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Motivation

e Many modern queueing systems are large scale

e Operating optimally requires large scale resources

e Understand the best performance
under limited resource availability

e Our context: Dispatching policies

with limited memory and limited information exchange
IN @ Many-server queueing system
(supermarket model)
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e [ he fluid equations have a solution

(indirect proof: stochastic system trajectories have limit points,
and these satisfy fluid equations)

e Unique solution

(resource constrained case: from Lipschitz continuity of r.h.s.
other cases: more delicate, because FPy(s) is discontinuous)

e Unique equilibrium point s* (algebra)
which is asymptotically stable for all (interesting) initial conditions
(sandwich between tractable solutions)
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— Pg (and therefore, delay): independent of A
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Negative result

e Thm: Under symmetric policies:
(I\/Iemory size < C'logn bits, message rate < om,) = delay > f(C,a) >0

e Symmetric policies: “If some memory state m leads to certain events,
any given permutation of these events occurs
under some other memory state m/ "

— Example: Under m, I query queues 1,3.4
= Jm/, under which I query 2.4.6

e Some possible actions:
— Under m, I query 1,...,C

— can also query other queues with equal probabilities
e Impossible: Under m, I query 1,...,C 41

e | oosely speaking: only C nodes can be treated in a ‘special’” manner

o If we get '+ 1 arrivals in a row, and no messages from idle servers,
at least one job will be sent to a “random’ server



Extensions, variations



Extensions, variations

e Allow queue at the dispatcher, queue capacity — oo



Extensions, variations

e Allow queue at the dispatcher, queue capacity — oo

— can get vanishing delay with constant message rate and zero memory
(essentially M/M/n queue)

— but this is like the large memory case



Extensions, variations

e Allow queue at the dispatcher, queue capacity — oo

— can get vanishing delay with constant message rate and zero memory
(essentially M/M/n queue)

— but this is like the large memory case

e Allow finite capacity queue at the dispatcher

— Same negative result



Extensions, variations

e Allow queue at the dispatcher, queue capacity — oo

— can get vanishing delay with constant message rate and zero memory
(essentially M/M/n queue)

— but this is like the large memory case

e Allow finite capacity queue at the dispatcher

— Same negative result

e Conjecture: the impossibility result holds
for arbitrary (non-symmetric) policies



