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• Operating optimally requires large scale resources

• Understand the best performance under limited resource availability

• Our context: Dispatching policies with limited memory and limited in-
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1. Introduction. The subject of this paper is the study of the tradeo↵s

between various measures of performance (delay, message complexity and

memory) in the context of the supermarket model [13], a basic service system

that involves a stream of incoming jobs that are to be dispatched to the

queue associated with one of multiple servers; see Figure 1.

Incoming jobs

Dispatcher ... Multiple servers

Fig 1. The basic setting.

There is a variety of ways that this system can be operated, which cor-

respond to di↵erent system architectures and policies with di↵erent delay

performance. At one extreme, incoming jobs can be sent to a random queue.

This policy has no informational requirements but incurs a substantial de-

lay because it does not take advantage of resource pooling. At the other

extreme, incoming jobs can be sent to a shortest queue. This policy has

very good performance (small queueing delay), but relies on a substantial

The model

• Poisson Rate �n 0 < � < 1
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• Allow queue at the dispatcher, queue capacity ! 1
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(essentially M/M/n queue)

– but this is like the large memory case

• Allow finite capacity queue at the dispatcher

– same negative result [high probability conjecture]

• Messages are instantaneous, but we do not allow
arbitrary number of back-and-forth messages in zero time
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patcher as a Poisson process of rate µ(N) to inform or remind the dispatcher

of its idleness. When the dispatcher receives a message, it adds the ID of

the server that sent the message to the virtual queue of tokens that is kept

in the memory, unless this ID is already stored or the virtual queue is full,

in which case it discards the new message. When a new job arrives, if there

is at least one server ID in the virtual queue, the job goes to the queue of

a server chosen uniformly at random from the virtual queue and the corre-

sponding token is deleted. If there are no tokens present, the job is sent to

a queue chosen uniformly at random. This policy is depicted in Figure 2.

N�

Dispatcher

C(N)

Queue of tokens

Jobs to

empty queues

Messages from

idle servers

... N servers

Fig 2. Resource constrained pull-based policy. Jobs are sent to queues associated with idle
servers, based on tokens on the virtual queue. If no tokens are present, a queue is chosen
at random.

Note that in our policy no messages are sent from the dispatcher to the

servers, which is why we call it a “pull-based” policy. We present a summary

of the results for the three variants of our policy in Table 1.
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The model

• Poisson rate: � · n 0 < � < 1

n servers
exponential
rate: 1

The model

• Poisson rate: � · n 0 < � < 1

n servers
exponential
rate: 1

Our policy

cn

• idle processors send messages at rate ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

3

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Author’s addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

1. Introduction. The subject of this paper is the study of the tradeo↵s

between various measures of performance (delay, message complexity and

memory) in the context of the supermarket model [13], a basic service system

that involves a stream of incoming jobs that are to be dispatched to the

queue associated with one of multiple servers; see Figure 1.

Incoming jobs

Dispatcher ... Multiple servers

Fig 1. The basic setting.

There is a variety of ways that this system can be operated, which cor-

respond to di↵erent system architectures and policies with di↵erent delay

performance. At one extreme, incoming jobs can be sent to a random queue.

This policy has no informational requirements but incurs a substantial de-

lay because it does not take advantage of resource pooling. At the other

extreme, incoming jobs can be sent to a shortest queue. This policy has

very good performance (small queueing delay), but relies on a substantial



Our policy

logn

10

patcher as a Poisson process of rate µ(N) to inform or remind the dispatcher

of its idleness. When the dispatcher receives a message, it adds the ID of

the server that sent the message to the virtual queue of tokens that is kept

in the memory, unless this ID is already stored or the virtual queue is full,

in which case it discards the new message. When a new job arrives, if there

is at least one server ID in the virtual queue, the job goes to the queue of

a server chosen uniformly at random from the virtual queue and the corre-

sponding token is deleted. If there are no tokens present, the job is sent to

a queue chosen uniformly at random. This policy is depicted in Figure 2.

N�

Dispatcher

C(N)

Queue of tokens

Jobs to

empty queues

Messages from

idle servers

... N servers

Fig 2. Resource constrained pull-based policy. Jobs are sent to queues associated with idle
servers, based on tokens on the virtual queue. If no tokens are present, a queue is chosen
at random.

Note that in our policy no messages are sent from the dispatcher to the

servers, which is why we call it a “pull-based” policy. We present a summary

of the results for the three variants of our policy in Table 1.

For variant (a) we actually impose the further constraint that C(N) 2

The model

• Poisson rate: � · n 0 < � < 1

n servers
exponential
rate: 1

The model

• Poisson rate: � · n 0 < � < 1

n servers
exponential
rate: 1

Our policy

cn

• idle processors send messages at rate ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

Our policy

cn

• idle processors send messages at rate ⌫n

– message rate per job ⇡ ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

Our policy

cn

• idle processors send messages at rate ⌫n

– message rate per job ⇡ ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

3

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Author’s addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

1. Introduction. The subject of this paper is the study of the tradeo↵s

between various measures of performance (delay, message complexity and

memory) in the context of the supermarket model [13], a basic service system

that involves a stream of incoming jobs that are to be dispatched to the

queue associated with one of multiple servers; see Figure 1.

Incoming jobs

Dispatcher ... Multiple servers

Fig 1. The basic setting.

There is a variety of ways that this system can be operated, which cor-

respond to di↵erent system architectures and policies with di↵erent delay

performance. At one extreme, incoming jobs can be sent to a random queue.

This policy has no informational requirements but incurs a substantial de-

lay because it does not take advantage of resource pooling. At the other

extreme, incoming jobs can be sent to a shortest queue. This policy has

very good performance (small queueing delay), but relies on a substantial



Our policy

logn

10

patcher as a Poisson process of rate µ(N) to inform or remind the dispatcher

of its idleness. When the dispatcher receives a message, it adds the ID of

the server that sent the message to the virtual queue of tokens that is kept

in the memory, unless this ID is already stored or the virtual queue is full,

in which case it discards the new message. When a new job arrives, if there

is at least one server ID in the virtual queue, the job goes to the queue of

a server chosen uniformly at random from the virtual queue and the corre-

sponding token is deleted. If there are no tokens present, the job is sent to

a queue chosen uniformly at random. This policy is depicted in Figure 2.

N�

Dispatcher

C(N)

Queue of tokens

Jobs to

empty queues

Messages from

idle servers

... N servers

Fig 2. Resource constrained pull-based policy. Jobs are sent to queues associated with idle
servers, based on tokens on the virtual queue. If no tokens are present, a queue is chosen
at random.

Note that in our policy no messages are sent from the dispatcher to the

servers, which is why we call it a “pull-based” policy. We present a summary

of the results for the three variants of our policy in Table 1.

For variant (a) we actually impose the further constraint that C(N) 2

The model

• Poisson rate: � · n 0 < � < 1

n servers
exponential
rate: 1

The model

• Poisson rate: � · n 0 < � < 1

n servers
exponential
rate: 1

Our policy

cn

• idle processors send messages at rate ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

Our policy

cn

• idle processors send messages at rate ⌫n

– message rate per job ⇡ ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

Our policy

cn

• idle processors send messages at rate ⌫n

– message rate per job ⇡ ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

Our policy

cn

• idle processors send messages at rate ⌫n

– message rate per job ⇡ ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

3

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Author’s addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

1. Introduction. The subject of this paper is the study of the tradeo↵s

between various measures of performance (delay, message complexity and

memory) in the context of the supermarket model [13], a basic service system

that involves a stream of incoming jobs that are to be dispatched to the

queue associated with one of multiple servers; see Figure 1.

Incoming jobs

Dispatcher ... Multiple servers

Fig 1. The basic setting.

There is a variety of ways that this system can be operated, which cor-

respond to di↵erent system architectures and policies with di↵erent delay

performance. At one extreme, incoming jobs can be sent to a random queue.

This policy has no informational requirements but incurs a substantial de-

lay because it does not take advantage of resource pooling. At the other

extreme, incoming jobs can be sent to a shortest queue. This policy has

very good performance (small queueing delay), but relies on a substantial



Our policy

logn

10

patcher as a Poisson process of rate µ(N) to inform or remind the dispatcher

of its idleness. When the dispatcher receives a message, it adds the ID of

the server that sent the message to the virtual queue of tokens that is kept

in the memory, unless this ID is already stored or the virtual queue is full,

in which case it discards the new message. When a new job arrives, if there

is at least one server ID in the virtual queue, the job goes to the queue of

a server chosen uniformly at random from the virtual queue and the corre-

sponding token is deleted. If there are no tokens present, the job is sent to

a queue chosen uniformly at random. This policy is depicted in Figure 2.

N�

Dispatcher

C(N)

Queue of tokens

Jobs to

empty queues

Messages from

idle servers

... N servers

Fig 2. Resource constrained pull-based policy. Jobs are sent to queues associated with idle
servers, based on tokens on the virtual queue. If no tokens are present, a queue is chosen
at random.

Note that in our policy no messages are sent from the dispatcher to the

servers, which is why we call it a “pull-based” policy. We present a summary

of the results for the three variants of our policy in Table 1.

For variant (a) we actually impose the further constraint that C(N) 2

The model

• Poisson rate: � · n 0 < � < 1

n servers
exponential
rate: 1

The model

• Poisson rate: � · n 0 < � < 1

n servers
exponential
rate: 1

Our policy

cn

• idle processors send messages at rate ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

Our policy

cn

• idle processors send messages at rate ⌫n

– message rate per job ⇡ ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

Our policy

cn

• idle processors send messages at rate ⌫n

– message rate per job ⇡ ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

Our policy

cn

• idle processors send messages at rate ⌫n

– message rate per job ⇡ ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

3

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Author’s addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

1. Introduction. The subject of this paper is the study of the tradeo↵s

between various measures of performance (delay, message complexity and

memory) in the context of the supermarket model [13], a basic service system

that involves a stream of incoming jobs that are to be dispatched to the

queue associated with one of multiple servers; see Figure 1.

Incoming jobs

Dispatcher ... Multiple servers

Fig 1. The basic setting.

There is a variety of ways that this system can be operated, which cor-

respond to di↵erent system architectures and policies with di↵erent delay

performance. At one extreme, incoming jobs can be sent to a random queue.

This policy has no informational requirements but incurs a substantial de-

lay because it does not take advantage of resource pooling. At the other

extreme, incoming jobs can be sent to a shortest queue. This policy has

very good performance (small queueing delay), but relies on a substantial



Our policy

logn

10

patcher as a Poisson process of rate µ(N) to inform or remind the dispatcher

of its idleness. When the dispatcher receives a message, it adds the ID of

the server that sent the message to the virtual queue of tokens that is kept

in the memory, unless this ID is already stored or the virtual queue is full,

in which case it discards the new message. When a new job arrives, if there

is at least one server ID in the virtual queue, the job goes to the queue of

a server chosen uniformly at random from the virtual queue and the corre-

sponding token is deleted. If there are no tokens present, the job is sent to

a queue chosen uniformly at random. This policy is depicted in Figure 2.

N�

Dispatcher

C(N)

Queue of tokens

Jobs to

empty queues

Messages from

idle servers

... N servers

Fig 2. Resource constrained pull-based policy. Jobs are sent to queues associated with idle
servers, based on tokens on the virtual queue. If no tokens are present, a queue is chosen
at random.

Note that in our policy no messages are sent from the dispatcher to the

servers, which is why we call it a “pull-based” policy. We present a summary

of the results for the three variants of our policy in Table 1.

For variant (a) we actually impose the further constraint that C(N) 2

The model

• Poisson rate: � · n 0 < � < 1

n servers
exponential
rate: 1

The model

• Poisson rate: � · n 0 < � < 1

n servers
exponential
rate: 1

Our policy

cn

• idle processors send messages at rate ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

Our policy

cn

• idle processors send messages at rate ⌫n

– message rate per job ⇡ ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

Our policy

cn

• idle processors send messages at rate ⌫n

– message rate per job ⇡ ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

Our policy

cn

• idle processors send messages at rate ⌫n

– message rate per job ⇡ ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

Our policy

cn

• idle processors send messages at rate ⌫n

– message rate per job ⇡ ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

Our policy

cn

• idle processors send messages at rate ⌫n

– message rate per job ⇡ ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

3

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Author’s addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

1. Introduction. The subject of this paper is the study of the tradeo↵s

between various measures of performance (delay, message complexity and

memory) in the context of the supermarket model [13], a basic service system

that involves a stream of incoming jobs that are to be dispatched to the

queue associated with one of multiple servers; see Figure 1.

Incoming jobs

Dispatcher ... Multiple servers

Fig 1. The basic setting.

There is a variety of ways that this system can be operated, which cor-

respond to di↵erent system architectures and policies with di↵erent delay

performance. At one extreme, incoming jobs can be sent to a random queue.

This policy has no informational requirements but incurs a substantial de-

lay because it does not take advantage of resource pooling. At the other

extreme, incoming jobs can be sent to a shortest queue. This policy has

very good performance (small queueing delay), but relies on a substantial



Our policy

logn

10

patcher as a Poisson process of rate µ(N) to inform or remind the dispatcher

of its idleness. When the dispatcher receives a message, it adds the ID of

the server that sent the message to the virtual queue of tokens that is kept

in the memory, unless this ID is already stored or the virtual queue is full,

in which case it discards the new message. When a new job arrives, if there

is at least one server ID in the virtual queue, the job goes to the queue of

a server chosen uniformly at random from the virtual queue and the corre-

sponding token is deleted. If there are no tokens present, the job is sent to

a queue chosen uniformly at random. This policy is depicted in Figure 2.

N�

Dispatcher

C(N)

Queue of tokens

Jobs to

empty queues

Messages from

idle servers

... N servers

Fig 2. Resource constrained pull-based policy. Jobs are sent to queues associated with idle
servers, based on tokens on the virtual queue. If no tokens are present, a queue is chosen
at random.

Note that in our policy no messages are sent from the dispatcher to the

servers, which is why we call it a “pull-based” policy. We present a summary

of the results for the three variants of our policy in Table 1.

For variant (a) we actually impose the further constraint that C(N) 2

The model

• Poisson rate: � · n 0 < � < 1

n servers
exponential
rate: 1

The model

• Poisson rate: � · n 0 < � < 1

n servers
exponential
rate: 1

Our policy

cn

• idle processors send messages at rate ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

Our policy

cn

• idle processors send messages at rate ⌫n

– message rate per job ⇡ ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

Our policy

cn

• idle processors send messages at rate ⌫n

– message rate per job ⇡ ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

Our policy

cn

• idle processors send messages at rate ⌫n

– message rate per job ⇡ ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

Our policy

cn

• idle processors send messages at rate ⌫n

– message rate per job ⇡ ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

Our policy

cn

• idle processors send messages at rate ⌫n

– message rate per job ⇡ ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

Our policy

cn

• idle processors send messages at rate ⌫n

– message rate per job ⇡ ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

Our policy

cn

• idle processors send messages at rate ⌫n

– message rate per job ⇡ ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

Our policy

cn

• idle processors send messages at rate ⌫n

– message rate per job ⇡ ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

3

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Author’s addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

1. Introduction. The subject of this paper is the study of the tradeo↵s

between various measures of performance (delay, message complexity and

memory) in the context of the supermarket model [13], a basic service system

that involves a stream of incoming jobs that are to be dispatched to the

queue associated with one of multiple servers; see Figure 1.

Incoming jobs

Dispatcher ... Multiple servers

Fig 1. The basic setting.

There is a variety of ways that this system can be operated, which cor-

respond to di↵erent system architectures and policies with di↵erent delay

performance. At one extreme, incoming jobs can be sent to a random queue.

This policy has no informational requirements but incurs a substantial de-

lay because it does not take advantage of resource pooling. At the other

extreme, incoming jobs can be sent to a shortest queue. This policy has

very good performance (small queueing delay), but relies on a substantial



A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

• Join shortest of d (JSQ(d))

• Idle servers pull jobs (P)

messages per job
memory (bits) d d logn 1
delay � c > 0

�! n!1 0

logn

High memory regime

� logn

High memory regime

� logn � 1

High memory regime

Parsimonious regime

� logn � 1 ⇥(1)

High memory regime

Parsimonious regime

� logn � 1 ⇥(logn)

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

• Join shortest of d (JSQ(d))

messages per job
memory (bits) d d logn

delay � c > 0

�! n!1 0

logn

Extensions, variations

• Allow queue at the dispatcher, queue capacity ! 1

– can get vanishing delay with constant message rate and zero memory
(essentially M/M/n queue)

– but this is like the large memory case

• Allow finite capacity queue at the dispatcher

– same negative result [high probability conjecture]

• Messages are instantaneous, but we do not allow
arbitrary number of back-and-forth messages in zero time

• Conjecture: the impossibility result holds
for arbitrary (non-symmetric) policies

⇥(n)

10

patcher as a Poisson process of rate µ(N) to inform or remind the dispatcher

of its idleness. When the dispatcher receives a message, it adds the ID of

the server that sent the message to the virtual queue of tokens that is kept

in the memory, unless this ID is already stored or the virtual queue is full,

in which case it discards the new message. When a new job arrives, if there

is at least one server ID in the virtual queue, the job goes to the queue of

a server chosen uniformly at random from the virtual queue and the corre-

sponding token is deleted. If there are no tokens present, the job is sent to

a queue chosen uniformly at random. This policy is depicted in Figure 2.

N�

Dispatcher

C(N)

Queue of tokens

Jobs to

empty queues

Messages from

idle servers

... N servers

Fig 2. Resource constrained pull-based policy. Jobs are sent to queues associated with idle
servers, based on tokens on the virtual queue. If no tokens are present, a queue is chosen
at random.

Note that in our policy no messages are sent from the dispatcher to the

servers, which is why we call it a “pull-based” policy. We present a summary

of the results for the three variants of our policy in Table 1.

For variant (a) we actually impose the further constraint that C(N) 2

The model

• Poisson rate: � · n 0 < � < 1

n servers
exponential
rate: 1

The model

• Poisson rate: � · n 0 < � < 1

n servers
exponential
rate: 1

Our policy

cn

• idle processors send messages at rate ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

Our policy

cn

• idle processors send messages at rate ⌫n

– message rate per job ⇡ ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

3

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Author’s addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

1. Introduction. The subject of this paper is the study of the tradeo↵s

between various measures of performance (delay, message complexity and

memory) in the context of the supermarket model [13], a basic service system

that involves a stream of incoming jobs that are to be dispatched to the

queue associated with one of multiple servers; see Figure 1.

Incoming jobs

Dispatcher ... Multiple servers

Fig 1. The basic setting.

There is a variety of ways that this system can be operated, which cor-

respond to di↵erent system architectures and policies with di↵erent delay

performance. At one extreme, incoming jobs can be sent to a random queue.

This policy has no informational requirements but incurs a substantial de-

lay because it does not take advantage of resource pooling. At the other

extreme, incoming jobs can be sent to a shortest queue. This policy has

very good performance (small queueing delay), but relies on a substantial

High message rate regime

• cn =constant� 1

• ⌫n ! 1

• queueing delay ! 0

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

High memory regime

Parsimonious regime

� logn � 1 ⇥(logn) Pull



A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

• Join shortest of d (JSQ(d))

• Idle servers pull jobs (P)

messages per job
memory (bits) d d logn 1
delay � c > 0

�! n!1 0

logn

High memory regime

� logn

High memory regime

� logn � 1

High memory regime

Parsimonious regime

� logn � 1 ⇥(1)

High memory regime

Parsimonious regime

� logn � 1 ⇥(logn)

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

• Join shortest of d (JSQ(d))

messages per job
memory (bits) d d logn

delay � c > 0

�! n!1 0

logn

Extensions, variations

• Allow queue at the dispatcher, queue capacity ! 1

– can get vanishing delay with constant message rate and zero memory
(essentially M/M/n queue)

– but this is like the large memory case

• Allow finite capacity queue at the dispatcher

– same negative result [high probability conjecture]

• Messages are instantaneous, but we do not allow
arbitrary number of back-and-forth messages in zero time

• Conjecture: the impossibility result holds
for arbitrary (non-symmetric) policies

⇥(n)

10

patcher as a Poisson process of rate µ(N) to inform or remind the dispatcher

of its idleness. When the dispatcher receives a message, it adds the ID of

the server that sent the message to the virtual queue of tokens that is kept

in the memory, unless this ID is already stored or the virtual queue is full,

in which case it discards the new message. When a new job arrives, if there

is at least one server ID in the virtual queue, the job goes to the queue of

a server chosen uniformly at random from the virtual queue and the corre-

sponding token is deleted. If there are no tokens present, the job is sent to

a queue chosen uniformly at random. This policy is depicted in Figure 2.

N�

Dispatcher

C(N)

Queue of tokens

Jobs to

empty queues

Messages from

idle servers

... N servers

Fig 2. Resource constrained pull-based policy. Jobs are sent to queues associated with idle
servers, based on tokens on the virtual queue. If no tokens are present, a queue is chosen
at random.

Note that in our policy no messages are sent from the dispatcher to the

servers, which is why we call it a “pull-based” policy. We present a summary

of the results for the three variants of our policy in Table 1.

For variant (a) we actually impose the further constraint that C(N) 2

The model

• Poisson rate: � · n 0 < � < 1

n servers
exponential
rate: 1

The model

• Poisson rate: � · n 0 < � < 1

n servers
exponential
rate: 1

Our policy

cn

• idle processors send messages at rate ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

Our policy

cn

• idle processors send messages at rate ⌫n

– message rate per job ⇡ ⌫n

• make an entry in the memory, if there is room [cn]

– memory size cn logn

• when job arrives:

– send to server in memory

– if empty memory, send to random server

•

3

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Author’s addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

1. Introduction. The subject of this paper is the study of the tradeo↵s

between various measures of performance (delay, message complexity and

memory) in the context of the supermarket model [13], a basic service system

that involves a stream of incoming jobs that are to be dispatched to the

queue associated with one of multiple servers; see Figure 1.

Incoming jobs

Dispatcher ... Multiple servers

Fig 1. The basic setting.

There is a variety of ways that this system can be operated, which cor-

respond to di↵erent system architectures and policies with di↵erent delay

performance. At one extreme, incoming jobs can be sent to a random queue.

This policy has no informational requirements but incurs a substantial de-

lay because it does not take advantage of resource pooling. At the other

extreme, incoming jobs can be sent to a shortest queue. This policy has

very good performance (small queueing delay), but relies on a substantial

High message rate regime

• cn =constant� 1

• ⌫n ! 1

• queueing delay ! 0

Many messages regime

• cn =constant� 1

• ⌫n ! 1

• queueing delay ! 0

High message rate regime

• cn =constant� 1

• ⌫n ! 1

• queueing delay ! 0

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

High memory regime

Parsimonious regime

� logn � 1 ⇥(logn) Pull



A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

messages per job
memory (bits)
delay � c > 0

�! n!1 0

logn

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

• Join shortest of d (JSQ(d))

• Idle servers pull jobs (P)

messages per job
memory (bits) d d logn 1
delay � c > 0

�! n!1 0

logn

High memory regime

� logn

High memory regime

� logn � 1

High memory regime

Parsimonious regime

� logn � 1 ⇥(1)

High memory regime

Parsimonious regime

� logn � 1 ⇥(logn)

A few policies

• Random routing (RaR)

• Round robin (RR)

• Join the shortest queue (JSQ)

• Join shortest of d (JSQ(d))

messages per job
memory (bits) d d logn

delay � c > 0

�! n!1 0

logn

Extensions, variations

• Allow queue at the dispatcher, queue capacity ! 1

– can get vanishing delay with constant message rate and zero memory
(essentially M/M/n queue)

– but this is like the large memory case

• Allow finite capacity queue at the dispatcher

– same negative result [high probability conjecture]

• Messages are instantaneous, but we do not allow
arbitrary number of back-and-forth messages in zero time

• Conjecture: the impossibility result holds
for arbitrary (non-symmetric) policies

⇥(n)

10

patcher as a Poisson process of rate µ(N) to inform or remind the dispatcher

of its idleness. When the dispatcher receives a message, it adds the ID of

the server that sent the message to the virtual queue of tokens that is kept

in the memory, unless this ID is already stored or the virtual queue is full,

in which case it discards the new message. When a new job arrives, if there

is at least one server ID in the virtual queue, the job goes to the queue of

a server chosen uniformly at random from the virtual queue and the corre-

sponding token is deleted. If there are no tokens present, the job is sent to

a queue chosen uniformly at random. This policy is depicted in Figure 2.
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Fig 2. Resource constrained pull-based policy. Jobs are sent to queues associated with idle
servers, based on tokens on the virtual queue. If no tokens are present, a queue is chosen
at random.

Note that in our policy no messages are sent from the dispatcher to the

servers, which is why we call it a “pull-based” policy. We present a summary
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is at least one server ID in the virtual queue, the job goes to the queue of

a server chosen uniformly at random from the virtual queue and the corre-
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patcher as a Poisson process of rate µ(N) to inform or remind the dispatcher

of its idleness. When the dispatcher receives a message, it adds the ID of

the server that sent the message to the virtual queue of tokens that is kept

in the memory, unless this ID is already stored or the virtual queue is full,

in which case it discards the new message. When a new job arrives, if there

is at least one server ID in the virtual queue, the job goes to the queue of

a server chosen uniformly at random from the virtual queue and the corre-

sponding token is deleted. If there are no tokens present, the job is sent to

a queue chosen uniformly at random. This policy is depicted in Figure 2.
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Fig 2. Resource constrained pull-based policy. Jobs are sent to queues associated with idle
servers, based on tokens on the virtual queue. If no tokens are present, a queue is chosen
at random.
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servers, which is why we call it a “pull-based” policy. We present a summary
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patcher as a Poisson process of rate µ(N) to inform or remind the dispatcher

of its idleness. When the dispatcher receives a message, it adds the ID of

the server that sent the message to the virtual queue of tokens that is kept

in the memory, unless this ID is already stored or the virtual queue is full,

in which case it discards the new message. When a new job arrives, if there

is at least one server ID in the virtual queue, the job goes to the queue of

a server chosen uniformly at random from the virtual queue and the corre-

sponding token is deleted. If there are no tokens present, the job is sent to

a queue chosen uniformly at random. This policy is depicted in Figure 2.
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Fig 2. Resource constrained pull-based policy. Jobs are sent to queues associated with idle
servers, based on tokens on the virtual queue. If no tokens are present, a queue is chosen
at random.

Note that in our policy no messages are sent from the dispatcher to the

servers, which is why we call it a “pull-based” policy. We present a summary

of the results for the three variants of our policy in Table 1.
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of its idleness. When the dispatcher receives a message, it adds the ID of

the server that sent the message to the virtual queue of tokens that is kept

in the memory, unless this ID is already stored or the virtual queue is full,

in which case it discards the new message. When a new job arrives, if there

is at least one server ID in the virtual queue, the job goes to the queue of

a server chosen uniformly at random from the virtual queue and the corre-

sponding token is deleted. If there are no tokens present, the job is sent to

a queue chosen uniformly at random. This policy is depicted in Figure 2.
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a server chosen uniformly at random from the virtual queue and the corre-
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of its idleness. When the dispatcher receives a message, it adds the ID of

the server that sent the message to the virtual queue of tokens that is kept

in the memory, unless this ID is already stored or the virtual queue is full,

in which case it discards the new message. When a new job arrives, if there

is at least one server ID in the virtual queue, the job goes to the queue of

a server chosen uniformly at random from the virtual queue and the corre-

sponding token is deleted. If there are no tokens present, the job is sent to

a queue chosen uniformly at random. This policy is depicted in Figure 2.
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patcher as a Poisson process of rate µ(N) to inform or remind the dispatcher

of its idleness. When the dispatcher receives a message, it adds the ID of

the server that sent the message to the virtual queue of tokens that is kept

in the memory, unless this ID is already stored or the virtual queue is full,

in which case it discards the new message. When a new job arrives, if there

is at least one server ID in the virtual queue, the job goes to the queue of

a server chosen uniformly at random from the virtual queue and the corre-

sponding token is deleted. If there are no tokens present, the job is sent to

a queue chosen uniformly at random. This policy is depicted in Figure 2.
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Fig 2. Resource constrained pull-based policy. Jobs are sent to queues associated with idle
servers, based on tokens on the virtual queue. If no tokens are present, a queue is chosen
at random.
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is at least one server ID in the virtual queue, the job goes to the queue of

a server chosen uniformly at random from the virtual queue and the corre-

sponding token is deleted. If there are no tokens present, the job is sent to

a queue chosen uniformly at random. This policy is depicted in Figure 2.
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the server that sent the message to the virtual queue of tokens that is kept

in the memory, unless this ID is already stored or the virtual queue is full,

in which case it discards the new message. When a new job arrives, if there

is at least one server ID in the virtual queue, the job goes to the queue of

a server chosen uniformly at random from the virtual queue and the corre-

sponding token is deleted. If there are no tokens present, the job is sent to

a queue chosen uniformly at random. This policy is depicted in Figure 2.
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a server chosen uniformly at random from the virtual queue and the corre-

sponding token is deleted. If there are no tokens present, the job is sent to
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patcher as a Poisson process of rate µ(N) to inform or remind the dispatcher

of its idleness. When the dispatcher receives a message, it adds the ID of

the server that sent the message to the virtual queue of tokens that is kept

in the memory, unless this ID is already stored or the virtual queue is full,

in which case it discards the new message. When a new job arrives, if there

is at least one server ID in the virtual queue, the job goes to the queue of

a server chosen uniformly at random from the virtual queue and the corre-

sponding token is deleted. If there are no tokens present, the job is sent to

a queue chosen uniformly at random. This policy is depicted in Figure 2.
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Fig 2. Resource constrained pull-based policy. Jobs are sent to queues associated with idle
servers, based on tokens on the virtual queue. If no tokens are present, a queue is chosen
at random.
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patcher as a Poisson process of rate µ(N) to inform or remind the dispatcher

of its idleness. When the dispatcher receives a message, it adds the ID of

the server that sent the message to the virtual queue of tokens that is kept

in the memory, unless this ID is already stored or the virtual queue is full,

in which case it discards the new message. When a new job arrives, if there

is at least one server ID in the virtual queue, the job goes to the queue of

a server chosen uniformly at random from the virtual queue and the corre-

sponding token is deleted. If there are no tokens present, the job is sent to

a queue chosen uniformly at random. This policy is depicted in Figure 2.
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Fig 2. Resource constrained pull-based policy. Jobs are sent to queues associated with idle
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at random.
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patcher as a Poisson process of rate µ(N) to inform or remind the dispatcher

of its idleness. When the dispatcher receives a message, it adds the ID of

the server that sent the message to the virtual queue of tokens that is kept

in the memory, unless this ID is already stored or the virtual queue is full,

in which case it discards the new message. When a new job arrives, if there

is at least one server ID in the virtual queue, the job goes to the queue of

a server chosen uniformly at random from the virtual queue and the corre-

sponding token is deleted. If there are no tokens present, the job is sent to

a queue chosen uniformly at random. This policy is depicted in Figure 2.
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Fig 2. Resource constrained pull-based policy. Jobs are sent to queues associated with idle
servers, based on tokens on the virtual queue. If no tokens are present, a queue is chosen
at random.

Note that in our policy no messages are sent from the dispatcher to the

servers, which is why we call it a “pull-based” policy. We present a summary
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patcher as a Poisson process of rate µ(N) to inform or remind the dispatcher

of its idleness. When the dispatcher receives a message, it adds the ID of

the server that sent the message to the virtual queue of tokens that is kept

in the memory, unless this ID is already stored or the virtual queue is full,

in which case it discards the new message. When a new job arrives, if there

is at least one server ID in the virtual queue, the job goes to the queue of

a server chosen uniformly at random from the virtual queue and the corre-

sponding token is deleted. If there are no tokens present, the job is sent to

a queue chosen uniformly at random. This policy is depicted in Figure 2.
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patcher as a Poisson process of rate µ(N) to inform or remind the dispatcher

of its idleness. When the dispatcher receives a message, it adds the ID of

the server that sent the message to the virtual queue of tokens that is kept

in the memory, unless this ID is already stored or the virtual queue is full,

in which case it discards the new message. When a new job arrives, if there

is at least one server ID in the virtual queue, the job goes to the queue of

a server chosen uniformly at random from the virtual queue and the corre-

sponding token is deleted. If there are no tokens present, the job is sent to

a queue chosen uniformly at random. This policy is depicted in Figure 2.
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patcher as a Poisson process of rate µ(N) to inform or remind the dispatcher

of its idleness. When the dispatcher receives a message, it adds the ID of

the server that sent the message to the virtual queue of tokens that is kept

in the memory, unless this ID is already stored or the virtual queue is full,

in which case it discards the new message. When a new job arrives, if there

is at least one server ID in the virtual queue, the job goes to the queue of

a server chosen uniformly at random from the virtual queue and the corre-

sponding token is deleted. If there are no tokens present, the job is sent to

a queue chosen uniformly at random. This policy is depicted in Figure 2.
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The theorems

• The fluid equations have a solution
(indirect proof: stochastic system trajectories have limit points,
and these satisfy fluid equations)

• Unique solution
(for resource constrained case

Extensions, variations

• Allow queue at the dispatcher, queue capacity ! 1
– can get vanishing delay with constant message rate and zero memory

(essentially M/M/n queue)

– but this is like the large memory case

• Allow finite capacity queue at the dispatcher

– same negative result
(high probability conjecture)

• Messages are instantaneous, but we do not allow
arbitrary number of back-and-forth messages in zero time

• Conjecture: the impossibility result holds
for arbitrary (non-symmetric) policies
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Lipschitz continuous in s

• Sn(t) evolves in a slower time scale

• during [t, t+ ✏], fraction P0(s) of arriving jobs get routed randomly

•
ds1
dt

(t) = �[1� P0(t)] + �[1� s1(t)]P0(t)� [s1(t)� s2(t)]

•
dsi
dt

(t) = �[si�1(t)� si(t)]P0(t)� [si(t)� si+1(t)], i � 2
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• Choose ⌫ so that ⌫(1� �) = �d

– Messages per unit time: �dn

– P ⇤
0 (and therefore, delay): independent of n
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Fig 4. Average queueing delay of the power-of-2-choices (red circles) vs. our policy (blue
squares).

(iii) the dispatcher has just dispatched a job.

In order to simplify notation, we define the set of memory states M ,
�

1, . . . , 2CN
 

and the set of possible states at each queue (the vector of the

remaining workloads of jobs) Q , RZ+
+

. We define next a broad class of

memory-based dispatching policies.

Definition 3.3 (Memory-based dispatching policy). For a fixed N , a

memory-based dispatching policy ⌘N has five components:

1. (Process of messages from servers) For each server n 2 N we have a

bounded rate function µN

n

: Q ! R
+

which defines a set of modulated

The resource constrained case - fluid model

P0(s) =

2

4
CX

k=0

✓
⌫(1� s1)

�

◆k
3

5
�1

Lipschitz continuous in s

• Sn(t) evolves in a slower time scale

• during [t, t+ ✏], fraction P0(s) of arriving jobs get routed randomly

•
ds1
dt

(t) = �[1� P0(t)] + �[1� s1(t)]P0(t)� [s1(t)� s2(t)]

•
dsi
dt

(t) = �[si�1(t)� si(t)]P0(t)� [si(t)� si+1(t)], i � 2

Heavy-tra�c analysis, � " 1

• Choose ⌫ so that ⌫(1� �) = �d

– Messages per unit time: �dn

– P ⇤
0 (and therefore, delay): independent of �

• Send to shortest of d sampled queues

– Messages per unit time: �dn

– Prob(find an empty queue) = (1� �)d ! 0

– delay ! 1

Heavy-tra�c analysis, � " 1

• Choose ⌫ so that ⌫(1� �) = �d

– Messages per unit time: �dn

– P ⇤
0 (and therefore, delay): independent of �

• Send to shortest of d sampled queues

– Messages per unit time: �dn

– Prob(find an empty queue) = 1� �d ! 0

– delay ! 1



Negative result

• Thm: Under symmetric policies:✓
Memory size  C logn bits, message rate  ↵n

◆
) delay � f(C,↵) > 0

• Symmetric policies: “If some memory state m leads to certain events,
and � is a permutation, there exists a memory state m0 that leads to a
permutation of these events.”

– Under m, I query queues 1,3,4
) 9m0, under which I query 2,4,6

⇡(m) m m0 queries q q0 q00 1 2 3 4 5 6 7 ⇡

few memory states ) few di↵erent ⇡(m)

Negative result

• Thm: Under symmetric policies:✓
Memory size  C logn bits, message rate  ↵n

◆
) delay � f(C,↵) > 0

• Symmetric policies: “If some memory state m leads to certain events,
and � is a permutation, there exists a memory state m0 that leads to a
permutation of these events.”

– Under m, I query queues 1,3,4
) 9m0, under which I query 2,4,6

⇡(m) m m0 queries q q0 q00 1 2 3 4 5 6 7 ⇡

few memory states ) few di↵erent ⇡(m)



Negative result

• Thm: Under symmetric policies:✓
Memory size  C logn bits, message rate  ↵n

◆
) delay � f(C,↵) > 0

• Symmetric policies: “If some memory state m leads to certain events,
and � is a permutation, there exists a memory state m0 that leads to a
permutation of these events.”

– Under m, I query queues 1,3,4
) 9m0, under which I query 2,4,6

⇡(m) m m0 queries q q0 q00 1 2 3 4 5 6 7 ⇡

few memory states ) few di↵erent ⇡(m)

Negative result

• Thm: Under symmetric policies:✓
Memory size  C logn bits, message rate  ↵n

◆
) delay � f(C,↵) > 0

• Symmetric policies: “If some memory state m leads to certain events,
and � is a permutation, there exists a memory state m0 that leads to a
permutation of these events.”

– Under m, I query queues 1,3,4
) 9m0, under which I query 2,4,6

⇡(m) m m0 queries q q0 q00 1 2 3 4 5 6 7 ⇡

few memory states ) few di↵erent ⇡(m)

Negative result

• Thm: Under symmetric policies:✓
Memory size  C logn bits, message rate  ↵n

◆
) delay � f(C,↵) > 0

• Symmetric policies: “If some memory state m leads to certain events,
any given permutation of these events occurs
under some other memory state m0 ”

– Under m, I query queues 1,3,4
) 9m0, under which I query 2,4,6

⇡(m) m m0 queries q q0 q00 1 2 3 4 5 6 7 ⇡

few memory states ) few di↵erent ⇡(m)



Negative result

• Thm: Under symmetric policies:✓
Memory size  C logn bits, message rate  ↵n

◆
) delay � f(C,↵) > 0

• Symmetric policies: “If some memory state m leads to certain events,
and � is a permutation, there exists a memory state m0 that leads to a
permutation of these events.”

– Under m, I query queues 1,3,4
) 9m0, under which I query 2,4,6

⇡(m) m m0 queries q q0 q00 1 2 3 4 5 6 7 ⇡

few memory states ) few di↵erent ⇡(m)

Negative result

• Thm: Under symmetric policies:✓
Memory size  C logn bits, message rate  ↵n

◆
) delay � f(C,↵) > 0

• Symmetric policies: “If some memory state m leads to certain events,
and � is a permutation, there exists a memory state m0 that leads to a
permutation of these events.”

– Under m, I query queues 1,3,4
) 9m0, under which I query 2,4,6

⇡(m) m m0 queries q q0 q00 1 2 3 4 5 6 7 ⇡

few memory states ) few di↵erent ⇡(m)

Negative result

• Thm: Under symmetric policies:✓
Memory size  C logn bits, message rate  ↵n

◆
) delay � f(C,↵) > 0

• Symmetric policies: “If some memory state m leads to certain events,
any given permutation of these events occurs
under some other memory state m0 ”

– Under m, I query queues 1,3,4
) 9m0, under which I query 2,4,6

⇡(m) m m0 queries q q0 q00 1 2 3 4 5 6 7 ⇡

few memory states ) few di↵erent ⇡(m)

Negative result

• Thm: Under symmetric policies:✓
Memory size  C logn bits, message rate  ↵n

◆
) delay � f(C,↵) > 0

• Symmetric policies: “If some memory state m leads to certain events,
any given permutation of these events occurs
under some other memory state m0 ”

– Example: Under m, I query queues 1,3,4
) 9m0, under which I query 2,4,6

⇡(m) m m0 queries q q0 q00 1 2 3 4 5 6 7 ⇡

few memory states ) few di↵erent ⇡(m)



Negative result

• Thm: Under symmetric policies:✓
Memory size  C logn bits, message rate  ↵n

◆
) delay � f(C,↵) > 0

• Symmetric policies: “If some memory state m leads to certain events,
and � is a permutation, there exists a memory state m0 that leads to a
permutation of these events.”

– Under m, I query queues 1,3,4
) 9m0, under which I query 2,4,6

⇡(m) m m0 queries q q0 q00 1 2 3 4 5 6 7 ⇡

few memory states ) few di↵erent ⇡(m)

Negative result

• Thm: Under symmetric policies:✓
Memory size  C logn bits, message rate  ↵n

◆
) delay � f(C,↵) > 0

• Symmetric policies: “If some memory state m leads to certain events,
and � is a permutation, there exists a memory state m0 that leads to a
permutation of these events.”

– Under m, I query queues 1,3,4
) 9m0, under which I query 2,4,6

⇡(m) m m0 queries q q0 q00 1 2 3 4 5 6 7 ⇡

few memory states ) few di↵erent ⇡(m)

Negative result

• Thm: Under symmetric policies:✓
Memory size  C logn bits, message rate  ↵n

◆
) delay � f(C,↵) > 0

• Symmetric policies: “If some memory state m leads to certain events,
any given permutation of these events occurs
under some other memory state m0 ”

– Under m, I query queues 1,3,4
) 9m0, under which I query 2,4,6

⇡(m) m m0 queries q q0 q00 1 2 3 4 5 6 7 ⇡

few memory states ) few di↵erent ⇡(m)

Negative result

• Thm: Under symmetric policies:✓
Memory size  C logn bits, message rate  ↵n

◆
) delay � f(C,↵) > 0

• Symmetric policies: “If some memory state m leads to certain events,
any given permutation of these events occurs
under some other memory state m0 ”

– Example: Under m, I query queues 1,3,4
) 9m0, under which I query 2,4,6

⇡(m) m m0 queries q q0 q00 1 2 3 4 5 6 7 ⇡

few memory states ) few di↵erent ⇡(m)

Negative result

• Thm: Under symmetric policies:✓
Memory size  C logn bits, message rate  ↵n

◆
) delay � f(C,↵) > 0

• Symmetric policies: “If some memory state m leads to certain events,
any given permutation of these events occurs
under some other memory state m0 ”

– Example: Under m, I query queues 1,3,4
) 9m0, under which I query 2,4,6

• Some possible actions:

– Under m, I query 1, . . . , C

– can also query other queues with equal probabilities

• Impossible:

– Under m, I query 1, . . . , C +1

• Loosely speaking: only C nodes can be treated in a “special” manner

• If we get C + 1 arrivals in a row, and no messages from idle servers, at
least one job will be sent to a “random” server

⇡(m) m m0 queries q q0 q00 1 2 3 4 5 6 7 ⇡

few memory states ) few di↵erent ⇡(m)



Negative result

• Thm: Under symmetric policies:✓
Memory size  C logn bits, message rate  ↵n

◆
) delay � f(C,↵) > 0

• Symmetric policies: “If some memory state m leads to certain events,
and � is a permutation, there exists a memory state m0 that leads to a
permutation of these events.”

– Under m, I query queues 1,3,4
) 9m0, under which I query 2,4,6

⇡(m) m m0 queries q q0 q00 1 2 3 4 5 6 7 ⇡

few memory states ) few di↵erent ⇡(m)

Negative result

• Thm: Under symmetric policies:✓
Memory size  C logn bits, message rate  ↵n

◆
) delay � f(C,↵) > 0

• Symmetric policies: “If some memory state m leads to certain events,
and � is a permutation, there exists a memory state m0 that leads to a
permutation of these events.”

– Under m, I query queues 1,3,4
) 9m0, under which I query 2,4,6

⇡(m) m m0 queries q q0 q00 1 2 3 4 5 6 7 ⇡

few memory states ) few di↵erent ⇡(m)

Negative result

• Thm: Under symmetric policies:✓
Memory size  C logn bits, message rate  ↵n

◆
) delay � f(C,↵) > 0

• Symmetric policies: “If some memory state m leads to certain events,
any given permutation of these events occurs
under some other memory state m0 ”

– Under m, I query queues 1,3,4
) 9m0, under which I query 2,4,6

⇡(m) m m0 queries q q0 q00 1 2 3 4 5 6 7 ⇡

few memory states ) few di↵erent ⇡(m)

Negative result

• Thm: Under symmetric policies:✓
Memory size  C logn bits, message rate  ↵n

◆
) delay � f(C,↵) > 0

• Symmetric policies: “If some memory state m leads to certain events,
any given permutation of these events occurs
under some other memory state m0 ”

– Example: Under m, I query queues 1,3,4
) 9m0, under which I query 2,4,6

⇡(m) m m0 queries q q0 q00 1 2 3 4 5 6 7 ⇡

few memory states ) few di↵erent ⇡(m)

Negative result

• Thm: Under symmetric policies:✓
Memory size  C logn bits, message rate  ↵n

◆
) delay � f(C,↵) > 0

• Symmetric policies: “If some memory state m leads to certain events,
any given permutation of these events occurs
under some other memory state m0 ”

– Example: Under m, I query queues 1,3,4
) 9m0, under which I query 2,4,6

• Some possible actions:

– Under m, I query 1, . . . , C

– can also query other queues with equal probabilities

• Impossible:

– Under m, I query 1, . . . , C +1

• Loosely speaking: only C nodes can be treated in a “special” manner

• If we get C + 1 arrivals in a row, and no messages from idle servers, at
least one job will be sent to a “random” server

⇡(m) m m0 queries q q0 q00 1 2 3 4 5 6 7 ⇡

few memory states ) few di↵erent ⇡(m)

Negative result

• Thm: Under symmetric policies:✓
Memory size  C logn bits, message rate  ↵n

◆
) delay � f(C,↵) > 0

• Symmetric policies: “If some memory state m leads to certain events,
any given permutation of these events occurs
under some other memory state m0 ”

– Example: Under m, I query queues 1,3,4
) 9m0, under which I query 2,4,6

• Some possible actions:

– Under m, I query 1, . . . , C

– can also query other queues with equal probabilities

• Impossible:

– Under m, I query 1, . . . , C +1

• Loosely speaking: only C nodes can be treated in a “special” manner

• If we get C + 1 arrivals in a row, and no messages from idle servers, at
least one job will be sent to a “random” server

⇡(m) m m0 queries q q0 q00 1 2 3 4 5 6 7 ⇡

few memory states ) few di↵erent ⇡(m)



Negative result

• Thm: Under symmetric policies:✓
Memory size  C logn bits, message rate  ↵n

◆
) delay � f(C,↵) > 0

• Symmetric policies: “If some memory state m leads to certain events,
and � is a permutation, there exists a memory state m0 that leads to a
permutation of these events.”

– Under m, I query queues 1,3,4
) 9m0, under which I query 2,4,6

⇡(m) m m0 queries q q0 q00 1 2 3 4 5 6 7 ⇡

few memory states ) few di↵erent ⇡(m)

Negative result

• Thm: Under symmetric policies:✓
Memory size  C logn bits, message rate  ↵n

◆
) delay � f(C,↵) > 0

• Symmetric policies: “If some memory state m leads to certain events,
and � is a permutation, there exists a memory state m0 that leads to a
permutation of these events.”

– Under m, I query queues 1,3,4
) 9m0, under which I query 2,4,6

⇡(m) m m0 queries q q0 q00 1 2 3 4 5 6 7 ⇡

few memory states ) few di↵erent ⇡(m)

Negative result

• Thm: Under symmetric policies:✓
Memory size  C logn bits, message rate  ↵n

◆
) delay � f(C,↵) > 0

• Symmetric policies: “If some memory state m leads to certain events,
any given permutation of these events occurs
under some other memory state m0 ”

– Under m, I query queues 1,3,4
) 9m0, under which I query 2,4,6

⇡(m) m m0 queries q q0 q00 1 2 3 4 5 6 7 ⇡

few memory states ) few di↵erent ⇡(m)

Negative result

• Thm: Under symmetric policies:✓
Memory size  C logn bits, message rate  ↵n

◆
) delay � f(C,↵) > 0

• Symmetric policies: “If some memory state m leads to certain events,
any given permutation of these events occurs
under some other memory state m0 ”

– Example: Under m, I query queues 1,3,4
) 9m0, under which I query 2,4,6

⇡(m) m m0 queries q q0 q00 1 2 3 4 5 6 7 ⇡

few memory states ) few di↵erent ⇡(m)

Negative result

• Thm: Under symmetric policies:✓
Memory size  C logn bits, message rate  ↵n

◆
) delay � f(C,↵) > 0

• Symmetric policies: “If some memory state m leads to certain events,
any given permutation of these events occurs
under some other memory state m0 ”

– Example: Under m, I query queues 1,3,4
) 9m0, under which I query 2,4,6

• Some possible actions:

– Under m, I query 1, . . . , C

– can also query other queues with equal probabilities

• Impossible:

– Under m, I query 1, . . . , C +1

• Loosely speaking: only C nodes can be treated in a “special” manner

• If we get C + 1 arrivals in a row, and no messages from idle servers, at
least one job will be sent to a “random” server

⇡(m) m m0 queries q q0 q00 1 2 3 4 5 6 7 ⇡

few memory states ) few di↵erent ⇡(m)

Negative result

• Thm: Under symmetric policies:✓
Memory size  C logn bits, message rate  ↵n

◆
) delay � f(C,↵) > 0

• Symmetric policies: “If some memory state m leads to certain events,
any given permutation of these events occurs
under some other memory state m0 ”

– Example: Under m, I query queues 1,3,4
) 9m0, under which I query 2,4,6

• Some possible actions:

– Under m, I query 1, . . . , C

– can also query other queues with equal probabilities

• Impossible:

– Under m, I query 1, . . . , C +1

• Loosely speaking: only C nodes can be treated in a “special” manner

• If we get C + 1 arrivals in a row, and no messages from idle servers, at
least one job will be sent to a “random” server

⇡(m) m m0 queries q q0 q00 1 2 3 4 5 6 7 ⇡

few memory states ) few di↵erent ⇡(m)

Negative result

• Thm: Under symmetric policies:✓
Memory size  C logn bits, message rate  ↵n

◆
) delay � f(C,↵) > 0

• Symmetric policies: “If some memory state m leads to certain events,
any given permutation of these events occurs
under some other memory state m0 ”

– Example: Under m, I query queues 1,3,4
) 9m0, under which I query 2,4,6

• Some possible actions:

– Under m, I query 1, . . . , C

– can also query other queues with equal probabilities

• Impossible: Under m, I query 1, . . . , C +1

• Loosely speaking: only C nodes can be treated in a “special” manner

• If we get C + 1 arrivals in a row, and no messages from idle servers, at
least one job will be sent to a “random” server

⇡(m) m m0 queries q q0 q00 1 2 3 4 5 6 7 ⇡

few memory states ) few di↵erent ⇡(m)



Negative result

• Thm: Under symmetric policies:✓
Memory size  C logn bits, message rate  ↵n

◆
) delay � f(C,↵) > 0

• Symmetric policies: “If some memory state m leads to certain events,
and � is a permutation, there exists a memory state m0 that leads to a
permutation of these events.”

– Under m, I query queues 1,3,4
) 9m0, under which I query 2,4,6

⇡(m) m m0 queries q q0 q00 1 2 3 4 5 6 7 ⇡

few memory states ) few di↵erent ⇡(m)

Negative result

• Thm: Under symmetric policies:✓
Memory size  C logn bits, message rate  ↵n

◆
) delay � f(C,↵) > 0

• Symmetric policies: “If some memory state m leads to certain events,
and � is a permutation, there exists a memory state m0 that leads to a
permutation of these events.”

– Under m, I query queues 1,3,4
) 9m0, under which I query 2,4,6

⇡(m) m m0 queries q q0 q00 1 2 3 4 5 6 7 ⇡

few memory states ) few di↵erent ⇡(m)

Negative result

• Thm: Under symmetric policies:✓
Memory size  C logn bits, message rate  ↵n

◆
) delay � f(C,↵) > 0

• Symmetric policies: “If some memory state m leads to certain events,
any given permutation of these events occurs
under some other memory state m0 ”

– Under m, I query queues 1,3,4
) 9m0, under which I query 2,4,6

⇡(m) m m0 queries q q0 q00 1 2 3 4 5 6 7 ⇡

few memory states ) few di↵erent ⇡(m)

Negative result

• Thm: Under symmetric policies:✓
Memory size  C logn bits, message rate  ↵n

◆
) delay � f(C,↵) > 0

• Symmetric policies: “If some memory state m leads to certain events,
any given permutation of these events occurs
under some other memory state m0 ”

– Example: Under m, I query queues 1,3,4
) 9m0, under which I query 2,4,6

⇡(m) m m0 queries q q0 q00 1 2 3 4 5 6 7 ⇡

few memory states ) few di↵erent ⇡(m)

Negative result

• Thm: Under symmetric policies:✓
Memory size  C logn bits, message rate  ↵n

◆
) delay � f(C,↵) > 0

• Symmetric policies: “If some memory state m leads to certain events,
any given permutation of these events occurs
under some other memory state m0 ”

– Example: Under m, I query queues 1,3,4
) 9m0, under which I query 2,4,6

• Some possible actions:

– Under m, I query 1, . . . , C

– can also query other queues with equal probabilities

• Impossible:

– Under m, I query 1, . . . , C +1

• Loosely speaking: only C nodes can be treated in a “special” manner

• If we get C + 1 arrivals in a row, and no messages from idle servers, at
least one job will be sent to a “random” server

⇡(m) m m0 queries q q0 q00 1 2 3 4 5 6 7 ⇡

few memory states ) few di↵erent ⇡(m)

Negative result

• Thm: Under symmetric policies:✓
Memory size  C logn bits, message rate  ↵n

◆
) delay � f(C,↵) > 0

• Symmetric policies: “If some memory state m leads to certain events,
any given permutation of these events occurs
under some other memory state m0 ”

– Example: Under m, I query queues 1,3,4
) 9m0, under which I query 2,4,6

• Some possible actions:

– Under m, I query 1, . . . , C

– can also query other queues with equal probabilities

• Impossible:

– Under m, I query 1, . . . , C +1

• Loosely speaking: only C nodes can be treated in a “special” manner

• If we get C + 1 arrivals in a row, and no messages from idle servers, at
least one job will be sent to a “random” server

⇡(m) m m0 queries q q0 q00 1 2 3 4 5 6 7 ⇡

few memory states ) few di↵erent ⇡(m)

Negative result

• Thm: Under symmetric policies:✓
Memory size  C logn bits, message rate  ↵n

◆
) delay � f(C,↵) > 0

• Symmetric policies: “If some memory state m leads to certain events,
any given permutation of these events occurs
under some other memory state m0 ”

– Example: Under m, I query queues 1,3,4
) 9m0, under which I query 2,4,6

• Some possible actions:

– Under m, I query 1, . . . , C

– can also query other queues with equal probabilities

• Impossible: Under m, I query 1, . . . , C +1

• Loosely speaking: only C nodes can be treated in a “special” manner

• If we get C + 1 arrivals in a row, and no messages from idle servers, at
least one job will be sent to a “random” server

⇡(m) m m0 queries q q0 q00 1 2 3 4 5 6 7 ⇡

few memory states ) few di↵erent ⇡(m)

Negative result

• Thm: Under symmetric policies:✓
Memory size  C logn bits, message rate  ↵n

◆
) delay � f(C,↵) > 0

• Symmetric policies: “If some memory state m leads to certain events,
any given permutation of these events occurs
under some other memory state m0 ”

– Example: Under m, I query queues 1,3,4
) 9m0, under which I query 2,4,6

• Some possible actions:

– Under m, I query 1, . . . , C

– can also query other queues with equal probabilities

• Impossible: Under m, I query 1, . . . , C +1

• Loosely speaking: only C nodes can be treated in a “special” manner

• If we get C + 1 arrivals in a row, and no messages from idle servers, at
least one job will be sent to a “random” server

⇡(m) m m0 queries q q0 q00 1 2 3 4 5 6 7 ⇡

few memory states ) few di↵erent ⇡(m)



Negative result

• Thm: Under symmetric policies:✓
Memory size  C logn bits, message rate  ↵n

◆
) delay � f(C,↵) > 0

• Symmetric policies: “If some memory state m leads to certain events,
and � is a permutation, there exists a memory state m0 that leads to a
permutation of these events.”

– Under m, I query queues 1,3,4
) 9m0, under which I query 2,4,6

⇡(m) m m0 queries q q0 q00 1 2 3 4 5 6 7 ⇡

few memory states ) few di↵erent ⇡(m)

Negative result

• Thm: Under symmetric policies:✓
Memory size  C logn bits, message rate  ↵n

◆
) delay � f(C,↵) > 0

• Symmetric policies: “If some memory state m leads to certain events,
and � is a permutation, there exists a memory state m0 that leads to a
permutation of these events.”

– Under m, I query queues 1,3,4
) 9m0, under which I query 2,4,6

⇡(m) m m0 queries q q0 q00 1 2 3 4 5 6 7 ⇡

few memory states ) few di↵erent ⇡(m)

Negative result

• Thm: Under symmetric policies:✓
Memory size  C logn bits, message rate  ↵n

◆
) delay � f(C,↵) > 0

• Symmetric policies: “If some memory state m leads to certain events,
any given permutation of these events occurs
under some other memory state m0 ”

– Under m, I query queues 1,3,4
) 9m0, under which I query 2,4,6

⇡(m) m m0 queries q q0 q00 1 2 3 4 5 6 7 ⇡

few memory states ) few di↵erent ⇡(m)

Negative result

• Thm: Under symmetric policies:✓
Memory size  C logn bits, message rate  ↵n

◆
) delay � f(C,↵) > 0

• Symmetric policies: “If some memory state m leads to certain events,
any given permutation of these events occurs
under some other memory state m0 ”

– Example: Under m, I query queues 1,3,4
) 9m0, under which I query 2,4,6

⇡(m) m m0 queries q q0 q00 1 2 3 4 5 6 7 ⇡

few memory states ) few di↵erent ⇡(m)

Negative result

• Thm: Under symmetric policies:✓
Memory size  C logn bits, message rate  ↵n

◆
) delay � f(C,↵) > 0

• Symmetric policies: “If some memory state m leads to certain events,
any given permutation of these events occurs
under some other memory state m0 ”

– Example: Under m, I query queues 1,3,4
) 9m0, under which I query 2,4,6

• Some possible actions:

– Under m, I query 1, . . . , C

– can also query other queues with equal probabilities

• Impossible:

– Under m, I query 1, . . . , C +1

• Loosely speaking: only C nodes can be treated in a “special” manner

• If we get C + 1 arrivals in a row, and no messages from idle servers, at
least one job will be sent to a “random” server

⇡(m) m m0 queries q q0 q00 1 2 3 4 5 6 7 ⇡

few memory states ) few di↵erent ⇡(m)

Negative result

• Thm: Under symmetric policies:✓
Memory size  C logn bits, message rate  ↵n

◆
) delay � f(C,↵) > 0

• Symmetric policies: “If some memory state m leads to certain events,
any given permutation of these events occurs
under some other memory state m0 ”

– Example: Under m, I query queues 1,3,4
) 9m0, under which I query 2,4,6

• Some possible actions:

– Under m, I query 1, . . . , C

– can also query other queues with equal probabilities

• Impossible:

– Under m, I query 1, . . . , C +1

• Loosely speaking: only C nodes can be treated in a “special” manner

• If we get C + 1 arrivals in a row, and no messages from idle servers, at
least one job will be sent to a “random” server

⇡(m) m m0 queries q q0 q00 1 2 3 4 5 6 7 ⇡

few memory states ) few di↵erent ⇡(m)

Negative result

• Thm: Under symmetric policies:✓
Memory size  C logn bits, message rate  ↵n

◆
) delay � f(C,↵) > 0

• Symmetric policies: “If some memory state m leads to certain events,
any given permutation of these events occurs
under some other memory state m0 ”

– Example: Under m, I query queues 1,3,4
) 9m0, under which I query 2,4,6

• Some possible actions:

– Under m, I query 1, . . . , C

– can also query other queues with equal probabilities

• Impossible: Under m, I query 1, . . . , C +1

• Loosely speaking: only C nodes can be treated in a “special” manner

• If we get C + 1 arrivals in a row, and no messages from idle servers, at
least one job will be sent to a “random” server

⇡(m) m m0 queries q q0 q00 1 2 3 4 5 6 7 ⇡

few memory states ) few di↵erent ⇡(m)

Negative result

• Thm: Under symmetric policies:✓
Memory size  C logn bits, message rate  ↵n

◆
) delay � f(C,↵) > 0

• Symmetric policies: “If some memory state m leads to certain events,
any given permutation of these events occurs
under some other memory state m0 ”

– Example: Under m, I query queues 1,3,4
) 9m0, under which I query 2,4,6

• Some possible actions:

– Under m, I query 1, . . . , C

– can also query other queues with equal probabilities

• Impossible: Under m, I query 1, . . . , C +1

• Loosely speaking: only C nodes can be treated in a “special” manner

• If we get C + 1 arrivals in a row, and no messages from idle servers, at
least one job will be sent to a “random” server

⇡(m) m m0 queries q q0 q00 1 2 3 4 5 6 7 ⇡

few memory states ) few di↵erent ⇡(m)

Negative result

• Thm: Under symmetric policies:✓
Memory size  C logn bits, message rate  ↵n

◆
) delay � f(C,↵) > 0

• Symmetric policies: “If some memory state m leads to certain events,
any given permutation of these events occurs
under some other memory state m0 ”

– Example: Under m, I query queues 1,3,4
) 9m0, under which I query 2,4,6

• Some possible actions:

– Under m, I query 1, . . . , C

– can also query other queues with equal probabilities

• Impossible: Under m, I query 1, . . . , C +1

• Loosely speaking: only C nodes can be treated in a “special” manner

• If we get C +1 arrivals in a row, and no messages from idle servers,
at least one job will be sent to a “random” server

⇡(m) m m0 queries q q0 q00 1 2 3 4 5 6 7 ⇡

few memory states ) few di↵erent ⇡(m)



Extensions, variations

• Allow queue at the dispatcher, queue capacity ! 1

– can get vanishing delay

– but this is like the large memory case

– Allow finite capacity queue at the dispatcher

– same negative result [high probability conjecture]

• Messages are instantaneous, but allow arbitrary rounds of back-and-forth
messages in zero time

• Conjecture: the impossibility result holds for arbitrary (non-symmetric)
policies
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