1 ⇥(logn)

Extensions, variations

• Allow queue at the dispatcher, queue capacity ! 1

– can get vanishing delay with constant message rate and zero memory
(essentially M/M/n queue)

– but this is like the large memory case

• Allow finite capacity queue at the dispatcher

– same negative result [high probability conjecture]

• Messages are instantaneous, but we do not allow
arbitrary number of back-and-forth messages in zero time

• Conjecture: the impossibility result holds
for arbitrary (non-symmetric) policies

⇥(n)
A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

High memory regime

Parsimonious regime

� logn � 1 ⇥(logn) Pull

High message rate regime

• ⌫n =constant�
�

1� �

• cn ! 1

• queueing delay ! 0

Our

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

High memory regime

Parsimonious regime

� logn � 1 ⇥(1)

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

• Join shortest of d (JSQ(d))

messages per job
memory (bits) d d logn

delay � c > 0

�! n!1 0

logn

High message rate regime

• ⌫n =constant�
�

1� �

• cn ! 1

• queueing delay ! 0

Our

High memory regime

Parsimonious regime

Cannot do better

� logn � 1 ⇥(logn) Pull ,

• Expressions for delay via fluid models

• Better than JSQ(d)

High message rate regime

• ⌫n =constant�
�

1� �

• cn ! 1

• queueing delay ! 0

Our

High memory regime

Parsimonious regime

Cannot do better

� logn � 1 ⇥(logn) Pull ,

• Expressions for delay via fluid models

• Better than JSQ(d)

• ⇥(logn) memory

10

patcher as a Poisson process of rate µ(N) to inform or remind the dispatcher

of its idleness. When the dispatcher receives a message, it adds the ID of

the server that sent the message to the virtual queue of tokens that is kept

in the memory, unless this ID is already stored or the virtual queue is full,

in which case it discards the new message. When a new job arrives, if there

is at least one server ID in the virtual queue, the job goes to the queue of

a server chosen uniformly at random from the virtual queue and the corre-

sponding token is deleted. If there are no tokens present, the job is sent to

a queue chosen uniformly at random. This policy is depicted in Figure 2.

N�

Dispatcher

C(N)

Queue of tokens

Jobs to

empty queues

Messages from

idle servers

... N servers

Fig 2. Resource constrained pull-based policy. Jobs are sent to queues associated with idle
servers, based on tokens on the virtual queue. If no tokens are present, a queue is chosen
at random.

Note that in our policy no messages are sent from the dispatcher to the

servers, which is why we call it a “pull-based” policy. We present a summary

of the results for the three variants of our policy in Table 1.

For variant (a) we actually impose the further constraint that C(N) 2

The model

• Poisson rate: � · n 0 < � < 1

n servers
exponential
rate: 1

The model

• Poisson rate: � · n 0 < � < 1

n servers
exponential
rate: 1

Our policy

cn

• idle processors send messages at rate ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

Our policy

cn

• idle processors send messages at rate ⌫n

– message rate per job ⇡ ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

3

References . 74

Author’s addresses . 76

1. Introduction. The subject of this paper is the study of the tradeo↵s

between various measures of performance (delay, message complexity and

memory) in the context of the supermarket model [13], a basic service system

that involves a stream of incoming jobs that are to be dispatched to the

queue associated with one of multiple servers; see Figure 1.

Incoming jobs

Dispatcher ... Multiple servers

Fig 1. The basic setting.

There is a variety of ways that this system can be operated, which cor-

respond to di↵erent system architectures and policies with di↵erent delay

performance. At one extreme, incoming jobs can be sent to a random queue.

This policy has no informational requirements but incurs a substantial de-

lay because it does not take advantage of resource pooling. At the other

extreme, incoming jobs can be sent to a shortest queue. This policy has

very good performance (small queueing delay), but relies on a substantial

High memory regime

Parsimonious regime

Cannot do better

� logn � 1 ⇥(logn) Pull ,

• Expressions for delay via fluid models

• Better than JSQ(d)

• ⇥(logn) memory

High message rate regime

• cn =constant�
�

1� �

• cn ! 1

• Thm: queueing delay 6! 0

Our

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

High memory regime

� logn

High memory regime

� logn � 1

High message rate regime

• ⌫n =constant�
�

1� �

• cn ! 1

• queueing delay ! 0

Our

High memory regime

Parsimonious regime

� logn � 1 ⇥(logn)

Extensions, variations

• Allow queue at the dispatcher, queue capacity ! 1

– can get vanishing delay with constant message rate and zero memory
(essentially M/M/n queue)

– but this is like the large memory case

• Allow finite capacity queue at the dispatcher

– same negative result [high probability conjecture]

• Messages are instantaneous, but we do not allow
arbitrary number of back-and-forth messages in zero time

• Conjecture: the impossibility result holds
for arbitrary (non-symmetric) policies

⇥(n)
A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

High memory regime

Parsimonious regime

� logn � 1 ⇥(logn) Pull

High message rate regime

• ⌫n =constant�
�

1� �

• cn ! 1

• queueing delay ! 0

Our

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

High memory regime

Parsimonious regime

� logn � 1 ⇥(1)

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

• Join shortest of d (JSQ(d))

messages per job
memory (bits) d d logn

delay � c > 0

�! n!1 0

logn

High message rate regime

• ⌫n =constant�
�

1� �

• cn ! 1

• queueing delay ! 0

Our

High memory regime

Parsimonious regime

Cannot do better

� logn � 1 ⇥(logn) Pull ,

• Expressions for delay via fluid models

• Better than JSQ(d)

High message rate regime

• ⌫n =constant�
�

1� �

• cn ! 1

• queueing delay ! 0

Our

High memory regime

Parsimonious regime

Cannot do better

� logn � 1 ⇥(logn) Pull ,

• Expressions for delay via fluid models

• Better than JSQ(d)

• ⇥(logn) memory

10

patcher as a Poisson process of rate µ(N) to inform or remind the dispatcher

of its idleness. When the dispatcher receives a message, it adds the ID of

the server that sent the message to the virtual queue of tokens that is kept

in the memory, unless this ID is already stored or the virtual queue is full,

in which case it discards the new message. When a new job arrives, if there

is at least one server ID in the virtual queue, the job goes to the queue of

a server chosen uniformly at random from the virtual queue and the corre-

sponding token is deleted. If there are no tokens present, the job is sent to

a queue chosen uniformly at random. This policy is depicted in Figure 2.

N�

Dispatcher

C(N)

Queue of tokens

Jobs to

empty queues

Messages from

idle servers

... N servers

Fig 2. Resource constrained pull-based policy. Jobs are sent to queues associated with idle
servers, based on tokens on the virtual queue. If no tokens are present, a queue is chosen
at random.

Note that in our policy no messages are sent from the dispatcher to the

servers, which is why we call it a “pull-based” policy. We present a summary

of the results for the three variants of our policy in Table 1.

For variant (a) we actually impose the further constraint that C(N) 2

The model

• Poisson rate: � · n 0 < � < 1

n servers
exponential
rate: 1

The model

• Poisson rate: � · n 0 < � < 1

n servers
exponential
rate: 1

Our policy

cn

• idle processors send messages at rate ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

Our policy

cn

• idle processors send messages at rate ⌫n

– message rate per job ⇡ ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

3

References . 74

Author’s addresses . 76

1. Introduction. The subject of this paper is the study of the tradeo↵s

between various measures of performance (delay, message complexity and

memory) in the context of the supermarket model [13], a basic service system

that involves a stream of incoming jobs that are to be dispatched to the

queue associated with one of multiple servers; see Figure 1.

Incoming jobs

Dispatcher ... Multiple servers

Fig 1. The basic setting.

There is a variety of ways that this system can be operated, which cor-

respond to di↵erent system architectures and policies with di↵erent delay

performance. At one extreme, incoming jobs can be sent to a random queue.

This policy has no informational requirements but incurs a substantial de-

lay because it does not take advantage of resource pooling. At the other

extreme, incoming jobs can be sent to a shortest queue. This policy has

very good performance (small queueing delay), but relies on a substantial

High memory regime

Parsimonious regime

Cannot do better

� logn � 1 ⇥(logn) Pull ,

• Expressions for delay via fluid models

• Better than JSQ(d)

• ⇥(logn) memory

High message rate regime

• cn =constant�
�

1� �

• cn ! 1

• Thm: queueing delay 6! 0

Our

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

High message rate regime

• cn =constant�
�

1� �

• cn ! 1

• Thm: queueing delay 6! 0

• Assumptions:

– no queueing at dispatcher

– “symmetric” policy

Our

High message rate regime

• cn =constant�
�

1� �

• cn ! 1

• Thm: queueing delay 6! 0

• Assumptions:

– no queueing at dispatcher

– “symmetric” policy

– not too many
back-and-forths
in too little time

Our

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

High memory regime

� logn

High memory regime

� logn � 1

High message rate regime

• ⌫n =constant�
�

1� �

• cn ! 1

• queueing delay ! 0

Our

High memory regime

Parsimonious regime

� logn � 1 ⇥(logn)

Extensions, variations

• Allow queue at the dispatcher, queue capacity ! 1

– can get vanishing delay with constant message rate and zero memory
(essentially M/M/n queue)

– but this is like the large memory case

• Allow finite capacity queue at the dispatcher

– same negative result [high probability conjecture]

• Messages are instantaneous, but we do not allow
arbitrary number of back-and-forth messages in zero time

• Conjecture: the impossibility result holds
for arbitrary (non-symmetric) policies

⇥(n)
A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

High memory regime

Parsimonious regime

� logn � 1 ⇥(logn) Pull

High message rate regime

• ⌫n =constant�
�

1� �

• cn ! 1

• queueing delay ! 0

Our

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

High memory regime

Parsimonious regime

� logn � 1 ⇥(1)

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

• Join shortest of d (JSQ(d))

messages per job
memory (bits) d d logn

delay � c > 0

�! n!1 0

logn

High message rate regime

• ⌫n =constant�
�

1� �

• cn ! 1

• queueing delay ! 0

Our

The technical side

10

patcher as a Poisson process of rate µ(N) to inform or remind the dispatcher

of its idleness. When the dispatcher receives a message, it adds the ID of

the server that sent the message to the virtual queue of tokens that is kept

in the memory, unless this ID is already stored or the virtual queue is full,

in which case it discards the new message. When a new job arrives, if there

is at least one server ID in the virtual queue, the job goes to the queue of

a server chosen uniformly at random from the virtual queue and the corre-

sponding token is deleted. If there are no tokens present, the job is sent to

a queue chosen uniformly at random. This policy is depicted in Figure 2.

N�

Dispatcher

C(N)

Queue of tokens

Jobs to

empty queues

Messages from

idle servers

... N servers

Fig 2. Resource constrained pull-based policy. Jobs are sent to queues associated with idle
servers, based on tokens on the virtual queue. If no tokens are present, a queue is chosen
at random.

Note that in our policy no messages are sent from the dispatcher to the

servers, which is why we call it a “pull-based” policy. We present a summary

of the results for the three variants of our policy in Table 1.

For variant (a) we actually impose the further constraint that C(N) 2

The model

• Poisson rate: � · n 0 < � < 1

n servers
exponential
rate: 1

The model

• Poisson rate: � · n 0 < � < 1

n servers
exponential
rate: 1

Our policy

cn

• idle processors send messages at rate ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

Our policy

cn

• idle processors send messages at rate ⌫n

– message rate per job ⇡ ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

Two time scale dynamics

• SN
i (t): fraction of servers

with at least i jobs
(in queue or in service)

– (1-dimensional) state: SN(t)

10

patcher as a Poisson process of rate µ(N) to inform or remind the dispatcher

of its idleness. When the dispatcher receives a message, it adds the ID of

the server that sent the message to the virtual queue of tokens that is kept

in the memory, unless this ID is already stored or the virtual queue is full,

in which case it discards the new message. When a new job arrives, if there

is at least one server ID in the virtual queue, the job goes to the queue of

a server chosen uniformly at random from the virtual queue and the corre-

sponding token is deleted. If there are no tokens present, the job is sent to

a queue chosen uniformly at random. This policy is depicted in Figure 2.

N�

Dispatcher

C(N)

Queue of tokens

Jobs to

empty queues

Messages from

idle servers

... N servers

Fig 2. Resource constrained pull-based policy. Jobs are sent to queues associated with idle
servers, based on tokens on the virtual queue. If no tokens are present, a queue is chosen
at random.

Note that in our policy no messages are sent from the dispatcher to the

servers, which is why we call it a “pull-based” policy. We present a summary

of the results for the three variants of our policy in Table 1.

For variant (a) we actually impose the further constraint that C(N) 2

The model

• Poisson rate: � · n 0 < � < 1

n servers
exponential
rate: 1

The model

• Poisson rate: � · n 0 < � < 1

n servers
exponential
rate: 1

Our policy

cn

• idle processors send messages at rate ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

Our policy

cn

• idle processors send messages at rate ⌫n

– message rate per job ⇡ ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

Two time scale dynamics

• SN
i (t): fraction of servers

with at least i jobs
(in queue or in service)

– (1-dimensional) state: SN(t)

Two time scale dynamics

• Sn
i (t): fraction of servers

with at least i jobs
(in queue or in service)

– (1-dimensional) state: Sn(t)

• Sn(t) = s) Sn(⌧) ⇡ s for t  ⌧  t+ ✏

• During ✏ time interval have ⌦(n) arrivals/departures

• With bounded token queue, enough time for it to reach steady state

10

patcher as a Poisson process of rate µ(N) to inform or remind the dispatcher

of its idleness. When the dispatcher receives a message, it adds the ID of

the server that sent the message to the virtual queue of tokens that is kept

in the memory, unless this ID is already stored or the virtual queue is full,

in which case it discards the new message. When a new job arrives, if there

is at least one server ID in the virtual queue, the job goes to the queue of

a server chosen uniformly at random from the virtual queue and the corre-

sponding token is deleted. If there are no tokens present, the job is sent to

a queue chosen uniformly at random. This policy is depicted in Figure 2.

N�

Dispatcher

C(N)

Queue of tokens

Jobs to

empty queues

Messages from

idle servers

... N servers

Fig 2. Resource constrained pull-based policy. Jobs are sent to queues associated with idle
servers, based on tokens on the virtual queue. If no tokens are present, a queue is chosen
at random.

Note that in our policy no messages are sent from the dispatcher to the

servers, which is why we call it a “pull-based” policy. We present a summary

of the results for the three variants of our policy in Table 1.

For variant (a) we actually impose the further constraint that C(N) 2

The model

• Poisson rate: � · n 0 < � < 1

n servers
exponential
rate: 1

The model

• Poisson rate: � · n 0 < � < 1

n servers
exponential
rate: 1

Our policy

cn

• idle processors send messages at rate ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

Our policy

cn

• idle processors send messages at rate ⌫n

– message rate per job ⇡ ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

Two time scale dynamics

• SN
i (t): fraction of servers

with at least i jobs
(in queue or in service)

– (1-dimensional) state: SN(t)

Two time scale dynamics

• Sn
i (t): fraction of servers

with at least i jobs
(in queue or in service)

– (1-dimensional) state: Sn(t)

• Sn(t) = s) Sn(⌧) ⇡ s for t  ⌧  t+ ✏

• During ✏ time interval have ⌦(n) arrivals/departures

• With bounded token queue, enough time for it to reach steady state

Two time scale dynamics

• Sn
i (t): fraction of servers

with at least i jobs
(in queue or in service)

– (1-dimensional) state: Sn(t)

• Sn(t) = s) Sn(⌧) ⇡ s for t  ⌧  t+ ✏

• During ✏ time interval have ⌦(n) arrivals/departures

• With bounded token queue, enough time for it to reach steady state

10

patcher as a Poisson process of rate µ(N) to inform or remind the dispatcher

of its idleness. When the dispatcher receives a message, it adds the ID of

the server that sent the message to the virtual queue of tokens that is kept

in the memory, unless this ID is already stored or the virtual queue is full,

in which case it discards the new message. When a new job arrives, if there

is at least one server ID in the virtual queue, the job goes to the queue of

a server chosen uniformly at random from the virtual queue and the corre-

sponding token is deleted. If there are no tokens present, the job is sent to

a queue chosen uniformly at random. This policy is depicted in Figure 2.

N�

Dispatcher

C(N)

Queue of tokens

Jobs to

empty queues

Messages from

idle servers

... N servers

Fig 2. Resource constrained pull-based policy. Jobs are sent to queues associated with idle
servers, based on tokens on the virtual queue. If no tokens are present, a queue is chosen
at random.

Note that in our policy no messages are sent from the dispatcher to the

servers, which is why we call it a “pull-based” policy. We present a summary

of the results for the three variants of our policy in Table 1.

For variant (a) we actually impose the further constraint that C(N) 2

The model

• Poisson rate: � · n 0 < � < 1

n servers
exponential
rate: 1

The model

• Poisson rate: � · n 0 < � < 1

n servers
exponential
rate: 1

Our policy

cn

• idle processors send messages at rate ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

Our policy

cn

• idle processors send messages at rate ⌫n

– message rate per job ⇡ ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

Two time scale dynamics

• SN
i (t): fraction of servers

with at least i jobs
(in queue or in service)

– (1-dimensional) state: SN(t)

Two time scale dynamics

• Sn
i (t): fraction of servers

with at least i jobs
(in queue or in service)

– (1-dimensional) state: Sn(t)

• Sn(t) = s) Sn(⌧) ⇡ s for t  ⌧  t+ ✏

• During ✏ time interval have ⌦(n) arrivals/departures

• With bounded token queue, enough time for it to reach steady state

Two time scale dynamics

• Sn
i (t): fraction of servers

with at least i jobs
(in queue or in service)

– (1-dimensional) state: Sn(t)

• Sn(t) = s) Sn(⌧) ⇡ s for t  ⌧  t+ ✏

• During ✏ time interval have ⌦(n) arrivals/departures

• With bounded token queue, enough time for it to reach steady state

Two time scale dynamics

• Sn
i (t): fraction of servers

with at least i jobs
(in queue or in service)

– (1-dimensional) state: Sn(t)

• Sn(t) = s) Sn(⌧) ⇡ s for t  ⌧  t+ ✏

• During ✏ time interval have ⌦(n) arrivals/departures

• With bounded token queue, enough time for it to reach steady state

10

patcher as a Poisson process of rate µ(N) to inform or remind the dispatcher

of its idleness. When the dispatcher receives a message, it adds the ID of

the server that sent the message to the virtual queue of tokens that is kept

in the memory, unless this ID is already stored or the virtual queue is full,

in which case it discards the new message. When a new job arrives, if there

is at least one server ID in the virtual queue, the job goes to the queue of

a server chosen uniformly at random from the virtual queue and the corre-

sponding token is deleted. If there are no tokens present, the job is sent to

a queue chosen uniformly at random. This policy is depicted in Figure 2.

N�

Dispatcher

C(N)

Queue of tokens

Jobs to

empty queues

Messages from

idle servers

... N servers

Fig 2. Resource constrained pull-based policy. Jobs are sent to queues associated with idle
servers, based on tokens on the virtual queue. If no tokens are present, a queue is chosen
at random.

Note that in our policy no messages are sent from the dispatcher to the

servers, which is why we call it a “pull-based” policy. We present a summary

of the results for the three variants of our policy in Table 1.

For variant (a) we actually impose the further constraint that C(N) 2

The model

• Poisson rate: � · n 0 < � < 1

n servers
exponential
rate: 1

The model

• Poisson rate: � · n 0 < � < 1

n servers
exponential
rate: 1

Our policy

cn

• idle processors send messages at rate ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

Our policy

cn

• idle processors send messages at rate ⌫n

– message rate per job ⇡ ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

Two time scale dynamics

• SN
i (t): fraction of servers

with at least i jobs
(in queue or in service)

– (1-dimensional) state: SN(t)

Two time scale dynamics

• Sn
i (t): fraction of servers

with at least i jobs
(in queue or in service)

– (1-dimensional) state: Sn(t)

• Sn(t) = s) Sn(⌧) ⇡ s for t  ⌧  t+ ✏

• During ✏ time interval have ⌦(n) arrivals/departures

• With bounded token queue, enough time for it to reach steady state

Two time scale dynamics

• Sn
i (t): fraction of servers

with at least i jobs
(in queue or in service)

– (1-dimensional) state: Sn(t)

• Sn(t) = s) Sn(⌧) ⇡ s for t  ⌧  t+ ✏

• During ✏ time interval have ⌦(n) arrivals/departures

• With bounded token queue, enough time for it to reach steady state

Two time scale dynamics

• Sn
i (t): fraction of servers

with at least i jobs
(in queue or in service)

– (1-dimensional) state: Sn(t)

• Sn(t) = s) Sn(⌧) ⇡ s for t  ⌧  t+ ✏

• During ✏ time interval have ⌦(n) arrivals/departures

• With bounded token queue, enough time for it to reach steady state

Two time scale dynamics

• Sn
i (t): fraction of servers

with at least i jobs
(in queue or in service)

– (1-dimensional) state: Sn(t)

• Sn(t) = s) Sn(⌧) ⇡ s for t  ⌧  t+ ✏

• During ✏ time interval have ⌦(n) arrivals/departures

• With bounded token queue, enough time for it to reach steady state

10

patcher as a Poisson process of rate µ(N) to inform or remind the dispatcher

of its idleness. When the dispatcher receives a message, it adds the ID of

the server that sent the message to the virtual queue of tokens that is kept

in the memory, unless this ID is already stored or the virtual queue is full,

in which case it discards the new message. When a new job arrives, if there

is at least one server ID in the virtual queue, the job goes to the queue of

a server chosen uniformly at random from the virtual queue and the corre-

sponding token is deleted. If there are no tokens present, the job is sent to

a queue chosen uniformly at random. This policy is depicted in Figure 2.

N�

Dispatcher

C(N)

Queue of tokens

Jobs to

empty queues

Messages from

idle servers

... N servers

Fig 2. Resource constrained pull-based policy. Jobs are sent to queues associated with idle
servers, based on tokens on the virtual queue. If no tokens are present, a queue is chosen
at random.

Note that in our policy no messages are sent from the dispatcher to the

servers, which is why we call it a “pull-based” policy. We present a summary

of the results for the three variants of our policy in Table 1.

For variant (a) we actually impose the further constraint that C(N) 2

The model

• Poisson rate: � · n 0 < � < 1

n servers
exponential
rate: 1

The model

• Poisson rate: � · n 0 < � < 1

n servers
exponential
rate: 1

Our policy

cn

• idle processors send messages at rate ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

Our policy

cn

• idle processors send messages at rate ⌫n

– message rate per job ⇡ ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

Two time scale dynamics

• SN
i (t): fraction of servers

with at least i jobs
(in queue or in service)

– (1-dimensional) state: SN(t)

Two time scale dynamics

• Sn
i (t): fraction of servers

with at least i jobs
(in queue or in service)

– (1-dimensional) state: Sn(t)

• Sn(t) = s) Sn(⌧) ⇡ s for t  ⌧  t+ ✏

• During ✏ time interval have ⌦(n) arrivals/departures

• With bounded token queue, enough time for it to reach steady state

Two time scale dynamics

• Sn
i (t): fraction of servers

with at least i jobs
(in queue or in service)

– (1-dimensional) state: Sn(t)

• Sn(t) = s) Sn(⌧) ⇡ s for t  ⌧  t+ ✏

• During ✏ time interval have ⌦(n) arrivals/departures

• With bounded token queue, enough time for it to reach steady state

Two time scale dynamics

• Sn
i (t): fraction of servers

with at least i jobs
(in queue or in service)

– (1-dimensional) state: Sn(t)

• Sn(t) = s) Sn(⌧) ⇡ s for t  ⌧  t+ ✏

• During ✏ time interval have ⌦(n) arrivals/departures

• With bounded token queue, enough time for it to reach steady state

Two time scale dynamics

• Sn
i (t): fraction of servers

with at least i jobs
(in queue or in service)

– (1-dimensional) state: Sn(t)

• Sn(t) = s) Sn(⌧) ⇡ s for t  ⌧  t+ ✏

• During ✏ time interval have ⌦(n) arrivals/departures

• With bounded token queue, enough time for it to reach steady state

Two time scale dynamics

• Sn
i (t): fraction of servers

with at least i jobs
(in queue or in service)

– (1-dimensional) state: Sn(t)

• Sn(t) = s) Sn(⌧) ⇡ s for t  ⌧  t+ ✏

• During ✏ time interval have ⌦(n) arrivals/departures

• With bounded token queue, enough time for it to reach steady state

10

patcher as a Poisson process of rate µ(N) to inform or remind the dispatcher

of its idleness. When the dispatcher receives a message, it adds the ID of

the server that sent the message to the virtual queue of tokens that is kept

in the memory, unless this ID is already stored or the virtual queue is full,

in which case it discards the new message. When a new job arrives, if there

is at least one server ID in the virtual queue, the job goes to the queue of

a server chosen uniformly at random from the virtual queue and the corre-

sponding token is deleted. If there are no tokens present, the job is sent to

a queue chosen uniformly at random. This policy is depicted in Figure 2.

N�

Dispatcher

C(N)

Queue of tokens

Jobs to

empty queues

Messages from

idle servers

... N servers

Fig 2. Resource constrained pull-based policy. Jobs are sent to queues associated with idle
servers, based on tokens on the virtual queue. If no tokens are present, a queue is chosen
at random.

Note that in our policy no messages are sent from the dispatcher to the

servers, which is why we call it a “pull-based” policy. We present a summary

of the results for the three variants of our policy in Table 1.

For variant (a) we actually impose the further constraint that C(N) 2

The model

• Poisson rate: � · n 0 < � < 1

n servers
exponential
rate: 1

The model

• Poisson rate: � · n 0 < � < 1

n servers
exponential
rate: 1

Our policy

cn

• idle processors send messages at rate ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

Our policy

cn

• idle processors send messages at rate ⌫n

– message rate per job ⇡ ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

Two time scale dynamics

• SN
i (t): fraction of servers

with at least i jobs
(in queue or in service)

– (1-dimensional) state: SN(t)

Two time scale dynamics

• Sn
i (t): fraction of servers

with at least i jobs
(in queue or in service)

– (1-dimensional) state: Sn(t)

• Sn(t) = s) Sn(⌧) ⇡ s for t  ⌧  t+ ✏

• During ✏ time interval have ⌦(n) arrivals/departures

• With bounded token queue, enough time for it to reach steady state

Two time scale dynamics

• Sn
i (t): fraction of servers

with at least i jobs
(in queue or in service)

– (1-dimensional) state: Sn(t)

• Sn(t) = s) Sn(⌧) ⇡ s for t  ⌧  t+ ✏

• During ✏ time interval have ⌦(n) arrivals/departures

• With bounded token queue, enough time for it to reach steady state

Two time scale dynamics

• Sn
i (t): fraction of servers

with at least i jobs
(in queue or in service)

– (1-dimensional) state: Sn(t)

• Sn(t) = s) Sn(⌧) ⇡ s for t  ⌧  t+ ✏

• During ✏ time interval have ⌦(n) arrivals/departures

• With bounded token queue, enough time for it to reach steady state

Two time scale dynamics

• Sn
i (t): fraction of servers

with at least i jobs
(in queue or in service)

– (1-dimensional) state: Sn(t)

• Sn(t) = s) Sn(⌧) ⇡ s for t  ⌧  t+ ✏

• During ✏ time interval have ⌦(n) arrivals/departures

• With bounded token queue, enough time for it to reach steady state

Two time scale dynamics

• Sn
i (t): fraction of servers

with at least i jobs
(in queue or in service)

– (1-dimensional) state: Sn(t)

• Sn(t) = s) Sn(⌧) ⇡ s for t  ⌧  t+ ✏

• During ✏ time interval have ⌦(n) arrivals/departures

• With bounded token queue, enough time for it to reach steady state

Two time scale dynamics

• Sn
i (t): fraction of servers

with at least i jobs
(in queue or in service)

– (1-dimensional) state: Sn(t)

• Sn(t) = s) Sn(⌧) ⇡ s for t  ⌧  t+ ✏

• During ✏ time interval have ⌦(n) arrivals/departures

• With bounded token queue, enough time for it to reach steady state

• P0(s): steady-state prob(empty)

10

patcher as a Poisson process of rate µ(N) to inform or remind the dispatcher

of its idleness. When the dispatcher receives a message, it adds the ID of

the server that sent the message to the virtual queue of tokens that is kept

in the memory, unless this ID is already stored or the virtual queue is full,

in which case it discards the new message. When a new job arrives, if there

is at least one server ID in the virtual queue, the job goes to the queue of

a server chosen uniformly at random from the virtual queue and the corre-

sponding token is deleted. If there are no tokens present, the job is sent to

a queue chosen uniformly at random. This policy is depicted in Figure 2.

N�

Dispatcher

C(N)

Queue of tokens

Jobs to

empty queues

Messages from

idle servers

... N servers

Fig 2. Resource constrained pull-based policy. Jobs are sent to queues associated with idle
servers, based on tokens on the virtual queue. If no tokens are present, a queue is chosen
at random.

Note that in our policy no messages are sent from the dispatcher to the

servers, which is why we call it a “pull-based” policy. We present a summary

of the results for the three variants of our policy in Table 1.

For variant (a) we actually impose the further constraint that C(N) 2

The model

• Poisson rate: � · n 0 < � < 1

n servers
exponential
rate: 1

The model

• Poisson rate: � · n 0 < � < 1

n servers
exponential
rate: 1

Our policy

cn

• idle processors send messages at rate ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

Our policy

cn

• idle processors send messages at rate ⌫n

– message rate per job ⇡ ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

Two time scale dynamics

• SN
i (t): fraction of servers

with at least i jobs
(in queue or in service)

– (1-dimensional) state: SN(t)

Two time scale dynamics

• Sn
i (t): fraction of servers

with at least i jobs
(in queue or in service)

– (1-dimensional) state: Sn(t)

• Sn(t) = s) Sn(⌧) ⇡ s for t  ⌧  t+ ✏

• During ✏ time interval have ⌦(n) arrivals/departures

• With bounded token queue, enough time for it to reach steady state

Two time scale dynamics

• Sn
i (t): fraction of servers

with at least i jobs
(in queue or in service)

– (1-dimensional) state: Sn(t)

• Sn(t) = s) Sn(⌧) ⇡ s for t  ⌧  t+ ✏

• During ✏ time interval have ⌦(n) arrivals/departures

• With bounded token queue, enough time for it to reach steady state

Two time scale dynamics

• Sn
i (t): fraction of servers

with at least i jobs
(in queue or in service)

– (1-dimensional) state: Sn(t)

• Sn(t) = s) Sn(⌧) ⇡ s for t  ⌧  t+ ✏

• During ✏ time interval have ⌦(n) arrivals/departures

• With bounded token queue, enough time for it to reach steady state

Two time scale dynamics

• Sn
i (t): fraction of servers

with at least i jobs
(in queue or in service)

– (1-dimensional) state: Sn(t)

• Sn(t) = s) Sn(⌧) ⇡ s for t  ⌧  t+ ✏

• During ✏ time interval have ⌦(n) arrivals/departures

• With bounded token queue, enough time for it to reach steady state

Two time scale dynamics

• Sn
i (t): fraction of servers

with at least i jobs
(in queue or in service)

– (1-dimensional) state: Sn(t)

• Sn(t) = s) Sn(⌧) ⇡ s for t  ⌧  t+ ✏

• During ✏ time interval have ⌦(n) arrivals/departures

• With bounded token queue, enough time for it to reach steady state

Two time scale dynamics

• Sn
i (t): fraction of servers

with at least i jobs
(in queue or in service)

– (1-dimensional) state: Sn(t)

• Sn(t) = s) Sn(⌧) ⇡ s for t  ⌧  t+ ✏

• During ✏ time interval have ⌦(n) arrivals/departures

• With bounded token queue, enough time for it to reach steady state

• P0(s): steady-state prob(empty)

Two time scale dynamics

• Sn
i (t): fraction of servers

with at least i jobs
(in queue or in service)

– (1-dimensional) state: Sn(t)

• Sn(t) = s) Sn(⌧) ⇡ s for t  ⌧  t+ ✏

• During ✏ time interval have ⌦(n) arrivals/departures

• With bounded token queue, enough time for it to reach steady state

• P0(s): steady-state prob(empty)

�n ⌫(1� s1)

Two time scale dynamics

• Sn
i (t): fraction of servers

with at least i jobs
(in queue or in service)

– (1-dimensional) state: Sn(t)

• Sn(t) = s) Sn(⌧) ⇡ s for t  ⌧  t+ ✏

• During ✏ time interval have ⌦(n) arrivals/departures

• With bounded token queue, enough time for it to reach steady state

• P0(s): steady-state prob(empty)

�n ⌫(1� s1)n

The “easy” cases

• ⌫ ! 1: P0(s) ! 0
) delay ! 0

• memory ! 1

– P0(s) ! 0, as long as drift is upwards

– In steady state: s1 = �

– Condition: ⌫(1� �) > �

Two time scale dynamics

• Sn
i (t): fraction of servers

with at least i jobs
(in queue or in service)

– (1-dimensional) state: Sn(t)

• Sn(t) = s) Sn(⌧) ⇡ s for t  ⌧  t+ ✏

• During ✏ time interval have ⌦(n) arrivals/departures

• With bounded token queue, enough time for it to reach steady state

• P0(s): steady-state prob(empty)

Two time scale dynamics

• Sn
i (t): fraction of servers

with at least i jobs
(in queue or in service)

– (1-dimensional) state: Sn(t)

• Sn(t) = s) Sn(⌧) ⇡ s for t  ⌧  t+ ✏

• During ✏ time interval have ⌦(n) arrivals/departures

• With bounded token queue, enough time for it to reach steady state

• P0(s): steady-state prob(empty)

�n ⌫(1� s1)

Two time scale dynamics

• Sn
i (t): fraction of servers

with at least i jobs
(in queue or in service)

– (1-dimensional) state: Sn(t)

• Sn(t) = s) Sn(⌧) ⇡ s for t  ⌧  t+ ✏

• During ✏ time interval have ⌦(n) arrivals/departures

• With bounded token queue, enough time for it to reach steady state

• P0(s): steady-state prob(empty)

�n ⌫(1� s1)n

The “easy” cases

• ⌫ ! 1: P0(s) ! 0
) delay ! 0

• memory ! 1

– P0(s) ! 0, as long as drift is upwards

– In steady state: s1 = �

– Condition: ⌫(1� �) > �

Two time scale dynamics

• Sn
i (t): fraction of servers

with at least i jobs
(in queue or in service)

– (1-dimensional) state: Sn(t)

• Sn(t) = s) Sn(⌧) ⇡ s for t  ⌧  t+ ✏

• During ✏ time interval have ⌦(n) arrivals/departures

• With bounded token queue, enough time for it to reach steady state

• P0(s): steady-state prob(empty)

The “easy” cases

• High message rate regime: ⌫ ! 1: P0(s) ! 0
) delay ! 0

• memory ! 1

– P0(s) ! 0, as long as drift is upwards

– In steady state: s1 = �

– Condition: ⌫(1� �) > �

Two time scale dynamics

• Sn
i (t): fraction of servers

with at least i jobs
(in queue or in service)

– (1-dimensional) state: Sn(t)

• Sn(t) = s) Sn(⌧) ⇡ s for t  ⌧  t+ ✏

• During ✏ time interval have ⌦(n) arrivals/departures

• With bounded token queue, enough time for it to reach steady state

• P0(s): steady-state prob(empty)

�n ⌫(1� s1)

Two time scale dynamics

• Sn
i (t): fraction of servers

with at least i jobs
(in queue or in service)

– (1-dimensional) state: Sn(t)

• Sn(t) = s) Sn(⌧) ⇡ s for t  ⌧  t+ ✏

• During ✏ time interval have ⌦(n) arrivals/departures

• With bounded token queue, enough time for it to reach steady state

• P0(s): steady-state prob(empty)

�n ⌫(1� s1)n

The “easy” cases

• ⌫ ! 1: P0(s) ! 0
) delay ! 0

• memory ! 1

– P0(s) ! 0, as long as drift is upwards

– In steady state: s1 = �

– Condition: ⌫(1� �) > �

Two time scale dynamics

• Sn
i (t): fraction of servers

with at least i jobs
(in queue or in service)

– (1-dimensional) state: Sn(t)

• Sn(t) = s) Sn(⌧) ⇡ s for t  ⌧  t+ ✏

• During ✏ time interval have ⌦(n) arrivals/departures

• With bounded token queue, enough time for it to reach steady state

• P0(s): steady-state prob(empty)

The “easy” cases

• High message rate regime: ⌫ ! 1: P0(s) ! 0
) delay ! 0

• memory ! 1

– P0(s) ! 0, as long as drift is upwards

– In steady state: s1 = �

– Condition: ⌫(1� �) > �

The “easy” cases

• High message rate regime: ⌫ ! 1: P0(s) ! 0
) delay ! 0

• High memory regime: memory ! 1

– P0(s) ! 0, as long as drift is upwards

– In steady state: s1 = �

– Condition: ⌫(1� �) > �

Two time scale dynamics

• Sn
i (t): fraction of servers

with at least i jobs
(in queue or in service)

– (1-dimensional) state: Sn(t)

• Sn(t) = s) Sn(⌧) ⇡ s for t  ⌧  t+ ✏

• During ✏ time interval have ⌦(n) arrivals/departures

• With bounded token queue, enough time for it to reach steady state

• P0(s): steady-state prob(empty)

�n ⌫(1� s1)

Two time scale dynamics

• Sn
i (t): fraction of servers

with at least i jobs
(in queue or in service)

– (1-dimensional) state: Sn(t)

• Sn(t) = s) Sn(⌧) ⇡ s for t  ⌧  t+ ✏

• During ✏ time interval have ⌦(n) arrivals/departures

• With bounded token queue, enough time for it to reach steady state

• P0(s): steady-state prob(empty)

�n ⌫(1� s1)n

The “easy” cases

• ⌫ ! 1: P0(s) ! 0
) delay ! 0

• memory ! 1

– P0(s) ! 0, as long as drift is upwards

– In steady state: s1 = �

– Condition: ⌫(1� �) > �

Two time scale dynamics

• Sn
i (t): fraction of servers

with at least i jobs
(in queue or in service)

– (1-dimensional) state: Sn(t)

• Sn(t) = s) Sn(⌧) ⇡ s for t  ⌧  t+ ✏

• During ✏ time interval have ⌦(n) arrivals/departures

• With bounded token queue, enough time for it to reach steady state

• P0(s): steady-state prob(empty)

The “easy” cases

• High message rate regime: ⌫ ! 1: P0(s) ! 0
) delay ! 0

• memory ! 1

– P0(s) ! 0, as long as drift is upwards

– In steady state: s1 = �

– Condition: ⌫(1� �) > �

The “easy” cases

• High message rate regime: ⌫ ! 1: P0(s) ! 0
) delay ! 0

• High memory regime: memory ! 1

– P0(s) ! 0, as long as drift is upwards

– In steady state: s1 = �

– Condition: ⌫(1� �) > �

The “easy” cases

• High message rate regime: ⌫ ! 1: P0(s) ! 0
) delay ! 0

• High memory regime: memory ! 1

– P0(s) ! 0, as long as drift is upwards

– In steady state: s1 = �

– Condition: ⌫(1� �) > �

Two time scale dynamics

• Sn
i (t): fraction of servers

with at least i jobs
(in queue or in service)

– (1-dimensional) state: Sn(t)

• Sn(t) = s) Sn(⌧) ⇡ s for t  ⌧  t+ ✏

• During ✏ time interval have ⌦(n) arrivals/departures

• With bounded token queue, enough time for it to reach steady state

• P0(s): steady-state prob(empty)

�n ⌫(1� s1)

Two time scale dynamics

• Sn
i (t): fraction of servers

with at least i jobs
(in queue or in service)

– (1-dimensional) state: Sn(t)

• Sn(t) = s) Sn(⌧) ⇡ s for t  ⌧  t+ ✏

• During ✏ time interval have ⌦(n) arrivals/departures

• With bounded token queue, enough time for it to reach steady state

• P0(s): steady-state prob(empty)

�n ⌫(1� s1)n

The “easy” cases

• ⌫ ! 1: P0(s) ! 0
) delay ! 0

• memory ! 1

– P0(s) ! 0, as long as drift is upwards

– In steady state: s1 = �

– Condition: ⌫(1� �) > �

Two time scale dynamics

• Sn
i (t): fraction of servers

with at least i jobs
(in queue or in service)

– (1-dimensional) state: Sn(t)

• Sn(t) = s) Sn(⌧) ⇡ s for t  ⌧  t+ ✏

• During ✏ time interval have ⌦(n) arrivals/departures

• With bounded token queue, enough time for it to reach steady state

• P0(s): steady-state prob(empty)

The “easy” cases

• High message rate regime: ⌫ ! 1: P0(s) ! 0
) delay ! 0

• memory ! 1

– P0(s) ! 0, as long as drift is upwards

– In steady state: s1 = �

– Condition: ⌫(1� �) > �

The “easy” cases

• High message rate regime: ⌫ ! 1: P0(s) ! 0
) delay ! 0

• High memory regime: memory ! 1

– P0(s) ! 0, as long as drift is upwards

– In steady state: s1 = �

– Condition: ⌫(1� �) > �

The “easy” cases

• High message rate regime: ⌫ ! 1: P0(s) ! 0
) delay ! 0

• High memory regime: memory ! 1

– P0(s) ! 0, as long as drift is upwards

– In steady state: s1 = �

– Condition: ⌫(1� �) > �

The “easy” cases

• High message rate regime: ⌫ ! 1: P0(s) ! 0
) delay ! 0

• High memory regime: memory ! 1

– P0(s) ! 0, as long as drift is upwards

– In steady state: s1 = � (Little’s law)

– Condition: ⌫(1� �) > �

Two time scale dynamics

• Sn
i (t): fraction of servers

with at least i jobs
(in queue or in service)

– (1-dimensional) state: Sn(t)

• Sn(t) = s) Sn(⌧) ⇡ s for t  ⌧  t+ ✏

• During ✏ time interval have ⌦(n) arrivals/departures

• With bounded token queue, enough time for it to reach steady state

• P0(s): steady-state prob(empty)

�n ⌫(1� s1)

Two time scale dynamics

• Sn
i (t): fraction of servers

with at least i jobs
(in queue or in service)

– (1-dimensional) state: Sn(t)

• Sn(t) = s) Sn(⌧) ⇡ s for t  ⌧  t+ ✏

• During ✏ time interval have ⌦(n) arrivals/departures

• With bounded token queue, enough time for it to reach steady state

• P0(s): steady-state prob(empty)

�n ⌫(1� s1)n

The “easy” cases

• ⌫ ! 1: P0(s) ! 0
) delay ! 0

• memory ! 1

– P0(s) ! 0, as long as drift is upwards

– In steady state: s1 = �

– Condition: ⌫(1� �) > �

Two time scale dynamics

• Sn
i (t): fraction of servers

with at least i jobs
(in queue or in service)

– (1-dimensional) state: Sn(t)

• Sn(t) = s) Sn(⌧) ⇡ s for t  ⌧  t+ ✏

• During ✏ time interval have ⌦(n) arrivals/departures

• With bounded token queue, enough time for it to reach steady state

• P0(s): steady-state prob(empty)

The “easy” cases

• High message rate regime: ⌫ ! 1: P0(s) ! 0
) delay ! 0

• memory ! 1

– P0(s) ! 0, as long as drift is upwards

– In steady state: s1 = �

– Condition: ⌫(1� �) > �

The “easy” cases

• High message rate regime: ⌫ ! 1: P0(s) ! 0
) delay ! 0

• High memory regime: memory ! 1

– P0(s) ! 0, as long as drift is upwards

– In steady state: s1 = �

– Condition: ⌫(1� �) > �

The “easy” cases

• High message rate regime: ⌫ ! 1: P0(s) ! 0
) delay ! 0

• High memory regime: memory ! 1

– P0(s) ! 0, as long as drift is upwards

– In steady state: s1 = �

– Condition: ⌫(1� �) > �

The “easy” cases

• High message rate regime: ⌫ ! 1: P0(s) ! 0
) delay ! 0

• High memory regime: memory ! 1

– P0(s) ! 0, as long as drift is upwards

– In steady state: s1 = � (Little’s law)

– Condition: ⌫(1� �) > �

Two time scale dynamics

• Sn
i (t): fraction of servers

with at least i jobs
(in queue or in service)

– (1-dimensional) state: Sn(t)

• Sn(t) = s) Sn(⌧) ⇡ s for t  ⌧  t+ ✏

• During ✏ time interval have ⌦(n) arrivals/departures

• With bounded token queue, enough time for it to reach steady state

• P0(s): steady-state prob(empty)

�n ⌫(1� s1)

Two time scale dynamics

• Sn
i (t): fraction of servers

with at least i jobs
(in queue or in service)

– (1-dimensional) state: Sn(t)

• Sn(t) = s) Sn(⌧) ⇡ s for t  ⌧  t+ ✏

• During ✏ time interval have ⌦(n) arrivals/departures

• With bounded token queue, enough time for it to reach steady state

• P0(s): steady-state prob(empty)

�n ⌫(1� s1)n

The “easy” cases

• High message rate regime: ⌫ ! 1: P0(s) ! 0
) delay ! 0

• High memory regime: memory ! 1

– P0(s) ! 0, as long as drift is upwards

– In steady state: s1 = � (Little’s law)

– delay ! 0 i↵ ⌫(1� �) � �

The “easy” cases

• High message rate regime: ⌫ ! 1: P0(s) ! 0
) delay ! 0

• High memory regime: memory ! 1

– P0(s) ! 0, as long as drift is upwards

– In steady state: s1 = � (Little’s law)

– delay ! 0 i↵ ⌫(1� �) > �

The resource constrained case

P0(s) =

2

4
CX

k=0

✓
⌫(1� s1)

�

◆k
3

5
�1

The resource constrained case - fluid model

P0(s) =

2

4
CX

k=0

✓
⌫(1� s1)

�

◆k
3

5
�1

continuous in s

• Sn(t) evolves in a slower time scale

• during [t, t+ ✏], fraction P0(s) of arriving jobs get routed randomly

Two time scale dynamics

• Sn
i (t): fraction of servers

with at least i jobs
(in queue or in service)

– (1-dimensional) state: Sn(t)

• Sn(t) = s) Sn(⌧) ⇡ s for t  ⌧  t+ ✏

• During ✏ time interval have ⌦(n) arrivals/departures

• With bounded token queue, enough time for it to reach steady state

• P0(s): steady-state prob(empty)

�n ⌫(1� s1)

Two time scale dynamics

• Sn
i (t): fraction of servers

with at least i jobs
(in queue or in service)

– (1-dimensional) state: Sn(t)

• Sn(t) = s) Sn(⌧) ⇡ s for t  ⌧  t+ ✏

• During ✏ time interval have ⌦(n) arrivals/departures

• With bounded token queue, enough time for it to reach steady state

• P0(s): steady-state prob(empty)

�n ⌫(1� s1)n

The “easy” cases

• High message rate regime: ⌫ ! 1: P0(s) ! 0
) delay ! 0

• High memory regime: memory ! 1

– P0(s) ! 0, as long as drift is upwards

– In steady state: s1 = � (Little’s law)

– delay ! 0 i↵ ⌫(1� �) > �

The resource constrained case

P0(s) =

2

4
CX

k=0

✓
⌫(1� s1)

�

◆k
3

5
�1

The resource constrained case - fluid model

P0(s) =

2

4
CX

k=0

✓
⌫(1� s1)

�

◆k
3

5
�1

continuous in s

• Sn(t) evolves in a slower time scale

• during [t, t+ ✏], fraction P0(s) of arriving jobs get routed randomly

The resource constrained case - fluid model

P0(s) =

2

4
CX

k=0

✓
⌫(1� s1)

�

◆k
3

5
�1

Lipschitz continuous in s

• Sn(t) evolves in a slower time scale

• during [t, t+ ✏], fraction P0(s) of arriving jobs get routed randomly

•
ds1
dt

(t) = �[1� P0(t)] + �[1� s1(t)]P0(t)� [s1(t)� s2(t)]

•
dsi
dt

(t) = �[si�1(t)� si(t)]P0(t)]� [si(t)� si+1(t)], i � 2

Two time scale dynamics

• Sn
i (t): fraction of servers

with at least i jobs
(in queue or in service)

– (1-dimensional) state: Sn(t)

• Sn(t) = s) Sn(⌧) ⇡ s for t  ⌧  t+ ✏

• During ✏ time interval have ⌦(n) arrivals/departures

• With bounded token queue, enough time for it to reach steady state

• P0(s): steady-state prob(empty)

�n ⌫(1� s1)

Two time scale dynamics

• Sn
i (t): fraction of servers

with at least i jobs
(in queue or in service)

– (1-dimensional) state: Sn(t)

• Sn(t) = s) Sn(⌧) ⇡ s for t  ⌧  t+ ✏

• During ✏ time interval have ⌦(n) arrivals/departures

• With bounded token queue, enough time for it to reach steady state

• P0(s): steady-state prob(empty)

�n ⌫(1� s1)n

The “easy” cases

• High message rate regime: ⌫ ! 1: P0(s) ! 0
) delay ! 0

• High memory regime: memory ! 1

– P0(s) ! 0, as long as drift is upwards

– In steady state: s1 = � (Little’s law)

– delay ! 0 i↵ ⌫(1� �) > �

The resource constrained case

P0(s) =

2

4
CX

k=0

✓
⌫(1� s1)

�

◆k
3

5
�1

The resource constrained case

P0(s) =

2

4
CX

k=0

✓
⌫(1� s1)

�

◆k
3

5
�1

continuous in s

• Sn(t) evolves in a slower time scale

• during [t, t+ ✏], fraction P0(s) of arriving jobs get routed randomly

The resource constrained case - fluid model

P0(s) =

2

4
CX

k=0

✓
⌫(1� s1)

�

◆k
3

5
�1

continuous in s

• Sn(t) evolves in a slower time scale

• during [t, t+ ✏], fraction P0(s) of arriving jobs get routed randomly

The resource constrained case - fluid model

P0(s) =

2

4
CX

k=0

✓
⌫(1� s1)

�

◆k
3

5
�1

Lipschitz continuous in s

• Sn(t) evolves in a slower time scale

• during [t, t+ ✏], fraction P0(s) of arriving jobs get routed randomly

•
ds1
dt

(t) = �[1� P0(t)] + �[1� s1(t)]P0(t)� [s1(t)� s2(t)]

•
dsi
dt

(t) = �[si�1(t)� si(t)]P0(t)]� [si(t)� si+1(t)], i � 2

Two time scale dynamics

• Sn
i (t): fraction of servers

with at least i jobs
(in queue or in service)

– (1-dimensional) state: Sn(t)

• Sn(t) = s) Sn(⌧) ⇡ s for t  ⌧  t+ ✏

• During ✏ time interval have ⌦(n) arrivals/departures

• With bounded token queue, enough time for it to reach steady state

• P0(s): steady-state prob(empty)

�n ⌫(1� s1)

Two time scale dynamics

• Sn
i (t): fraction of servers

with at least i jobs
(in queue or in service)

– (1-dimensional) state: Sn(t)

• Sn(t) = s) Sn(⌧) ⇡ s for t  ⌧  t+ ✏

• During ✏ time interval have ⌦(n) arrivals/departures

• With bounded token queue, enough time for it to reach steady state

• P0(s): steady-state prob(empty)

�n ⌫(1� s1)n

The “easy” cases

• High message rate regime: ⌫ ! 1: P0(s) ! 0
) delay ! 0

• High memory regime: memory ! 1

– P0(s) ! 0, as long as drift is upwards

– In steady state: s1 = � (Little’s law)

– delay ! 0 i↵ ⌫(1� �) > �

The resource constrained case

P0(s) =

2

4
CX

k=0

✓
⌫(1� s1)

�

◆k
3

5
�1

The resource constrained case

P0(s) =

2

4
CX

k=0

✓
⌫(1� s1)

�

◆k
3

5
�1

continuous in s

• Sn(t) evolves in a slower time scale

• during [t, t+ ✏], fraction P0(s) of arriving jobs get routed randomly

The resource constrained case

P0(s) =

2

4
CX

k=0

✓
⌫(1� s1)

�

◆k
3

5
�1

continuous in s

• Sn(t) evolves in a slower time scale

• during [t, t+ ✏], fraction P0(s) of arriving jobs get routed randomly

The resource constrained case - fluid model

P0(s) =

2

4
CX

k=0

✓
⌫(1� s1)

�

◆k
3

5
�1

continuous in s

• Sn(t) evolves in a slower time scale

• during [t, t+ ✏], fraction P0(s) of arriving jobs get routed randomly

The resource constrained case - fluid model

P0(s) =

2

4
CX

k=0

✓
⌫(1� s1)

�

◆k
3

5
�1

Lipschitz continuous in s

• Sn(t) evolves in a slower time scale

• during [t, t+ ✏], fraction P0(s) of arriving jobs get routed randomly

•
ds1
dt

(t) = �[1� P0(t)] + �[1� s1(t)]P0(t)� [s1(t)� s2(t)]

•
dsi
dt

(t) = �[si�1(t)� si(t)]P0(t)]� [si(t)� si+1(t)], i � 2

Two time scale dynamics

• Sn
i (t): fraction of servers

with at least i jobs
(in queue or in service)

– (1-dimensional) state: Sn(t)

• Sn(t) = s) Sn(⌧) ⇡ s for t  ⌧  t+ ✏

• During ✏ time interval have ⌦(n) arrivals/departures

• With bounded token queue, enough time for it to reach steady state

• P0(s): steady-state prob(empty)

�n ⌫(1� s1)

Two time scale dynamics

• Sn
i (t): fraction of servers

with at least i jobs
(in queue or in service)

– (1-dimensional) state: Sn(t)

• Sn(t) = s) Sn(⌧) ⇡ s for t  ⌧  t+ ✏

• During ✏ time interval have ⌦(n) arrivals/departures

• With bounded token queue, enough time for it to reach steady state

• P0(s): steady-state prob(empty)

�n ⌫(1� s1)n

The “easy” cases

• High message rate regime: ⌫ ! 1: P0(s) ! 0
) delay ! 0

• High memory regime: memory ! 1

– P0(s) ! 0, as long as drift is upwards

– In steady state: s1 = � (Little’s law)

– delay ! 0 i↵ ⌫(1� �) > �

The resource constrained case

P0(s) =

2

4
CX

k=0

✓
⌫(1� s1)

�

◆k
3

5
�1

The resource constrained case

P0(s) =

2

4
CX

k=0

✓
⌫(1� s1)

�

◆k
3

5
�1

continuous in s

• Sn(t) evolves in a slower time scale

• during [t, t+ ✏], fraction P0(s) of arriving jobs get routed randomly

The resource constrained case

P0(s) =

2

4
CX

k=0

✓
⌫(1� s1)

�

◆k
3

5
�1

continuous in s

• Sn(t) evolves in a slower time scale

• during [t, t+ ✏], fraction P0(s) of arriving jobs get routed randomly

The resource constrained case - fluid model

P0(s) =

2

4
CX

k=0

✓
⌫(1� s1)

�

◆k
3

5
�1

continuous in s

• Sn(t) evolves in a slower time scale

• during [t, t+ ✏], fraction P0(s) of arriving jobs get routed randomly

The resource constrained case - fluid model

P0(s) =

2

4
CX

k=0

✓
⌫(1� s1)

�

◆k
3

5
�1

Lipschitz continuous in s

• Sn(t) evolves in a slower time scale

• during [t, t+ ✏], fraction P0(s) of arriving jobs get routed randomly

•
ds1
dt

(t) = �[1� P0(t)] + �[1� s1(t)]P0(t)� [s1(t)� s2(t)]

•
dsi
dt

(t) = �[si�1(t)� si(t)]P0(t)]� [si(t)� si+1(t)], i � 2

Two time scale dynamics

• Sn
i (t): fraction of servers

with at least i jobs
(in queue or in service)

– (1-dimensional) state: Sn(t)

• Sn(t) = s) Sn(⌧) ⇡ s for t  ⌧  t+ ✏

• During ✏ time interval have ⌦(n) arrivals/departures

• With bounded token queue, enough time for it to reach steady state

• P0(s): steady-state prob(empty)

�n ⌫(1� s1)

Two time scale dynamics

• Sn
i (t): fraction of servers

with at least i jobs
(in queue or in service)

– (1-dimensional) state: Sn(t)

• Sn(t) = s) Sn(⌧) ⇡ s for t  ⌧  t+ ✏

• During ✏ time interval have ⌦(n) arrivals/departures

• With bounded token queue, enough time for it to reach steady state

• P0(s): steady-state prob(empty)

�n ⌫(1� s1)n

The resource constrained case - fluid model

P0(s) =

2

4
CX

k=0

✓
⌫(1� s1)

�

◆k
3

5
�1

Lipschitz continuous in s

• Sn(t) evolves in a slower time scale

• during [t, t+ ✏], fraction P0(s) of arriving jobs get routed randomly

•
ds1
dt

(t) = �[1� P0(t)] + �[1� s1(t)]P0(t)� [s1(t)� s2(t)]

•
dsi
dt

(t) = �[si�1(t)� si(t)]P0(t)� [si(t)� si+1(t)], i � 2

The theorems

• The fluid equations have a solution
(indirect proof: stochastic system trajectories have limit points,
and these satisfy fluid equations)

• Unique solution
(for resource constrained case

Extensions, variations

• Allow queue at the dispatcher, queue capacity ! 1
– can get vanishing delay with constant message rate and zero memory

(essentially M/M/n queue)

– but this is like the large memory case

• Allow finite capacity queue at the dispatcher

– same negative result
(high probability conjecture)

• Messages are instantaneous, but we do not allow
arbitrary number of back-and-forth messages in zero time

• Conjecture: the impossibility result holds
for arbitrary (non-symmetric) policies

⇥(n)

The theorems

• The fluid equations have a solution
(indirect proof: stochastic system trajectories have limit points,
and these satisfy fluid equations)

• Unique solution
(for resource constrained case

Extensions, variations

• Allow queue at the dispatcher, queue capacity ! 1
– can get vanishing delay with constant message rate and zero memory

(essentially M/M/n queue)

– but this is like the large memory case

• Allow finite capacity queue at the dispatcher

– same negative result
(high probability conjecture)

• Messages are instantaneous, but we do not allow
arbitrary number of back-and-forth messages in zero time

• Conjecture: the impossibility result holds
for arbitrary (non-symmetric) policies

⇥(n)

The theorems

• The fluid equations have a solution
(indirect proof: stochastic system trajectories have limit points,
and these satisfy fluid equations)

• Unique solution
(for resource constrained case

Extensions, variations

• Allow queue at the dispatcher, queue capacity ! 1
– can get vanishing delay with constant message rate and zero memory

(essentially M/M/n queue)

– but this is like the large memory case

• Allow finite capacity queue at the dispatcher

– same negative result
(high probability conjecture)

• Messages are instantaneous, but we do not allow
arbitrary number of back-and-forth messages in zero time

• Conjecture: the impossibility result holds
for arbitrary (non-symmetric) policies

⇥(n)

The theorems

• The fluid equations have a solution
(indirect proof: stochastic system trajectories have limit points,
and these satisfy fluid equations)

• Unique solution
(resource constrained case: from Lipschitz continuity of r.h.s.
other cases: more delicate, because P0(s) is discontinuous)

Extensions, variations

• Allow queue at the dispatcher, queue capacity ! 1
– can get vanishing delay with constant message rate and zero memory

(essentially M/M/n queue)

– but this is like the large memory case

• Allow finite capacity queue at the dispatcher

– same negative result
(high probability conjecture)

• Messages are instantaneous, but we do not allow
arbitrary number of back-and-forth messages in zero time

• Conjecture: the impossibility result holds
for arbitrary (non-symmetric) policies

⇥(n)

The theorems

• The fluid equations have a solution
(indirect proof: stochastic system trajectories have limit points,
and these satisfy fluid equations)

• Unique solution
(for resource constrained case

Extensions, variations

• Allow queue at the dispatcher, queue capacity ! 1
– can get vanishing delay with constant message rate and zero memory

(essentially M/M/n queue)

– but this is like the large memory case

• Allow finite capacity queue at the dispatcher

– same negative result
(high probability conjecture)

• Messages are instantaneous, but we do not allow
arbitrary number of back-and-forth messages in zero time

• Conjecture: the impossibility result holds
for arbitrary (non-symmetric) policies

⇥(n)

The theorems

• The fluid equations have a solution
(indirect proof: stochastic system trajectories have limit points,
and these satisfy fluid equations)

• Unique solution
(for resource constrained case

Extensions, variations

• Allow queue at the dispatcher, queue capacity ! 1
– can get vanishing delay with constant message rate and zero memory

(essentially M/M/n queue)

– but this is like the large memory case

• Allow finite capacity queue at the dispatcher

– same negative result
(high probability conjecture)

• Messages are instantaneous, but we do not allow
arbitrary number of back-and-forth messages in zero time

• Conjecture: the impossibility result holds
for arbitrary (non-symmetric) policies

⇥(n)

The theorems

• The fluid equations have a solution
(indirect proof: stochastic system trajectories have limit points,
and these satisfy fluid equations)

• Unique solution
(resource constrained case: from Lipschitz continuity of r.h.s.
other cases: more delicate, because P0(s) is discontinuous)

Extensions, variations

• Allow queue at the dispatcher, queue capacity ! 1
– can get vanishing delay with constant message rate and zero memory

(essentially M/M/n queue)

– but this is like the large memory case

• Allow finite capacity queue at the dispatcher

– same negative result
(high probability conjecture)

• Messages are instantaneous, but we do not allow
arbitrary number of back-and-forth messages in zero time

• Conjecture: the impossibility result holds
for arbitrary (non-symmetric) policies

⇥(n)

The theorems

• The fluid equations have a solution
(indirect proof: stochastic system trajectories have limit points,
and these satisfy fluid equations)

• Unique solution
(resource constrained case: from Lipschitz continuity of r.h.s.
other cases: more delicate, because P0(s) is discontinuous)

Extensions, variations

• Allow queue at the dispatcher, queue capacity ! 1
– can get vanishing delay with constant message rate and zero memory

(essentially M/M/n queue)

– but this is like the large memory case

• Allow finite capacity queue at the dispatcher

– same negative result
(high probability conjecture)

• Messages are instantaneous, but we do not allow
arbitrary number of back-and-forth messages in zero time

• Conjecture: the impossibility result holds
for arbitrary (non-symmetric) policies

⇥(n)

The theorems

• The fluid equations have a solution
(indirect proof: stochastic system trajectories have limit points,
and these satisfy fluid equations)

• Unique solution
(resource constrained case: from Lipschitz continuity of r.h.s.
other cases: more delicate, because P0(s) is discontinuous)

Extensions, variations

• Allow queue at the dispatcher, queue capacity ! 1
– can get vanishing delay with constant message rate and zero memory

(essentially M/M/n queue)

– but this is like the large memory case

• Allow finite capacity queue at the dispatcher

– same negative result
(high probability conjecture)

• Messages are instantaneous, but we do not allow
arbitrary number of back-and-forth messages in zero time

• Conjecture: the impossibility result holds
for arbitrary (non-symmetric) policies

⇥(n)

The theorems

• The fluid equations have a solution
(indirect proof: stochastic system trajectories have limit points,
and these satisfy fluid equations)

• Unique solution
(for resource constrained case

Extensions, variations

• Allow queue at the dispatcher, queue capacity ! 1
– can get vanishing delay with constant message rate and zero memory

(essentially M/M/n queue)

– but this is like the large memory case

• Allow finite capacity queue at the dispatcher

– same negative result
(high probability conjecture)

• Messages are instantaneous, but we do not allow
arbitrary number of back-and-forth messages in zero time

• Conjecture: the impossibility result holds
for arbitrary (non-symmetric) policies

⇥(n)

The theorems

• The fluid equations have a solution
(indirect proof: stochastic system trajectories have limit points,
and these satisfy fluid equations)

• Unique solution
(for resource constrained case

Extensions, variations

• Allow queue at the dispatcher, queue capacity ! 1
– can get vanishing delay with constant message rate and zero memory

(essentially M/M/n queue)

– but this is like the large memory case

• Allow finite capacity queue at the dispatcher

– same negative result
(high probability conjecture)

• Messages are instantaneous, but we do not allow
arbitrary number of back-and-forth messages in zero time

• Conjecture: the impossibility result holds
for arbitrary (non-symmetric) policies

⇥(n)

The theorems

• The fluid equations have a solution
(indirect proof: stochastic system trajectories have limit points,
and these satisfy fluid equations)

• Unique solution
(resource constrained case: from Lipschitz continuity of r.h.s.
other cases: more delicate, because P0(s) is discontinuous)

Extensions, variations

• Allow queue at the dispatcher, queue capacity ! 1
– can get vanishing delay with constant message rate and zero memory

(essentially M/M/n queue)

– but this is like the large memory case

• Allow finite capacity queue at the dispatcher

– same negative result
(high probability conjecture)

• Messages are instantaneous, but we do not allow
arbitrary number of back-and-forth messages in zero time

• Conjecture: the impossibility result holds
for arbitrary (non-symmetric) policies

⇥(n)

The theorems

• The fluid equations have a solution
(indirect proof: stochastic system trajectories have limit points,
and these satisfy fluid equations)

• Unique solution
(resource constrained case: from Lipschitz continuity of r.h.s.
other cases: more delicate, because P0(s) is discontinuous)

Extensions, variations

• Allow queue at the dispatcher, queue capacity ! 1
– can get vanishing delay with constant message rate and zero memory

(essentially M/M/n queue)

– but this is like the large memory case

• Allow finite capacity queue at the dispatcher

– same negative result
(high probability conjecture)

• Messages are instantaneous, but we do not allow
arbitrary number of back-and-forth messages in zero time

• Conjecture: the impossibility result holds
for arbitrary (non-symmetric) policies

⇥(n)

The theorems

• The fluid equations have a solution
(indirect proof: stochastic system trajectories have limit points,
and these satisfy fluid equations)

• Unique solution
(resource constrained case: from Lipschitz continuity of r.h.s.
other cases: more delicate, because P0(s) is discontinuous)

Extensions, variations

• Allow queue at the dispatcher, queue capacity ! 1
– can get vanishing delay with constant message rate and zero memory

(essentially M/M/n queue)

– but this is like the large memory case

• Allow finite capacity queue at the dispatcher

– same negative result
(high probability conjecture)

• Messages are instantaneous, but we do not allow
arbitrary number of back-and-forth messages in zero time

• Conjecture: the impossibility result holds
for arbitrary (non-symmetric) policies

⇥(n)

The theorems

• The fluid equations have a solution
(indirect proof: stochastic system trajectories have limit points,
and these satisfy fluid equations)

• Unique solution
(resource constrained case: from Lipschitz continuity of r.h.s.
other cases: more delicate, because P0(s) is discontinuous)

• Unique equilibrium point s⇤ (algebra)
which is asymptotically stable for all (interesting) initial conditions
(sandwich between tractable solutions)

The theorems (ctd.)

Extensions, variations

• Allow queue at the dispatcher, queue capacity ! 1

– can get vanishing delay with constant message rate and zero memory
(essentially M/M/n queue)

– but this is like the large memory case

• Allow finite capacity queue at the dispatcher

– same negative result
(high probability conjecture)

• Messages are instantaneous, but we do not allow
arbitrary number of back-and-forth messages in zero time

• Conjecture: the impossibility result holds
for arbitrary (non-symmetric) policies

⇥(n)

The theorems (ctd.)

Sn(t) s(t) s⇤ ⇡n n ! 1 t ! 1

The theorems (ctd.)

Sn(t) s(t) s⇤ ⇡n n ! 1 t ! 1

The theorems (ctd.)

Sn(t) s(t) s⇤ ⇡n n ! 1 t ! 1

The theorems (ctd.)

Sn(t) s(t) s⇤ ⇡n n ! 1 t ! 1

The theorems (ctd.)

Sn(t) s(t) s⇤ ⇡n n ! 1 t ! 1

The theorems (ctd.)

Sn(t) s(t) s⇤ ⇡n n ! 1 t ! 1
The theorems (ctd.)

Sn(t) s(t) s⇤ ⇡n n ! 1 t ! 1

The theorems (ctd.)

Sn(t) s(t) s⇤ ⇡n n ! 1 t ! 1The theorems (ctd.)

Sn(t) s(t) s⇤ ⇡n n ! 1 t ! 1

• standard “proof technology”

The theorems (ctd.)

Extensions, variations

• Allow queue at the dispatcher, queue capacity ! 1

– can get vanishing delay with constant message rate and zero memory
(essentially M/M/n queue)

– but this is like the large memory case

• Allow finite capacity queue at the dispatcher

– same negative result
(high probability conjecture)

• Messages are instantaneous, but we do not allow
arbitrary number of back-and-forth messages in zero time

• Conjecture: the impossibility result holds
for arbitrary (non-symmetric) policies

⇥(n)

The theorems (ctd.)

Sn(t) s(t) s⇤ ⇡n n ! 1 t ! 1

The theorems (ctd.)

Sn(t) s(t) s⇤ ⇡n n ! 1 t ! 1

The theorems (ctd.)

Sn(t) s(t) s⇤ ⇡n n ! 1 t ! 1

The theorems (ctd.)

Sn(t) s(t) s⇤ ⇡n n ! 1 t ! 1

The theorems (ctd.)

Sn(t) s(t) s⇤ ⇡n n ! 1 t ! 1

The theorems (ctd.)

Sn(t) s(t) s⇤ ⇡n n ! 1 t ! 1
The theorems (ctd.)

Sn(t) s(t) s⇤ ⇡n n ! 1 t ! 1

The theorems (ctd.)

Sn(t) s(t) s⇤ ⇡n n ! 1 t ! 1The theorems (ctd.)

Sn(t) s(t) s⇤ ⇡n n ! 1 t ! 1

• standard “proof technology”

The theorems (ctd.)

Sn(t) s(t) s⇤ ⇡n n ! 1 t ! 1

• standard “proof technology”

• E⇡n[delay] ! Es⇤[delay] =
1X

i=1
s⇤i

Delay analysis (resource constrained case)

• s⇤1 = �

• P0(s) =

2

4
CX

k=0

✓
⌫(1� �)

�

◆k
3

5
�1

• s⇤i = �(�P ⇤
0)

i�1

• E[delay] =
�P ⇤

0
1� �P ⇤

0

Delay analysis (resource constrained case)

• s⇤1 = �

• P0(s) =

2

4
CX

k=0

✓
⌫(1� �)

�

◆k
3

5
�1

• s⇤i = �(�P ⇤
0)

i�1

• E[delay] =
�P ⇤

0
1� �P ⇤

0

Delay analysis (resource constrained case)

• s⇤1 = �

• P0(s) =

2

4
CX

k=0

✓
⌫(1� �)

�

◆k
3

5
�1

• s⇤i = �(�P ⇤
0)

i�1

• E[delay] =
�P ⇤

0
1� �P ⇤

0

Delay analysis (resource constrained case)

• s⇤1 = �

• P0(s) =

2

4
CX

k=0

✓
⌫(1� �)

�

◆k
3

5
�1

• s⇤i = �(�P ⇤
0)

i�1

• E[delay] =
�P ⇤

0
1� �P ⇤

0

Delay analysis (resource constrained case)

• s⇤1 = �

• P0(s) =

2

4
CX

k=0

✓
⌫(1� �)

�

◆k
3

5
�1

• s⇤i = �(�P ⇤
0)

i�1

• E[delay] =
�P ⇤

0
1� �P ⇤

0

Delay analysis (resource constrained case)

• s⇤1 = �

• P ⇤
0 = P0(s

⇤) =

2

4
CX

k=0

✓
⌫(1� �)

�

◆k
3

5
�1

• s⇤i = �(�P ⇤
0)

i�1

• E[delay] =
�P ⇤

0
1� �P ⇤

0

Delay analysis (resource constrained case)

• s⇤1 = �

• P0(s) =

2

4
CX

k=0

✓
⌫(1� �)

�

◆k
3

5
�1

• s⇤i = �(�P ⇤
0)

i�1

• E[delay] =
�P ⇤

0
1� �P ⇤

0

Delay analysis (resource constrained case)

• s⇤1 = �

• P0(s) =

2

4
CX

k=0

✓
⌫(1� �)

�

◆k
3

5
�1

• s⇤i = �(�P ⇤
0)

i�1

• E[delay] =
�P ⇤

0
1� �P ⇤

0

Delay analysis (resource constrained case)

• s⇤1 = �

• P ⇤
0 = P0(s

⇤) =

2

4
CX

k=0

✓
⌫(1� �)

�

◆k
3

5
�1

• s⇤i = �(�P ⇤
0)

i�1

• E[delay] =
�P ⇤

0
1� �P ⇤

0

The resource constrained case - fluid model

P0(s) =

2

4
CX

k=0

✓
⌫(1� s1)

�

◆k
3

5
�1

Lipschitz continuous in s

• Sn(t) evolves in a slower time scale

• during [t, t+ ✏], fraction P0(s) of arriving jobs get routed randomly

•
ds1
dt

(t) = �[1� P0(t)] + �[1� s1(t)]P0(t)� [s1(t)� s2(t)]

•
dsi
dt

(t) = �[si�1(t)� si(t)]P0(t)� [si(t)� si+1(t)], i � 2

Delay analysis (resource constrained case)

• s⇤1 = �

• P0(s) =

2

4
CX

k=0

✓
⌫(1� �)

�

◆k
3

5
�1

• s⇤i = �(�P ⇤
0)

i�1

• E[delay] =
�P ⇤

0
1� �P ⇤

0

Delay analysis (resource constrained case)

• s⇤1 = �

• P0(s) =

2

4
CX

k=0

✓
⌫(1� �)

�

◆k
3

5
�1

• s⇤i = �(�P ⇤
0)

i�1

• E[delay] =
�P ⇤

0
1� �P ⇤

0

Delay analysis (resource constrained case)

• s⇤1 = �

• P ⇤
0 = P0(s

⇤) =

2

4
CX

k=0

✓
⌫(1� �)

�

◆k
3

5
�1

• s⇤i = �(�P ⇤
0)

i�1

• E[delay] =
�P ⇤

0
1� �P ⇤

0

Delay analysis (resource constrained case)

• s⇤1 = �

• P ⇤
0 = P0(s

⇤) =

2

4
CX

k=0

✓
⌫(1� �)

�

◆k
3

5
�1

• s⇤i = �(�P ⇤
0)

i�1

• E[delay] =
�P ⇤

0
1� �P ⇤

0

Delay analysis (resource constrained case)

• s⇤1 = �

• P ⇤
0 = P0(s

⇤) =

2

4
CX

k=0

✓
⌫(1� �)

�

◆k
3

5
�1

• s⇤i = �(�P ⇤
0)

i�1

• E[delay] =
�P ⇤

0
1� �P ⇤

0

The resource constrained case - fluid model

P0(s) =

2

4
CX

k=0

✓
⌫(1� s1)

�

◆k
3

5
�1

Lipschitz continuous in s

• Sn(t) evolves in a slower time scale

• during [t, t+ ✏], fraction P0(s) of arriving jobs get routed randomly

•
ds1
dt

(t) = �[1� P0(t)] + �[1� s1(t)]P0(t)� [s1(t)� s2(t)]

•
dsi
dt

(t) = �[si�1(t)� si(t)]P0(t)� [si(t)� si+1(t)], i � 2

Delay analysis (resource constrained case)

• s⇤1 = �

• P0(s) =

2

4
CX

k=0

✓
⌫(1� �)

�

◆k
3

5
�1

• s⇤i = �(�P ⇤
0)

i�1

• E[delay] =
�P ⇤

0
1� �P ⇤

0

Delay analysis (resource constrained case)

• s⇤1 = �

• P0(s) =

2

4
CX

k=0

✓
⌫(1� �)

�

◆k
3

5
�1

• s⇤i = �(�P ⇤
0)

i�1

• E[delay] =
�P ⇤

0
1� �P ⇤

0

Delay analysis (resource constrained case)

• s⇤1 = �

• P ⇤
0 = P0(s

⇤) =

2

4
CX

k=0

✓
⌫(1� �)

�

◆k
3

5
�1

• s⇤i = �(�P ⇤
0)

i�1

• E[delay] =
�P ⇤

0
1� �P ⇤

0

Delay analysis (resource constrained case)

• s⇤1 = �

• P ⇤
0 = P0(s

⇤) =

2

4
CX

k=0

✓
⌫(1� �)

�

◆k
3

5
�1

• s⇤i = �(�P ⇤
0)

i�1

• E[delay] =
�P ⇤

0
1� �P ⇤

0

Delay analysis (resource constrained case)

• s⇤1 = �

• P ⇤
0 = P0(s

⇤) =

2

4
CX

k=0

✓
⌫(1� �)

�

◆k
3

5
�1

• s⇤i = �(�P ⇤
0)

i�1

• E[delay] =
�P ⇤

0
1� �P ⇤

0

Delay analysis (resource constrained case)

• s⇤1 = �

• P ⇤
0 = P0(s

⇤) =

2

4
CX

k=0

✓
⌫(1� �)

�

◆k
3

5
�1

• s⇤i = �(�P ⇤
0)

i�1

• E[delay] =
�P ⇤

0
1� �P ⇤

0
Heavy-tra�c analysis, � " 1

The resource constrained case - fluid model

P0(s) =

2

4
CX

k=0

✓
⌫(1� s1)

�

◆k
3

5
�1

Lipschitz continuous in s

• Sn(t) evolves in a slower time scale

• during [t, t+ ✏], fraction P0(s) of arriving jobs get routed randomly

•
ds1
dt

(t) = �[1� P0(t)] + �[1� s1(t)]P0(t)� [s1(t)� s2(t)]

•
dsi
dt

(t) = �[si�1(t)� si(t)]P0(t)� [si(t)� si+1(t)], i � 2

Delay analysis (resource constrained case)

• s⇤1 = �

• P0(s) =

2

4
CX

k=0

✓
⌫(1� �)

�

◆k
3

5
�1

• s⇤i = �(�P ⇤
0)

i�1

• E[delay] =
�P ⇤

0
1� �P ⇤

0

Delay analysis (resource constrained case)

• s⇤1 = �

• P0(s) =

2

4
CX

k=0

✓
⌫(1� �)

�

◆k
3

5
�1

• s⇤i = �(�P ⇤
0)

i�1

• E[delay] =
�P ⇤

0
1� �P ⇤

0

Delay analysis (resource constrained case)

• s⇤1 = �

• P ⇤
0 = P0(s

⇤) =

2

4
CX

k=0

✓
⌫(1� �)

�

◆k
3

5
�1

• s⇤i = �(�P ⇤
0)

i�1

• E[delay] =
�P ⇤

0
1� �P ⇤

0

Delay analysis (resource constrained case)

• s⇤1 = �

• P ⇤
0 = P0(s

⇤) =

2

4
CX

k=0

✓
⌫(1� �)

�

◆k
3

5
�1

• s⇤i = �(�P ⇤
0)

i�1

• E[delay] =
�P ⇤

0
1� �P ⇤

0

Delay analysis (resource constrained case)

• s⇤1 = �

• P ⇤
0 = P0(s

⇤) =

2

4
CX

k=0

✓
⌫(1� �)

�

◆k
3

5
�1

• s⇤i = �(�P ⇤
0)

i�1

• E[delay] =
�P ⇤

0
1� �P ⇤

0

Delay analysis (resource constrained case)

• s⇤1 = �

• P ⇤
0 = P0(s

⇤) =

2

4
CX

k=0

✓
⌫(1� �)

�

◆k
3

5
�1

• s⇤i = �(�P ⇤
0)

i�1

• E[delay] =
�P ⇤

0
1� �P ⇤

0
Heavy-tra�c analysis, � " 1

Delay analysis (resource constrained case)

• s⇤1 = �

• P ⇤
0 = P0(s

⇤) =

2

4
CX

k=0

✓
⌫(1� �)

�

◆k
3

5
�1

• s⇤i = �(�P ⇤
0)

i�1

• E[delay] =
�P ⇤

0
1� �P ⇤

0
Heavy-tra�c analysis, � " 1

• Choose ⌫ so that ⌫(1� �) = �d

– Messages per unit time: �dn

– P ⇤
0 (and therefore, delay): independent of n

• Send to shortest of d sampled queues

– Messages per unit time: �dn

• Prob(find an empty queue) = (1� �)d ! 0

• delay ! 1

The resource constrained case - fluid model

P0(s) =

2

4
CX

k=0

✓
⌫(1� s1)

�

◆k
3

5
�1

Lipschitz continuous in s

• Sn(t) evolves in a slower time scale

• during [t, t+ ✏], fraction P0(s) of arriving jobs get routed randomly

•
ds1
dt

(t) = �[1� P0(t)] + �[1� s1(t)]P0(t)� [s1(t)� s2(t)]

•
dsi
dt

(t) = �[si�1(t)� si(t)]P0(t)� [si(t)� si+1(t)], i � 2

Delay analysis (resource constrained case)

• s⇤1 = �

• P0(s) =

2

4
CX

k=0

✓
⌫(1� �)

�

◆k
3

5
�1

• s⇤i = �(�P ⇤
0)

i�1

• E[delay] =
�P ⇤

0
1� �P ⇤

0

Delay analysis (resource constrained case)

• s⇤1 = �

• P0(s) =

2

4
CX

k=0

✓
⌫(1� �)

�

◆k
3

5
�1

• s⇤i = �(�P ⇤
0)

i�1

• E[delay] =
�P ⇤

0
1� �P ⇤

0

Delay analysis (resource constrained case)

• s⇤1 = �

• P ⇤
0 = P0(s

⇤) =

2

4
CX

k=0

✓
⌫(1� �)

�

◆k
3

5
�1

• s⇤i = �(�P ⇤
0)

i�1

• E[delay] =
�P ⇤

0
1� �P ⇤

0

Delay analysis (resource constrained case)

• s⇤1 = �

• P ⇤
0 = P0(s

⇤) =

2

4
CX

k=0

✓
⌫(1� �)

�

◆k
3

5
�1

• s⇤i = �(�P ⇤
0)

i�1

• E[delay] =
�P ⇤

0
1� �P ⇤

0

Delay analysis (resource constrained case)

• s⇤1 = �

• P ⇤
0 = P0(s

⇤) =

2

4
CX

k=0

✓
⌫(1� �)

�

◆k
3

5
�1

• s⇤i = �(�P ⇤
0)

i�1

• E[delay] =
�P ⇤

0
1� �P ⇤

0

Delay analysis (resource constrained case)

• s⇤1 = �

• P ⇤
0 = P0(s

⇤) =

2

4
CX

k=0

✓
⌫(1� �)

�

◆k
3

5
�1

• s⇤i = �(�P ⇤
0)

i�1

• E[delay] =
�P ⇤

0
1� �P ⇤

0
Heavy-tra�c analysis, � " 1

Delay analysis (resource constrained case)

• s⇤1 = �

• P ⇤
0 = P0(s

⇤) =

2

4
CX

k=0

✓
⌫(1� �)

�

◆k
3

5
�1

• s⇤i = �(�P ⇤
0)

i�1

• E[delay] =
�P ⇤

0
1� �P ⇤

0
Heavy-tra�c analysis, � " 1

• Choose ⌫ so that ⌫(1� �) = �d

– Messages per unit time: �dn

– P ⇤
0 (and therefore, delay): independent of n

• Send to shortest of d sampled queues

– Messages per unit time: �dn

• Prob(find an empty queue) = (1� �)d ! 0

• delay ! 1

Delay analysis (resource constrained case)

• s⇤1 = �

• P ⇤
0 = P0(s

⇤) =

2

4
CX

k=0

✓
⌫(1� �)

�

◆k
3

5
�1

• s⇤i = �(�P ⇤
0)

i�1

• E[delay] =
�P ⇤

0
1� �P ⇤

0
Heavy-tra�c analysis, � " 1

• Choose ⌫ so that ⌫(1� �) = �d

– Messages per unit time: �dn

– P ⇤
0 (and therefore, delay): independent of n

• Send to shortest of d sampled queues

– Messages per unit time: �dn

• Prob(find an empty queue) = (1� �)d ! 0

• delay ! 1

The resource constrained case - fluid model

P0(s) =

2

4
CX

k=0

✓
⌫(1� s1)

�

◆k
3

5
�1

Lipschitz continuous in s

• Sn(t) evolves in a slower time scale

• during [t, t+ ✏], fraction P0(s) of arriving jobs get routed randomly

•
ds1
dt

(t) = �[1� P0(t)] + �[1� s1(t)]P0(t)� [s1(t)� s2(t)]

•
dsi
dt

(t) = �[si�1(t)� si(t)]P0(t)� [si(t)� si+1(t)], i � 2

Delay analysis (resource constrained case)

• s⇤1 = �

• P0(s) =

2

4
CX

k=0

✓
⌫(1� �)

�

◆k
3

5
�1

• s⇤i = �(�P ⇤
0)

i�1

• E[delay] =
�P ⇤

0
1� �P ⇤

0

Delay analysis (resource constrained case)

• s⇤1 = �

• P0(s) =

2

4
CX

k=0

✓
⌫(1� �)

�

◆k
3

5
�1

• s⇤i = �(�P ⇤
0)

i�1

• E[delay] =
�P ⇤

0
1� �P ⇤

0

Delay analysis (resource constrained case)

• s⇤1 = �

• P ⇤
0 = P0(s

⇤) =

2

4
CX

k=0

✓
⌫(1� �)

�

◆k
3

5
�1

• s⇤i = �(�P ⇤
0)

i�1

• E[delay] =
�P ⇤

0
1� �P ⇤

0

Delay analysis (resource constrained case)

• s⇤1 = �

• P ⇤
0 = P0(s

⇤) =

2

4
CX

k=0

✓
⌫(1� �)

�

◆k
3

5
�1

• s⇤i = �(�P ⇤
0)

i�1

• E[delay] =
�P ⇤

0
1� �P ⇤

0

Delay analysis (resource constrained case)

• s⇤1 = �

• P ⇤
0 = P0(s

⇤) =

2

4
CX

k=0

✓
⌫(1� �)

�

◆k
3

5
�1

• s⇤i = �(�P ⇤
0)

i�1

• E[delay] =
�P ⇤

0
1� �P ⇤

0

Delay analysis (resource constrained case)

• s⇤1 = �

• P ⇤
0 = P0(s

⇤) =

2

4
CX

k=0

✓
⌫(1� �)

�

◆k
3

5
�1

• s⇤i = �(�P ⇤
0)

i�1

• E[delay] =
�P ⇤

0
1� �P ⇤

0
Heavy-tra�c analysis, � " 1

Delay analysis (resource constrained case)

• s⇤1 = �

• P ⇤
0 = P0(s

⇤) =

2

4
CX

k=0

✓
⌫(1� �)

�

◆k
3

5
�1

• s⇤i = �(�P ⇤
0)

i�1

• E[delay] =
�P ⇤

0
1� �P ⇤

0
Heavy-tra�c analysis, � " 1

• Choose ⌫ so that ⌫(1� �) = �d

– Messages per unit time: �dn

– P ⇤
0 (and therefore, delay): independent of n

• Send to shortest of d sampled queues

– Messages per unit time: �dn

• Prob(find an empty queue) = (1� �)d ! 0

• delay ! 1

Delay analysis (resource constrained case)

• s⇤1 = �

• P ⇤
0 = P0(s

⇤) =

2

4
CX

k=0

✓
⌫(1� �)

�

◆k
3

5
�1

• s⇤i = �(�P ⇤
0)

i�1

• E[delay] =
�P ⇤

0
1� �P ⇤

0
Heavy-tra�c analysis, � " 1

• Choose ⌫ so that ⌫(1� �) = �d

– Messages per unit time: �dn

– P ⇤
0 (and therefore, delay): independent of n

• Send to shortest of d sampled queues

– Messages per unit time: �dn

• Prob(find an empty queue) = (1� �)d ! 0

• delay ! 1

The resource constrained case - fluid model

P0(s) =

2

4
CX

k=0

✓
⌫(1� s1)

�

◆k
3

5
�1

Lipschitz continuous in s

• Sn(t) evolves in a slower time scale

• during [t, t+ ✏], fraction P0(s) of arriving jobs get routed randomly

•
ds1
dt

(t) = �[1� P0(t)] + �[1� s1(t)]P0(t)� [s1(t)� s2(t)]

•
dsi
dt

(t) = �[si�1(t)� si(t)]P0(t)� [si(t)� si+1(t)], i � 2

Heavy-tra�c analysis, � " 1

• Choose ⌫ so that ⌫(1� �) = �d

– Messages per unit time: �dn

– P ⇤
0 (and therefore, delay): independent of �

• Send to shortest of d sampled queues

– Messages per unit time: �dn

– Prob(find an empty queue) = (1� �)d ! 0

– delay ! 1

Delay analysis (resource constrained case)

• s⇤1 = �

• P0(s) =

2

4
CX

k=0

✓
⌫(1� �)

�

◆k
3

5
�1

• s⇤i = �(�P ⇤
0)

i�1

• E[delay] =
�P ⇤

0
1� �P ⇤

0

Delay analysis (resource constrained case)

• s⇤1 = �

• P0(s) =

2

4
CX

k=0

✓
⌫(1� �)

�

◆k
3

5
�1

• s⇤i = �(�P ⇤
0)

i�1

• E[delay] =
�P ⇤

0
1� �P ⇤

0

Delay analysis (resource constrained case)

• s⇤1 = �

• P ⇤
0 = P0(s

⇤) =

2

4
CX

k=0

✓
⌫(1� �)

�

◆k
3

5
�1

• s⇤i = �(�P ⇤
0)

i�1

• E[delay] =
�P ⇤

0
1� �P ⇤

0

Delay analysis (resource constrained case)

• s⇤1 = �

• P ⇤
0 = P0(s

⇤) =

2

4
CX

k=0

✓
⌫(1� �)

�

◆k
3

5
�1

• s⇤i = �(�P ⇤
0)

i�1

• E[delay] =
�P ⇤

0
1� �P ⇤

0

Delay analysis (resource constrained case)

• s⇤1 = �

• P ⇤
0 = P0(s

⇤) =

2

4
CX

k=0

✓
⌫(1� �)

�

◆k
3

5
�1

• s⇤i = �(�P ⇤
0)

i�1

• E[delay] =
�P ⇤

0
1� �P ⇤

0

Delay analysis (resource constrained case)

• s⇤1 = �

• P ⇤
0 = P0(s

⇤) =

2

4
CX

k=0

✓
⌫(1� �)

�

◆k
3

5
�1

• s⇤i = �(�P ⇤
0)

i�1

• E[delay] =
�P ⇤

0
1� �P ⇤

0
Heavy-tra�c analysis, � " 1

Delay analysis (resource constrained case)

• s⇤1 = �

• P ⇤
0 = P0(s

⇤) =

2

4
CX

k=0

✓
⌫(1� �)

�

◆k
3

5
�1

• s⇤i = �(�P ⇤
0)

i�1

• E[delay] =
�P ⇤

0
1� �P ⇤

0
Heavy-tra�c analysis, � " 1

• Choose ⌫ so that ⌫(1� �) = �d

– Messages per unit time: �dn

– P ⇤
0 (and therefore, delay): independent of n

• Send to shortest of d sampled queues

– Messages per unit time: �dn

• Prob(find an empty queue) = (1� �)d ! 0

• delay ! 1

Delay analysis (resource constrained case)

• s⇤1 = �

• P ⇤
0 = P0(s

⇤) =

2

4
CX

k=0

✓
⌫(1� �)

�

◆k
3

5
�1

• s⇤i = �(�P ⇤
0)

i�1

• E[delay] =
�P ⇤

0
1� �P ⇤

0
Heavy-tra�c analysis, � " 1

• Choose ⌫ so that ⌫(1� �) = �d

– Messages per unit time: �dn

– P ⇤
0 (and therefore, delay): independent of n

• Send to shortest of d sampled queues

– Messages per unit time: �dn

• Prob(find an empty queue) = (1� �)d ! 0

• delay ! 1

Heavy-tra�c analysis, � " 1

• Choose ⌫ so that ⌫(1� �) = �d

– Messages per unit time: �dn

– P ⇤
0 (and therefore, delay): independent of n

• Send to shortest of d sampled queues

– Messages per unit time: �dn

– Prob(find an empty queue) = (1� �)d ! 0

– delay ! 1

Heavy-tra�c analysis, � " 1

• Choose ⌫ so that ⌫(1� �) = �d

– Messages per unit time: �dn

– P ⇤
0 (and therefore, delay): independent of n

• Send to shortest of d sampled queues

– Messages per unit time: �dn

– Prob(find an empty queue) = (1� �)d ! 0

– delay ! 1

The resource constrained case - fluid model

P0(s) =

2

4
CX

k=0

✓
⌫(1� s1)

�

◆k
3

5
�1

Lipschitz continuous in s

• Sn(t) evolves in a slower time scale

• during [t, t+ ✏], fraction P0(s) of arriving jobs get routed randomly

•
ds1
dt

(t) = �[1� P0(t)] + �[1� s1(t)]P0(t)� [s1(t)� s2(t)]

•
dsi
dt

(t) = �[si�1(t)� si(t)]P0(t)� [si(t)� si+1(t)], i � 2

Heavy-tra�c analysis, � " 1

• Choose ⌫ so that ⌫(1� �) = �d

– Messages per unit time: �dn

– P ⇤
0 (and therefore, delay): independent of �

• Send to shortest of d sampled queues

– Messages per unit time: �dn

– Prob(find an empty queue) = (1� �)d ! 0

– delay ! 1

Delay analysis (resource constrained case)

• s⇤1 = �

• P0(s) =

2

4
CX

k=0

✓
⌫(1� �)

�

◆k
3

5
�1

• s⇤i = �(�P ⇤
0)

i�1

• E[delay] =
�P ⇤

0
1� �P ⇤

0

Delay analysis (resource constrained case)

• s⇤1 = �

• P0(s) =

2

4
CX

k=0

✓
⌫(1� �)

�

◆k
3

5
�1

• s⇤i = �(�P ⇤
0)

i�1

• E[delay] =
�P ⇤

0
1� �P ⇤

0

Delay analysis (resource constrained case)

• s⇤1 = �

• P ⇤
0 = P0(s

⇤) =

2

4
CX

k=0

✓
⌫(1� �)

�

◆k
3

5
�1

• s⇤i = �(�P ⇤
0)

i�1

• E[delay] =
�P ⇤

0
1� �P ⇤

0

Delay analysis (resource constrained case)

• s⇤1 = �

• P ⇤
0 = P0(s

⇤) =

2

4
CX

k=0

✓
⌫(1� �)

�

◆k
3

5
�1

• s⇤i = �(�P ⇤
0)

i�1

• E[delay] =
�P ⇤

0
1� �P ⇤

0

Delay analysis (resource constrained case)

• s⇤1 = �

• P ⇤
0 = P0(s

⇤) =

2

4
CX

k=0

✓
⌫(1� �)

�

◆k
3

5
�1

• s⇤i = �(�P ⇤
0)

i�1

• E[delay] =
�P ⇤

0
1� �P ⇤

0

Delay analysis (resource constrained case)

• s⇤1 = �

• P ⇤
0 = P0(s

⇤) =

2

4
CX

k=0

✓
⌫(1� �)

�

◆k
3

5
�1

• s⇤i = �(�P ⇤
0)

i�1

• E[delay] =
�P ⇤

0
1� �P ⇤

0
Heavy-tra�c analysis, � " 1

Delay analysis (resource constrained case)

• s⇤1 = �

• P ⇤
0 = P0(s

⇤) =

2

4
CX

k=0

✓
⌫(1� �)

�

◆k
3

5
�1

• s⇤i = �(�P ⇤
0)

i�1

• E[delay] =
�P ⇤

0
1� �P ⇤

0
Heavy-tra�c analysis, � " 1

• Choose ⌫ so that ⌫(1� �) = �d

– Messages per unit time: �dn

– P ⇤
0 (and therefore, delay): independent of n

• Send to shortest of d sampled queues

– Messages per unit time: �dn

• Prob(find an empty queue) = (1� �)d ! 0

• delay ! 1

Delay analysis (resource constrained case)

• s⇤1 = �

• P ⇤
0 = P0(s

⇤) =

2

4
CX

k=0

✓
⌫(1� �)

�

◆k
3

5
�1

• s⇤i = �(�P ⇤
0)

i�1

• E[delay] =
�P ⇤

0
1� �P ⇤

0
Heavy-tra�c analysis, � " 1

• Choose ⌫ so that ⌫(1� �) = �d

– Messages per unit time: �dn

– P ⇤
0 (and therefore, delay): independent of n

• Send to shortest of d sampled queues

– Messages per unit time: �dn

• Prob(find an empty queue) = (1� �)d ! 0

• delay ! 1

Heavy-tra�c analysis, � " 1

• Choose ⌫ so that ⌫(1� �) = �d

– Messages per unit time: �dn

– P ⇤
0 (and therefore, delay): independent of n

• Send to shortest of d sampled queues

– Messages per unit time: �dn

– Prob(find an empty queue) = (1� �)d ! 0

– delay ! 1

Heavy-tra�c analysis, � " 1

• Choose ⌫ so that ⌫(1� �) = �d

– Messages per unit time: �dn

– P ⇤
0 (and therefore, delay): independent of n

• Send to shortest of d sampled queues

– Messages per unit time: �dn

– Prob(find an empty queue) = (1� �)d ! 0

– delay ! 1

The resource constrained case - fluid model

P0(s) =

2

4
CX

k=0

✓
⌫(1� s1)

�

◆k
3

5
�1

Lipschitz continuous in s

• Sn(t) evolves in a slower time scale

• during [t, t+ ✏], fraction P0(s) of arriving jobs get routed randomly

•
ds1
dt

(t) = �[1� P0(t)] + �[1� s1(t)]P0(t)� [s1(t)� s2(t)]

•
dsi
dt

(t) = �[si�1(t)� si(t)]P0(t)� [si(t)� si+1(t)], i � 2

Heavy-tra�c analysis, � " 1

• Choose ⌫ so that ⌫(1� �) = �d

– Messages per unit time: �dn

– P ⇤
0 (and therefore, delay): independent of �

• Send to shortest of d sampled queues

– Messages per unit time: �dn

– Prob(find an empty queue) = (1� �)d ! 0

– delay ! 1

Heavy-tra�c analysis, � " 1

• Choose ⌫ so that ⌫(1� �) = �d

– Messages per unit time: �dn

– P ⇤
0 (and therefore, delay): independent of �

• Send to shortest of d sampled queues

– Messages per unit time: �dn

– Prob(find an empty queue) = 1� �d ! 0

– delay ! 1

Delay analysis (resource constrained case)

• s⇤1 = �

• P0(s) =

2

4
CX

k=0

✓
⌫(1� �)

�

◆k
3

5
�1

• s⇤i = �(�P ⇤
0)

i�1

• E[delay] =
�P ⇤

0
1� �P ⇤

0

Delay analysis (resource constrained case)

• s⇤1 = �

• P0(s) =

2

4
CX

k=0

✓
⌫(1� �)

�

◆k
3

5
�1

• s⇤i = �(�P ⇤
0)

i�1

• E[delay] =
�P ⇤

0
1� �P ⇤

0

Delay analysis (resource constrained case)

• s⇤1 = �

• P ⇤
0 = P0(s

⇤) =

2

4
CX

k=0

✓
⌫(1� �)

�

◆k
3

5
�1

• s⇤i = �(�P ⇤
0)

i�1

• E[delay] =
�P ⇤

0
1� �P ⇤

0

Delay analysis (resource constrained case)

• s⇤1 = �

• P ⇤
0 = P0(s

⇤) =

2

4
CX

k=0

✓
⌫(1� �)

�

◆k
3

5
�1

• s⇤i = �(�P ⇤
0)

i�1

• E[delay] =
�P ⇤

0
1� �P ⇤

0

Delay analysis (resource constrained case)

• s⇤1 = �

• P ⇤
0 = P0(s

⇤) =

2

4
CX

k=0

✓
⌫(1� �)

�

◆k
3

5
�1

• s⇤i = �(�P ⇤
0)

i�1

• E[delay] =
�P ⇤

0
1� �P ⇤

0

Delay analysis (resource constrained case)

• s⇤1 = �

• P ⇤
0 = P0(s

⇤) =

2

4
CX

k=0

✓
⌫(1� �)

�

◆k
3

5
�1

• s⇤i = �(�P ⇤
0)

i�1

• E[delay] =
�P ⇤

0
1� �P ⇤

0
Heavy-tra�c analysis, � " 1

Delay analysis (resource constrained case)

• s⇤1 = �

• P ⇤
0 = P0(s

⇤) =

2

4
CX

k=0

✓
⌫(1� �)

�

◆k
3

5
�1

• s⇤i = �(�P ⇤
0)

i�1

• E[delay] =
�P ⇤

0
1� �P ⇤

0
Heavy-tra�c analysis, � " 1

• Choose ⌫ so that ⌫(1� �) = �d

– Messages per unit time: �dn

– P ⇤
0 (and therefore, delay): independent of n

• Send to shortest of d sampled queues

– Messages per unit time: �dn

• Prob(find an empty queue) = (1� �)d ! 0

• delay ! 1

Delay analysis (resource constrained case)

• s⇤1 = �

• P ⇤
0 = P0(s

⇤) =

2

4
CX

k=0

✓
⌫(1� �)

�

◆k
3

5
�1

• s⇤i = �(�P ⇤
0)

i�1

• E[delay] =
�P ⇤

0
1� �P ⇤

0
Heavy-tra�c analysis, � " 1

• Choose ⌫ so that ⌫(1� �) = �d

– Messages per unit time: �dn

– P ⇤
0 (and therefore, delay): independent of n

• Send to shortest of d sampled queues

– Messages per unit time: �dn

• Prob(find an empty queue) = (1� �)d ! 0

• delay ! 1

Heavy-tra�c analysis, � " 1

• Choose ⌫ so that ⌫(1� �) = �d

– Messages per unit time: �dn

– P ⇤
0 (and therefore, delay): independent of n

• Send to shortest of d sampled queues

– Messages per unit time: �dn

– Prob(find an empty queue) = (1� �)d ! 0

– delay ! 1

Heavy-tra�c analysis, � " 1

• Choose ⌫ so that ⌫(1� �) = �d

– Messages per unit time: �dn

– P ⇤
0 (and therefore, delay): independent of n

• Send to shortest of d sampled queues

– Messages per unit time: �dn

– Prob(find an empty queue) = (1� �)d ! 0

– delay ! 1

Heavy-tra�c analysis, � " 1

• Choose ⌫ so that ⌫(1� �) = �d

– Messages per unit time: �dn

– P ⇤
0 (and therefore, delay): independent of n

• Send to shortest of d sampled queues

– Messages per unit time: �dn

– Prob(find an empty queue) = (1� �)d ! 0

– delay ! 1

21

Fig 4. Average queueing delay of the power-of-2-choices (red circles) vs. our policy (blue
squares).

(iii) the dispatcher has just dispatched a job.

In order to simplify notation, we define the set of memory states M ,
�

1, . . . , 2CN

and the set of possible states at each queue (the vector of the

remaining workloads of jobs) Q , RZ+
+

. We define next a broad class of

memory-based dispatching policies.

Definition 3.3 (Memory-based dispatching policy). For a fixed N , a

memory-based dispatching policy ⌘N has five components:

1. (Process of messages from servers) For each server n 2 N we have a

bounded rate function µN

n

: Q ! R
+

which defines a set of modulated

The resource constrained case - fluid model

P0(s) =

2

4
CX

k=0

✓
⌫(1� s1)

�

◆k
3

5
�1

Lipschitz continuous in s

• Sn(t) evolves in a slower time scale

• during [t, t+ ✏], fraction P0(s) of arriving jobs get routed randomly

•
ds1
dt

(t) = �[1� P0(t)] + �[1� s1(t)]P0(t)� [s1(t)� s2(t)]

•
dsi
dt

(t) = �[si�1(t)� si(t)]P0(t)� [si(t)� si+1(t)], i � 2

Heavy-tra�c analysis, � " 1

• Choose ⌫ so that ⌫(1� �) = �d

– Messages per unit time: �dn

– P ⇤
0 (and therefore, delay): independent of �

• Send to shortest of d sampled queues

– Messages per unit time: �dn

– Prob(find an empty queue) = (1� �)d ! 0

– delay ! 1

Heavy-tra�c analysis, � " 1

• Choose ⌫ so that ⌫(1� �) = �d

– Messages per unit time: �dn

– P ⇤
0 (and therefore, delay): independent of �

• Send to shortest of d sampled queues

– Messages per unit time: �dn

– Prob(find an empty queue) = 1� �d ! 0

– delay ! 1

Negative result

• Thm: Under symmetric policies:✓
Memory size  C logn bits, message rate  ↵n

◆
) delay � f(C,↵) > 0

• Symmetric policies: “If some memory state m leads to certain events,
and � is a permutation, there exists a memory state m0 that leads to a
permutation of these events.”

– Under m, I query queues 1,3,4
) 9m0, under which I query 2,4,6

⇡(m) m m0 queries q q0 q00 1 2 3 4 5 6 7 ⇡

few memory states) few di↵erent ⇡(m)

Negative result

• Thm: Under symmetric policies:✓
Memory size  C logn bits, message rate  ↵n

◆
) delay � f(C,↵) > 0

• Symmetric policies: “If some memory state m leads to certain events,
and � is a permutation, there exists a memory state m0 that leads to a
permutation of these events.”

– Under m, I query queues 1,3,4
) 9m0, under which I query 2,4,6

⇡(m) m m0 queries q q0 q00 1 2 3 4 5 6 7 ⇡

few memory states) few di↵erent ⇡(m)

Negative result

• Thm: Under symmetric policies:✓
Memory size  C logn bits, message rate  ↵n

◆
) delay � f(C,↵) > 0

• Symmetric policies: “If some memory state m leads to certain events,
and � is a permutation, there exists a memory state m0 that leads to a
permutation of these events.”

– Under m, I query queues 1,3,4
) 9m0, under which I query 2,4,6

⇡(m) m m0 queries q q0 q00 1 2 3 4 5 6 7 ⇡

few memory states) few di↵erent ⇡(m)

Negative result

• Thm: Under symmetric policies:✓
Memory size  C logn bits, message rate  ↵n

◆
) delay � f(C,↵) > 0

• Symmetric policies: “If some memory state m leads to certain events,
and � is a permutation, there exists a memory state m0 that leads to a
permutation of these events.”

– Under m, I query queues 1,3,4
) 9m0, under which I query 2,4,6

⇡(m) m m0 queries q q0 q00 1 2 3 4 5 6 7 ⇡

few memory states) few di↵erent ⇡(m)

Negative result

• Thm: Under symmetric policies:✓
Memory size  C logn bits, message rate  ↵n

◆
) delay � f(C,↵) > 0

• Symmetric policies: “If some memory state m leads to certain events,
any given permutation of these events occurs
under some other memory state m0 ”

– Under m, I query queues 1,3,4
) 9m0, under which I query 2,4,6

⇡(m) m m0 queries q q0 q00 1 2 3 4 5 6 7 ⇡

few memory states) few di↵erent ⇡(m)

Negative result

• Thm: Under symmetric policies:✓
Memory size  C logn bits, message rate  ↵n

◆
) delay � f(C,↵) > 0

• Symmetric policies: “If some memory state m leads to certain events,
and � is a permutation, there exists a memory state m0 that leads to a
permutation of these events.”

– Under m, I query queues 1,3,4
) 9m0, under which I query 2,4,6

⇡(m) m m0 queries q q0 q00 1 2 3 4 5 6 7 ⇡

few memory states) few di↵erent ⇡(m)

Negative result

• Thm: Under symmetric policies:✓
Memory size  C logn bits, message rate  ↵n

◆
) delay � f(C,↵) > 0

• Symmetric policies: “If some memory state m leads to certain events,
and � is a permutation, there exists a memory state m0 that leads to a
permutation of these events.”

– Under m, I query queues 1,3,4
) 9m0, under which I query 2,4,6

⇡(m) m m0 queries q q0 q00 1 2 3 4 5 6 7 ⇡

few memory states) few di↵erent ⇡(m)

Negative result

• Thm: Under symmetric policies:✓
Memory size  C logn bits, message rate  ↵n

◆
) delay � f(C,↵) > 0

• Symmetric policies: “If some memory state m leads to certain events,
any given permutation of these events occurs
under some other memory state m0 ”

– Under m, I query queues 1,3,4
) 9m0, under which I query 2,4,6

⇡(m) m m0 queries q q0 q00 1 2 3 4 5 6 7 ⇡

few memory states) few di↵erent ⇡(m)

Negative result

• Thm: Under symmetric policies:✓
Memory size  C logn bits, message rate  ↵n

◆
) delay � f(C,↵) > 0

• Symmetric policies: “If some memory state m leads to certain events,
any given permutation of these events occurs
under some other memory state m0 ”

– Example: Under m, I query queues 1,3,4
) 9m0, under which I query 2,4,6

⇡(m) m m0 queries q q0 q00 1 2 3 4 5 6 7 ⇡

few memory states) few di↵erent ⇡(m)

Negative result

• Thm: Under symmetric policies:✓
Memory size  C logn bits, message rate  ↵n

◆
) delay � f(C,↵) > 0

• Symmetric policies: “If some memory state m leads to certain events,
and � is a permutation, there exists a memory state m0 that leads to a
permutation of these events.”

– Under m, I query queues 1,3,4
) 9m0, under which I query 2,4,6

⇡(m) m m0 queries q q0 q00 1 2 3 4 5 6 7 ⇡

few memory states) few di↵erent ⇡(m)

Negative result

• Thm: Under symmetric policies:✓
Memory size  C logn bits, message rate  ↵n

◆
) delay � f(C,↵) > 0

• Symmetric policies: “If some memory state m leads to certain events,
and � is a permutation, there exists a memory state m0 that leads to a
permutation of these events.”

– Under m, I query queues 1,3,4
) 9m0, under which I query 2,4,6

⇡(m) m m0 queries q q0 q00 1 2 3 4 5 6 7 ⇡

few memory states) few di↵erent ⇡(m)

Negative result

• Thm: Under symmetric policies:✓
Memory size  C logn bits, message rate  ↵n

◆
) delay � f(C,↵) > 0

• Symmetric policies: “If some memory state m leads to certain events,
any given permutation of these events occurs
under some other memory state m0 ”

– Under m, I query queues 1,3,4
) 9m0, under which I query 2,4,6

⇡(m) m m0 queries q q0 q00 1 2 3 4 5 6 7 ⇡

few memory states) few di↵erent ⇡(m)

Negative result

• Thm: Under symmetric policies:✓
Memory size  C logn bits, message rate  ↵n

◆
) delay � f(C,↵) > 0

• Symmetric policies: “If some memory state m leads to certain events,
any given permutation of these events occurs
under some other memory state m0 ”

– Example: Under m, I query queues 1,3,4
) 9m0, under which I query 2,4,6

⇡(m) m m0 queries q q0 q00 1 2 3 4 5 6 7 ⇡

few memory states) few di↵erent ⇡(m)

Negative result

• Thm: Under symmetric policies:✓
Memory size  C logn bits, message rate  ↵n

◆
) delay � f(C,↵) > 0

• Symmetric policies: “If some memory state m leads to certain events,
any given permutation of these events occurs
under some other memory state m0 ”

– Example: Under m, I query queues 1,3,4
) 9m0, under which I query 2,4,6

• Some possible actions:

– Under m, I query 1, . . . , C

– can also query other queues with equal probabilities

• Impossible:

– Under m, I query 1, . . . , C +1

• Loosely speaking: only C nodes can be treated in a “special” manner

• If we get C + 1 arrivals in a row, and no messages from idle servers, at
least one job will be sent to a “random” server

⇡(m) m m0 queries q q0 q00 1 2 3 4 5 6 7 ⇡

few memory states) few di↵erent ⇡(m)

Negative result

• Thm: Under symmetric policies:✓
Memory size  C logn bits, message rate  ↵n

◆
) delay � f(C,↵) > 0

• Symmetric policies: “If some memory state m leads to certain events,
and � is a permutation, there exists a memory state m0 that leads to a
permutation of these events.”

– Under m, I query queues 1,3,4
) 9m0, under which I query 2,4,6

⇡(m) m m0 queries q q0 q00 1 2 3 4 5 6 7 ⇡

few memory states) few di↵erent ⇡(m)

Negative result

• Thm: Under symmetric policies:✓
Memory size  C logn bits, message rate  ↵n

◆
) delay � f(C,↵) > 0

• Symmetric policies: “If some memory state m leads to certain events,
and � is a permutation, there exists a memory state m0 that leads to a
permutation of these events.”

– Under m, I query queues 1,3,4
) 9m0, under which I query 2,4,6

⇡(m) m m0 queries q q0 q00 1 2 3 4 5 6 7 ⇡

few memory states) few di↵erent ⇡(m)

Negative result

• Thm: Under symmetric policies:✓
Memory size  C logn bits, message rate  ↵n

◆
) delay � f(C,↵) > 0

• Symmetric policies: “If some memory state m leads to certain events,
any given permutation of these events occurs
under some other memory state m0 ”

– Under m, I query queues 1,3,4
) 9m0, under which I query 2,4,6

⇡(m) m m0 queries q q0 q00 1 2 3 4 5 6 7 ⇡

few memory states) few di↵erent ⇡(m)

Negative result

• Thm: Under symmetric policies:✓
Memory size  C logn bits, message rate  ↵n

◆
) delay � f(C,↵) > 0

• Symmetric policies: “If some memory state m leads to certain events,
any given permutation of these events occurs
under some other memory state m0 ”

– Example: Under m, I query queues 1,3,4
) 9m0, under which I query 2,4,6

⇡(m) m m0 queries q q0 q00 1 2 3 4 5 6 7 ⇡

few memory states) few di↵erent ⇡(m)

Negative result

• Thm: Under symmetric policies:✓
Memory size  C logn bits, message rate  ↵n

◆
) delay � f(C,↵) > 0

• Symmetric policies: “If some memory state m leads to certain events,
any given permutation of these events occurs
under some other memory state m0 ”

– Example: Under m, I query queues 1,3,4
) 9m0, under which I query 2,4,6

• Some possible actions:

– Under m, I query 1, . . . , C

– can also query other queues with equal probabilities

• Impossible:

– Under m, I query 1, . . . , C +1

• Loosely speaking: only C nodes can be treated in a “special” manner

• If we get C + 1 arrivals in a row, and no messages from idle servers, at
least one job will be sent to a “random” server

⇡(m) m m0 queries q q0 q00 1 2 3 4 5 6 7 ⇡

few memory states) few di↵erent ⇡(m)

Negative result

• Thm: Under symmetric policies:✓
Memory size  C logn bits, message rate  ↵n

◆
) delay � f(C,↵) > 0

• Symmetric policies: “If some memory state m leads to certain events,
any given permutation of these events occurs
under some other memory state m0 ”

– Example: Under m, I query queues 1,3,4
) 9m0, under which I query 2,4,6

• Some possible actions:

– Under m, I query 1, . . . , C

– can also query other queues with equal probabilities

• Impossible:

– Under m, I query 1, . . . , C +1

• Loosely speaking: only C nodes can be treated in a “special” manner

• If we get C + 1 arrivals in a row, and no messages from idle servers, at
least one job will be sent to a “random” server

⇡(m) m m0 queries q q0 q00 1 2 3 4 5 6 7 ⇡

few memory states) few di↵erent ⇡(m)

Negative result

• Thm: Under symmetric policies:✓
Memory size  C logn bits, message rate  ↵n

◆
) delay � f(C,↵) > 0

• Symmetric policies: “If some memory state m leads to certain events,
and � is a permutation, there exists a memory state m0 that leads to a
permutation of these events.”

– Under m, I query queues 1,3,4
) 9m0, under which I query 2,4,6

⇡(m) m m0 queries q q0 q00 1 2 3 4 5 6 7 ⇡

few memory states) few di↵erent ⇡(m)

Negative result

• Thm: Under symmetric policies:✓
Memory size  C logn bits, message rate  ↵n

◆
) delay � f(C,↵) > 0

• Symmetric policies: “If some memory state m leads to certain events,
and � is a permutation, there exists a memory state m0 that leads to a
permutation of these events.”

– Under m, I query queues 1,3,4
) 9m0, under which I query 2,4,6

⇡(m) m m0 queries q q0 q00 1 2 3 4 5 6 7 ⇡

few memory states) few di↵erent ⇡(m)

Negative result

• Thm: Under symmetric policies:✓
Memory size  C logn bits, message rate  ↵n

◆
) delay � f(C,↵) > 0

• Symmetric policies: “If some memory state m leads to certain events,
any given permutation of these events occurs
under some other memory state m0 ”

– Under m, I query queues 1,3,4
) 9m0, under which I query 2,4,6

⇡(m) m m0 queries q q0 q00 1 2 3 4 5 6 7 ⇡

few memory states) few di↵erent ⇡(m)

Negative result

• Thm: Under symmetric policies:✓
Memory size  C logn bits, message rate  ↵n

◆
) delay � f(C,↵) > 0

• Symmetric policies: “If some memory state m leads to certain events,
any given permutation of these events occurs
under some other memory state m0 ”

– Example: Under m, I query queues 1,3,4
) 9m0, under which I query 2,4,6

⇡(m) m m0 queries q q0 q00 1 2 3 4 5 6 7 ⇡

few memory states) few di↵erent ⇡(m)

Negative result

• Thm: Under symmetric policies:✓
Memory size  C logn bits, message rate  ↵n

◆
) delay � f(C,↵) > 0

• Symmetric policies: “If some memory state m leads to certain events,
any given permutation of these events occurs
under some other memory state m0 ”

– Example: Under m, I query queues 1,3,4
) 9m0, under which I query 2,4,6

• Some possible actions:

– Under m, I query 1, . . . , C

– can also query other queues with equal probabilities

• Impossible:

– Under m, I query 1, . . . , C +1

• Loosely speaking: only C nodes can be treated in a “special” manner

• If we get C + 1 arrivals in a row, and no messages from idle servers, at
least one job will be sent to a “random” server

⇡(m) m m0 queries q q0 q00 1 2 3 4 5 6 7 ⇡

few memory states) few di↵erent ⇡(m)

Negative result

• Thm: Under symmetric policies:✓
Memory size  C logn bits, message rate  ↵n

◆
) delay � f(C,↵) > 0

• Symmetric policies: “If some memory state m leads to certain events,
any given permutation of these events occurs
under some other memory state m0 ”

– Example: Under m, I query queues 1,3,4
) 9m0, under which I query 2,4,6

• Some possible actions:

– Under m, I query 1, . . . , C

– can also query other queues with equal probabilities

• Impossible:

– Under m, I query 1, . . . , C +1

• Loosely speaking: only C nodes can be treated in a “special” manner

• If we get C + 1 arrivals in a row, and no messages from idle servers, at
least one job will be sent to a “random” server

⇡(m) m m0 queries q q0 q00 1 2 3 4 5 6 7 ⇡

few memory states) few di↵erent ⇡(m)

Negative result

• Thm: Under symmetric policies:✓
Memory size  C logn bits, message rate  ↵n

◆
) delay � f(C,↵) > 0

• Symmetric policies: “If some memory state m leads to certain events,
any given permutation of these events occurs
under some other memory state m0 ”

– Example: Under m, I query queues 1,3,4
) 9m0, under which I query 2,4,6

• Some possible actions:

– Under m, I query 1, . . . , C

– can also query other queues with equal probabilities

• Impossible: Under m, I query 1, . . . , C +1

• Loosely speaking: only C nodes can be treated in a “special” manner

• If we get C + 1 arrivals in a row, and no messages from idle servers, at
least one job will be sent to a “random” server

⇡(m) m m0 queries q q0 q00 1 2 3 4 5 6 7 ⇡

few memory states) few di↵erent ⇡(m)

Negative result

• Thm: Under symmetric policies:✓
Memory size  C logn bits, message rate  ↵n

◆
) delay � f(C,↵) > 0

• Symmetric policies: “If some memory state m leads to certain events,
and � is a permutation, there exists a memory state m0 that leads to a
permutation of these events.”

– Under m, I query queues 1,3,4
) 9m0, under which I query 2,4,6

⇡(m) m m0 queries q q0 q00 1 2 3 4 5 6 7 ⇡

few memory states) few di↵erent ⇡(m)

Negative result

• Thm: Under symmetric policies:✓
Memory size  C logn bits, message rate  ↵n

◆
) delay � f(C,↵) > 0

• Symmetric policies: “If some memory state m leads to certain events,
and � is a permutation, there exists a memory state m0 that leads to a
permutation of these events.”

– Under m, I query queues 1,3,4
) 9m0, under which I query 2,4,6

⇡(m) m m0 queries q q0 q00 1 2 3 4 5 6 7 ⇡

few memory states) few di↵erent ⇡(m)

Negative result

• Thm: Under symmetric policies:✓
Memory size  C logn bits, message rate  ↵n

◆
) delay � f(C,↵) > 0

• Symmetric policies: “If some memory state m leads to certain events,
any given permutation of these events occurs
under some other memory state m0 ”

– Under m, I query queues 1,3,4
) 9m0, under which I query 2,4,6

⇡(m) m m0 queries q q0 q00 1 2 3 4 5 6 7 ⇡

few memory states) few di↵erent ⇡(m)

Negative result

• Thm: Under symmetric policies:✓
Memory size  C logn bits, message rate  ↵n

◆
) delay � f(C,↵) > 0

• Symmetric policies: “If some memory state m leads to certain events,
any given permutation of these events occurs
under some other memory state m0 ”

– Example: Under m, I query queues 1,3,4
) 9m0, under which I query 2,4,6

⇡(m) m m0 queries q q0 q00 1 2 3 4 5 6 7 ⇡

few memory states) few di↵erent ⇡(m)

Negative result

• Thm: Under symmetric policies:✓
Memory size  C logn bits, message rate  ↵n

◆
) delay � f(C,↵) > 0

• Symmetric policies: “If some memory state m leads to certain events,
any given permutation of these events occurs
under some other memory state m0 ”

– Example: Under m, I query queues 1,3,4
) 9m0, under which I query 2,4,6

• Some possible actions:

– Under m, I query 1, . . . , C

– can also query other queues with equal probabilities

• Impossible:

– Under m, I query 1, . . . , C +1

• Loosely speaking: only C nodes can be treated in a “special” manner

• If we get C + 1 arrivals in a row, and no messages from idle servers, at
least one job will be sent to a “random” server

⇡(m) m m0 queries q q0 q00 1 2 3 4 5 6 7 ⇡

few memory states) few di↵erent ⇡(m)

Negative result

• Thm: Under symmetric policies:✓
Memory size  C logn bits, message rate  ↵n

◆
) delay � f(C,↵) > 0

• Symmetric policies: “If some memory state m leads to certain events,
any given permutation of these events occurs
under some other memory state m0 ”

– Example: Under m, I query queues 1,3,4
) 9m0, under which I query 2,4,6

• Some possible actions:

– Under m, I query 1, . . . , C

– can also query other queues with equal probabilities

• Impossible:

– Under m, I query 1, . . . , C +1

• Loosely speaking: only C nodes can be treated in a “special” manner

• If we get C + 1 arrivals in a row, and no messages from idle servers, at
least one job will be sent to a “random” server

⇡(m) m m0 queries q q0 q00 1 2 3 4 5 6 7 ⇡

few memory states) few di↵erent ⇡(m)

Negative result

• Thm: Under symmetric policies:✓
Memory size  C logn bits, message rate  ↵n

◆
) delay � f(C,↵) > 0

• Symmetric policies: “If some memory state m leads to certain events,
any given permutation of these events occurs
under some other memory state m0 ”

– Example: Under m, I query queues 1,3,4
) 9m0, under which I query 2,4,6

• Some possible actions:

– Under m, I query 1, . . . , C

– can also query other queues with equal probabilities

• Impossible: Under m, I query 1, . . . , C +1

• Loosely speaking: only C nodes can be treated in a “special” manner

• If we get C + 1 arrivals in a row, and no messages from idle servers, at
least one job will be sent to a “random” server

⇡(m) m m0 queries q q0 q00 1 2 3 4 5 6 7 ⇡

few memory states) few di↵erent ⇡(m)

Negative result

• Thm: Under symmetric policies:✓
Memory size  C logn bits, message rate  ↵n

◆
) delay � f(C,↵) > 0

• Symmetric policies: “If some memory state m leads to certain events,
any given permutation of these events occurs
under some other memory state m0 ”

– Example: Under m, I query queues 1,3,4
) 9m0, under which I query 2,4,6

• Some possible actions:

– Under m, I query 1, . . . , C

– can also query other queues with equal probabilities

• Impossible: Under m, I query 1, . . . , C +1

• Loosely speaking: only C nodes can be treated in a “special” manner

• If we get C + 1 arrivals in a row, and no messages from idle servers, at
least one job will be sent to a “random” server

⇡(m) m m0 queries q q0 q00 1 2 3 4 5 6 7 ⇡

few memory states) few di↵erent ⇡(m)

Negative result

• Thm: Under symmetric policies:✓
Memory size  C logn bits, message rate  ↵n

◆
) delay � f(C,↵) > 0

• Symmetric policies: “If some memory state m leads to certain events,
and � is a permutation, there exists a memory state m0 that leads to a
permutation of these events.”

– Under m, I query queues 1,3,4
) 9m0, under which I query 2,4,6

⇡(m) m m0 queries q q0 q00 1 2 3 4 5 6 7 ⇡

few memory states) few di↵erent ⇡(m)

Negative result

• Thm: Under symmetric policies:✓
Memory size  C logn bits, message rate  ↵n

◆
) delay � f(C,↵) > 0

• Symmetric policies: “If some memory state m leads to certain events,
and � is a permutation, there exists a memory state m0 that leads to a
permutation of these events.”

– Under m, I query queues 1,3,4
) 9m0, under which I query 2,4,6

⇡(m) m m0 queries q q0 q00 1 2 3 4 5 6 7 ⇡

few memory states) few di↵erent ⇡(m)

Negative result

• Thm: Under symmetric policies:✓
Memory size  C logn bits, message rate  ↵n

◆
) delay � f(C,↵) > 0

• Symmetric policies: “If some memory state m leads to certain events,
any given permutation of these events occurs
under some other memory state m0 ”

– Under m, I query queues 1,3,4
) 9m0, under which I query 2,4,6

⇡(m) m m0 queries q q0 q00 1 2 3 4 5 6 7 ⇡

few memory states) few di↵erent ⇡(m)

Negative result

• Thm: Under symmetric policies:✓
Memory size  C logn bits, message rate  ↵n

◆
) delay � f(C,↵) > 0

• Symmetric policies: “If some memory state m leads to certain events,
any given permutation of these events occurs
under some other memory state m0 ”

– Example: Under m, I query queues 1,3,4
) 9m0, under which I query 2,4,6

⇡(m) m m0 queries q q0 q00 1 2 3 4 5 6 7 ⇡

few memory states) few di↵erent ⇡(m)

Negative result

• Thm: Under symmetric policies:✓
Memory size  C logn bits, message rate  ↵n

◆
) delay � f(C,↵) > 0

• Symmetric policies: “If some memory state m leads to certain events,
any given permutation of these events occurs
under some other memory state m0 ”

– Example: Under m, I query queues 1,3,4
) 9m0, under which I query 2,4,6

• Some possible actions:

– Under m, I query 1, . . . , C

– can also query other queues with equal probabilities

• Impossible:

– Under m, I query 1, . . . , C +1

• Loosely speaking: only C nodes can be treated in a “special” manner

• If we get C + 1 arrivals in a row, and no messages from idle servers, at
least one job will be sent to a “random” server

⇡(m) m m0 queries q q0 q00 1 2 3 4 5 6 7 ⇡

few memory states) few di↵erent ⇡(m)

Negative result

• Thm: Under symmetric policies:✓
Memory size  C logn bits, message rate  ↵n

◆
) delay � f(C,↵) > 0

• Symmetric policies: “If some memory state m leads to certain events,
any given permutation of these events occurs
under some other memory state m0 ”

– Example: Under m, I query queues 1,3,4
) 9m0, under which I query 2,4,6

• Some possible actions:

– Under m, I query 1, . . . , C

– can also query other queues with equal probabilities

• Impossible:

– Under m, I query 1, . . . , C +1

• Loosely speaking: only C nodes can be treated in a “special” manner

• If we get C + 1 arrivals in a row, and no messages from idle servers, at
least one job will be sent to a “random” server

⇡(m) m m0 queries q q0 q00 1 2 3 4 5 6 7 ⇡

few memory states) few di↵erent ⇡(m)

Negative result

• Thm: Under symmetric policies:✓
Memory size  C logn bits, message rate  ↵n

◆
) delay � f(C,↵) > 0

• Symmetric policies: “If some memory state m leads to certain events,
any given permutation of these events occurs
under some other memory state m0 ”

– Example: Under m, I query queues 1,3,4
) 9m0, under which I query 2,4,6

• Some possible actions:

– Under m, I query 1, . . . , C

– can also query other queues with equal probabilities

• Impossible: Under m, I query 1, . . . , C +1

• Loosely speaking: only C nodes can be treated in a “special” manner

• If we get C + 1 arrivals in a row, and no messages from idle servers, at
least one job will be sent to a “random” server

⇡(m) m m0 queries q q0 q00 1 2 3 4 5 6 7 ⇡

few memory states) few di↵erent ⇡(m)

Negative result

• Thm: Under symmetric policies:✓
Memory size  C logn bits, message rate  ↵n

◆
) delay � f(C,↵) > 0

• Symmetric policies: “If some memory state m leads to certain events,
any given permutation of these events occurs
under some other memory state m0 ”

– Example: Under m, I query queues 1,3,4
) 9m0, under which I query 2,4,6

• Some possible actions:

– Under m, I query 1, . . . , C

– can also query other queues with equal probabilities

• Impossible: Under m, I query 1, . . . , C +1

• Loosely speaking: only C nodes can be treated in a “special” manner

• If we get C + 1 arrivals in a row, and no messages from idle servers, at
least one job will be sent to a “random” server

⇡(m) m m0 queries q q0 q00 1 2 3 4 5 6 7 ⇡

few memory states) few di↵erent ⇡(m)

Negative result

• Thm: Under symmetric policies:✓
Memory size  C logn bits, message rate  ↵n

◆
) delay � f(C,↵) > 0

• Symmetric policies: “If some memory state m leads to certain events,
any given permutation of these events occurs
under some other memory state m0 ”

– Example: Under m, I query queues 1,3,4
) 9m0, under which I query 2,4,6

• Some possible actions:

– Under m, I query 1, . . . , C

– can also query other queues with equal probabilities

• Impossible: Under m, I query 1, . . . , C +1

• Loosely speaking: only C nodes can be treated in a “special” manner

• If we get C +1 arrivals in a row, and no messages from idle servers,
at least one job will be sent to a “random” server

⇡(m) m m0 queries q q0 q00 1 2 3 4 5 6 7 ⇡

few memory states) few di↵erent ⇡(m)

Extensions, variations

• Allow queue at the dispatcher, queue capacity ! 1

– can get vanishing delay

– but this is like the large memory case

– Allow finite capacity queue at the dispatcher

– same negative result [high probability conjecture]

• Messages are instantaneous, but allow arbitrary rounds of back-and-forth
messages in zero time

• Conjecture: the impossibility result holds for arbitrary (non-symmetric)
policies

Extensions, variations

• Allow queue at the dispatcher, queue capacity ! 1

– can get vanishing delay

– but this is like the large memory case

– Allow finite capacity queue at the dispatcher

– same negative result [high probability conjecture]

• Messages are instantaneous, but allow arbitrary rounds of back-and-forth
messages in zero time

• Conjecture: the impossibility result holds for arbitrary (non-symmetric)
policies

Extensions, variations

• Allow queue at the dispatcher, queue capacity ! 1

– can get vanishing delay with constant message rate and zero memory
(essentially M/M/n queue)

– but this is like the large memory case

– Allow finite capacity queue at the dispatcher

– same negative result [high probability conjecture]

• Messages are instantaneous, but allow arbitrary rounds of back-and-forth
messages in zero time

• Conjecture: the impossibility result holds for arbitrary (non-symmetric)
policies

Extensions, variations

• Allow queue at the dispatcher, queue capacity ! 1

– can get vanishing delay

– but this is like the large memory case

– Allow finite capacity queue at the dispatcher

– same negative result [high probability conjecture]

• Messages are instantaneous, but allow arbitrary rounds of back-and-forth
messages in zero time

• Conjecture: the impossibility result holds for arbitrary (non-symmetric)
policies

Extensions, variations

• Allow queue at the dispatcher, queue capacity ! 1

– can get vanishing delay with constant message rate and zero memory
(essentially M/M/n queue)

– but this is like the large memory case

– Allow finite capacity queue at the dispatcher

– same negative result [high probability conjecture]

• Messages are instantaneous, but allow arbitrary rounds of back-and-forth
messages in zero time

• Conjecture: the impossibility result holds for arbitrary (non-symmetric)
policies

Extensions, variations

• Allow queue at the dispatcher, queue capacity ! 1

– can get vanishing delay with constant message rate and zero memory
(essentially M/M/n queue)

– but this is like the large memory case

– Allow finite capacity queue at the dispatcher

– same negative result [high probability conjecture]

• Messages are instantaneous, but allow arbitrary rounds of back-and-forth
messages in zero time

• Conjecture: the impossibility result holds for arbitrary (non-symmetric)
policies

Extensions, variations

• Allow queue at the dispatcher, queue capacity ! 1

– can get vanishing delay with constant message rate and zero memory
(essentially M/M/n queue)

– but this is like the large memory case

– Allow finite capacity queue at the dispatcher

– same negative result [high probability conjecture]

• Messages are instantaneous, but allow arbitrary rounds of back-and-forth
messages in zero time

• Conjecture: the impossibility result holds for arbitrary (non-symmetric)
policies

Extensions, variations

• Allow queue at the dispatcher, queue capacity ! 1

– can get vanishing delay

– but this is like the large memory case

– Allow finite capacity queue at the dispatcher

– same negative result [high probability conjecture]

• Messages are instantaneous, but allow arbitrary rounds of back-and-forth
messages in zero time

• Conjecture: the impossibility result holds for arbitrary (non-symmetric)
policies

Extensions, variations

• Allow queue at the dispatcher, queue capacity ! 1

– can get vanishing delay with constant message rate and zero memory
(essentially M/M/n queue)

– but this is like the large memory case

– Allow finite capacity queue at the dispatcher

– same negative result [high probability conjecture]

• Messages are instantaneous, but allow arbitrary rounds of back-and-forth
messages in zero time

• Conjecture: the impossibility result holds for arbitrary (non-symmetric)
policies

Extensions, variations

• Allow queue at the dispatcher, queue capacity ! 1

– can get vanishing delay with constant message rate and zero memory
(essentially M/M/n queue)

– but this is like the large memory case

– Allow finite capacity queue at the dispatcher

– same negative result [high probability conjecture]

• Messages are instantaneous, but allow arbitrary rounds of back-and-forth
messages in zero time

• Conjecture: the impossibility result holds for arbitrary (non-symmetric)
policies

Extensions, variations

• Allow queue at the dispatcher, queue capacity ! 1

– can get vanishing delay with constant message rate and zero memory
(essentially M/M/n queue)

– but this is like the large memory case

– Allow finite capacity queue at the dispatcher

– same negative result [high probability conjecture]

• Messages are instantaneous, but allow arbitrary rounds of back-and-forth
messages in zero time

• Conjecture: the impossibility result holds for arbitrary (non-symmetric)
policies

Extensions, variations

• Allow queue at the dispatcher, queue capacity ! 1

– can get vanishing delay with constant message rate and zero memory
(essentially M/M/n queue)

– but this is like the large memory case

• Allow finite capacity queue at the dispatcher

– same negative result
(high probability conjecture)

• Messages are instantaneous, but we do not allow
arbitrary number of back-and-forth messages in zero time

• Conjecture: the impossibility result holds
for arbitrary (non-symmetric) policies

⇥(n)

Extensions, variations

• Allow queue at the dispatcher, queue capacity ! 1

– can get vanishing delay

– but this is like the large memory case

– Allow finite capacity queue at the dispatcher

– same negative result [high probability conjecture]

• Messages are instantaneous, but allow arbitrary rounds of back-and-forth
messages in zero time

• Conjecture: the impossibility result holds for arbitrary (non-symmetric)
policies

Extensions, variations

• Allow queue at the dispatcher, queue capacity ! 1

– can get vanishing delay with constant message rate and zero memory
(essentially M/M/n queue)

– but this is like the large memory case

– Allow finite capacity queue at the dispatcher

– same negative result [high probability conjecture]

• Messages are instantaneous, but allow arbitrary rounds of back-and-forth
messages in zero time

• Conjecture: the impossibility result holds for arbitrary (non-symmetric)
policies

Extensions, variations

• Allow queue at the dispatcher, queue capacity ! 1

– can get vanishing delay with constant message rate and zero memory
(essentially M/M/n queue)

– but this is like the large memory case

– Allow finite capacity queue at the dispatcher

– same negative result [high probability conjecture]

• Messages are instantaneous, but allow arbitrary rounds of back-and-forth
messages in zero time

• Conjecture: the impossibility result holds for arbitrary (non-symmetric)
policies

Extensions, variations

• Allow queue at the dispatcher, queue capacity ! 1

– can get vanishing delay with constant message rate and zero memory
(essentially M/M/n queue)

– but this is like the large memory case

– Allow finite capacity queue at the dispatcher

– same negative result [high probability conjecture]

• Messages are instantaneous, but allow arbitrary rounds of back-and-forth
messages in zero time

• Conjecture: the impossibility result holds for arbitrary (non-symmetric)
policies

Extensions, variations

• Allow queue at the dispatcher, queue capacity ! 1

– can get vanishing delay with constant message rate and zero memory
(essentially M/M/n queue)

– but this is like the large memory case

• Allow finite capacity queue at the dispatcher

– same negative result [high probability conjecture]

• Messages are instantaneous, but we do not allow
arbitrary number of back-and-forth messages in zero time

• Conjecture: the impossibility result holds
for arbitrary (non-symmetric) policies

Extensions, variations

• Allow queue at the dispatcher, queue capacity ! 1

– can get vanishing delay with constant message rate and zero memory
(essentially M/M/n queue)

– but this is like the large memory case

• Allow finite capacity queue at the dispatcher

– same negative result
(high probability conjecture)

• Messages are instantaneous, but we do not allow
arbitrary number of back-and-forth messages in zero time

• Conjecture: the impossibility result holds
for arbitrary (non-symmetric) policies

⇥(n)

