Delay, memory, and messaging tradeoffs
INn distributed service systems

John N. Tsitsiklis
(with D. Gamarnik and M. Zubeldia)

January 2016

Motivation

e Many modern queueing systems are large scale

e Operating optimally requires large scale resources

e Understand the best performance
under limited resource availability

e Our context: Dispatching policies

with limited memory and limited information exchange
IN @ Many-server queueing system
(supermarket model)

Outline

e [he supermarket model

— overview and comparison of some policies

e A (somewhat) new policy

— performance in three regimes
e Lower bound on resources required
e Technical details

e Conclusion

T he model

Dispatch

er

AN

OO QOO

T he model

Dispatch

er

Incoming jobs

Poisson
rate: A -n
O< A<l

AN

OO QOO

T he model -

DlSPatChe% Q n servers
Incoming job; : > eXx p onen t| d I
rate: 1
Poisson \ Q
rate: A -n -
O< A< - Q)

A few policies -

Dispatcher
n Servers

\ exponential
rate: 1

Incoming jobs

Poisson
rate: A -n
O< A<l

AN

OO QOO

>

memary
(bits)

O(n)

> logn

O (logn)

>

>1 n
@(Hessages per job

A few policies —

@)
DiSpatche% @ n Servers
Incoming jobs : > exp O n e ntl a I
rate: 1
Poisson \ Q
rate: \-n -
O< A1 - Q)
memory 4
(bits)
¢ Random routing (RaR) O(n)
> logn
O (logn)
>

>1 n
e(Hessages per job

A few policies -

Dispatcher
n Servers

\ exponential
rate: 1

Incoming jobs

Poisson
rate: A -n
O< A<l

AN

OO QOO

>

memary
(bits)

e Random routing (RaR) O(n)

> logn

o (logn)

RaR. >

>1 n
e(Hessages per job

A few policies -

Dispatcher
n Servers

\ exponential
rate: 1 o O

delay e

® 4~ 0

n— 00

Incoming jobs

Poisson
rate: A -n
O< A<l

AN

OO QOO

>

memary
(bits)

e Random routing (RaR) O(n)

> logn

o (logn)

RaR. >

>1 n
e(Hessages per job

A few policies —

@)
DiSpatche% @ n Servers
Incoming jobs : > exp O n e ntl a I
rate: 1
Poisson \ Q delay ° ”:goo
rate: \-n _ ® 4~ 0
Q ns oo
O< A1 L)
memory 4
(bits)
¢ Random routing (RaR) O(n)
e Round robin (RR)
> logn
O (logn)
RaR. >

>1 n
e(Hessages per job

A few policies —

@)
DiSpatche% @ n Servers
Incoming jobs : > exp O n e ntl a I
| rate: 1 — 0
Poisson \ Q delay ® no
rate: \-n _ ® 4~ 0
n—oo
O< A1 - Q)
memory 4
(bits)
¢ Random routing (RaR) O(n)
e Round robin (RR)
> logn
©(logn)eRR
RaR. >

>1 n
e(Hessages per job

A few policies -

(O
DiSpatChe%] @ n servers
Incoming jobs : > expo n entl a I
rate: 1
Poisson \ — Q dolay ® n:;oo
rate: A-n ® 4 0
Q n—oo
O< A1 J
memory 4
(bits)
e Random routing (RaR) O(n)
e Round robin (RR)
e Join the shortest queue (JSQ) > logn
O(logn)eRR
RaR. >

>1 n
e(Hessages per job

A few policies -

(O
DiSpatChe%] @ n servers
{ncoming jobs : \ exponential
rate: 1
Poisson \] Q
rate: A-n
O< A1 Q)
memory 4
(bits)
e Random routing (RaR) O(n)
e Round robin (RR)
e Join the shortest queue (JSQ) > logn
O(logn)eRR
RaR.

delay

— 0
n—oo

n— 00

JSQ
o>

>1 n
@(Hessag

es per job

A few policies -

(O
DlSpatChe%] @ n servers
{neoming jobs : \ exponential
rate: 1
Poisson \ . ® njooo
for Q delay
O< A1 Q) o
memory 4
(bits)
e Random routing (RaR) O(n)
e Round robin (RR)
e Join the shortest queue (JSQ) > logn
e Join shortest of d (JSQ(d)) ©(logn)eRR
Vvedenskaya et al. (1996), Mitzenmacher (1996)
JSQ
RaR. o>

>1 n
e(Hessages per job

A few policies -

(O
DlSpatChe%] @ n servers
{neoming jobs : \ exponential
rate: 1
Poisson \ . ® njooo
for Q delay
O< A1 Q) o
memaory 4
(bits)
e Random routing (RaR) O(n)
e Round robin (RR)
e Join the shortest queue (JSQ) > logn
e Join shortest of d (JSQ(d)) ©(logn)eRR
Vvedenskaya et al. (1996), Mitzenmacher (1996)
JSQ
RaRe O =" o>
o(1) >1 n
essages per job

A few policies _

DlSpatChe% o @ n servers
e : . exponential
rate: 1
Poisson \ . ® njooo
for Q delay
rate. 0} ® 74 0
O< A1 Q n—r00
memaory 4
(bits)
e Random routing (RaR) e(n)
e Round robin (RR)
e Join the shortest queue (JSQ) > logn
e Join shortest of d (JSQ(d)) O(logn)eRR
Vvedenskaya et al. (1996), Mitzenmacher (1996)
. JSQ
e Idle servers pull jobs (Pull) RaReg 0SS o>
Badonnel & Burgess (2008), Y. Lu et al. (2011), Stolyar (2015) @(Hessaggg éer ?Ob

A few policies _

DlSpatChe% | @ n Servers
e : . exponential
rate: 1
Poisson \ . ® njooo
te: X Q delay
rate. N ® 74 0
O< A1 Q n— 00
memory 4
(bits) Pull
e Random routing (RaR) O(n) O
e Round robin (RR)
e Join the shortest queue (JSQ) > logn
e Join shortest of d (JSQ(d)) O(logn)eRR
Vvedenskaya et al. (1996), Mitzenmacher (1996)
. JSQ
e Idle servers pull jobs (Pull) RaReg 0SS o>
Badonnel & Burgess (2008), Y. Lu et al. (2011), Stolyar (2015) @(Hessaggg éer ?Ob

Our policy

Jobs to

Dispatcher

empty queues

Messages from

idle servers

Our policy

— 3y | Dispatcher

Jobs to

empty queues

.
.
.
.
.
.
.
.
.
.
.
.
.

Messages from

idle servers

Idle processors send messages at rate v,

Our policy

Jobs to

— 3y | Dispatcher

empty queues

.
.
.
.
.
.
.
.
.
.
.
.
.

Messages from

idle servers

Idle processors send messages at rate v,

message rate per job = v,

Our DOlicy Queue of tokens

Cn

— 3y | Dispatcher

Jobs to

empty queues

.
.
.
.
.
.
.
.
.
.
.
.
.

Messages from

idle servers

Idle processors send messages at rate v,

message rate per job = v,

Our policy

Queue of tokens

Cn

Jobs to

empty queues

Dispatcher

.
.
.
.
.
.
.
.
.
.
.
.
.

Messages from

idle servers

e Iidle processors send messages at rate vy,
message rate per job = v,

e make an entry in the memory, if there is room [c,]

memory size ¢, logn

Our DOlicy Queue of tokens

e idle

e make an entry in the memory, if there is room [c,]

Cn

Jobs to

empty queues

— 3y | Dispatcher

.
.
.
.
.
.
.
.
.
.
.
.
.

Messages from

idle servers

processors send messages at rate v,
message rate per job = v,

memory size ¢, logn

e when job arrives:

send to server in memory
If empty memory, send to random server

High message rate regime

memaory
(bits)

O(n)

> logn

O (logn)

RaR

Queue of tokens

Cn

Jobs to

empty queues

A_-n) Dispatcher
F.

A Messages from
[u | | idle servers
®

® RR

JSQ

e o= -

1 o(1) >1 n

messages per job

High message rate regime

® Uy — OO

e cn, =const

memaory
(bits)

O(n)

> logn

O (logn)

RaR

Queue of tokens

Cn

Jobs to

empty queues

A_-n) Dispatcher

ant > 1 ..

A Messages from
[u | | idle servers
®

® RR

JSQ

e o= -

1 o(1) >1 n

messages per job

High message rate regime

® Uy — OO

e cn, =const

e gueueing delay — O

memaory
(bits)

O(n)

> logn

O (logn)

RaR

Queue of tokens

Cn

Jobs to

empty queues

A_-n) Dispatcher

ant > 1 ..

A Messages from
[u | | idle servers
®

® RR

JSQ

e o= -

1 o(1) >1 n

messages per job

High message rate regime

® Uy — OO

e cn, =const

e gueueing delay — O

memaory
(bits)

O(n)

> logn

O (logn)

RaR

Queue of tokens

Cn

Jobs to

empty queues

A_-n) Dispatcher

ant > 1 ..

A Messages from
[u | | idle servers
®

® RR O

JSQ

e o= -

1 o(1) >1 n

messages per job

High memory regime Queue of tokens

Cn

Jobs to

empty queues

___ | Dispatcher

.
.
.
.
.
.
.
.
.
.
.
.
.

Messages from

memaory 4
(b |tS) P u | | idle servers
©(n) O
> logn
O (logn)eRR o
JSQ
Rak o——eisQ(dH o
©(1) >1 n

messages per job

High memory regime Queue of tokens

e v, =cCconstant > ———

Cn

1 - >\ Jobs to
empty queues
A1 .
— 3y | Dispatcher
..
memaory 4 Messages from
(b|tS) P u || idle servers
©(n) O
> logn
O(logn)eRR ®
JSQ
RaRe——eisQth o>
©(1) >1 n

messages per job

High memory regime Queue of tokens

e v, =constant > ——

Cn

1 - >\ Jobs to
empty queues
® Cp = X0)_n) Dispatcher
..
memaory 4 Messages from
(b|tS) P u || idle servers
©(n) O
> logn
O(logn)eRR ®
JSQ
RaRe——eisQth o>
©(1) >1 n

messages per job

High memory regime Queue of tokens

e 1y = constant > T

® Cpn — OO

e ueueing delay — 0O

Cn

Jobs to

empty queues

A_-n) Dispatcher

.
.
.
.
.
.
.
.
.
.
.
.
.

Messages from

memaory 4
(b |tS) P u | | idle servers
©(n) O
> logn
O (logn)eRR o
JSQ
Rak o——eisQ(dH o
©(1) >1 n

messages per job

High memory regime Queue of tokens

e 1y = constant > T

® Cpn — OO

e ueueing delay — 0O

Cn

Jobs to

empty queues

A_-n) Dispatcher

.
.
.
.
.
.
.
.
.
.
.
.
.

Messages from

memory 4
(b |tS) P u | | idle servers
©(n) O
> logn ®
O (logn)eRR o
JSQ
Rak o——eisQ(dH o
©(1) >1 n

messages per job

Parsimonious regime Queue of tokens

>

memory

Cn

Jobs to

empty queues

___ | Dispatcher

.
.
.
.
.
.
.
.
.
.
.
.
.

Messages from

(b |tS) P u | | idle servers
©(n) O
> logn ®
O (logn)eRR o
JSQ
Rak o——eisQ(dH o
©(1) >1 n

messages per job

Parsimonious regime Queue of tokens

e 1, = constant

® ¢, — constant

Cn

Jobs to

empty queues

— 3y | Dispatcher

.
.
.
.
.
.
.
.
.
.
.
.
.

Messages from

memory 4
(b |tS) P u | | idle servers
©(n) O
> logn ®
O (logn)eRR o
JSQ
Rak o——eisQ(dH o
©(1) >1 n

messages per job

Parsimonious regime Queue of tokens
Cn

e 1, = constant

Jobs to

empty queues

e cp, = constant

A_-n) Dispatcher
e queueing delay /4 O r Un,
memory A Messages from
(b |tS) P u | | idle servers
©(n) O
> logn ®
O(logn)eRR ®
JSQ
Rak o——eisQ(dH o
©(1) >1 n

messages per job

Parsimonious regime Queue of tokens
Cn

e 1, = constant

Jobs to

empty queues

e cp, = constant

A_-n) Dispatcher
e queueing delay /4 O r Un,
memory A Messages from
(b |tS) P u | | idle servers
©(n) O
> logn ®
©(logn)9RR @ @
JSQ
Rak o——eisQ(dH o
©(1) >1 n

messages per job

Parsimonious regime

e v, — constant

Queue of tokens

Cn

Messages from

e cp, = constant
A_-n) Dispatcher
e queueing delay 4 0O
memory 4
(bits) Pull
©(n) O
> logn ®
©(logn)9RR @ @
JSQ
RaRe——edsath o~
e(1) >1 n

messages per job

Jobs to

empty queues

.
.
.
.
.
.
.
.
.
.
.
.
.

idle servers

00O OC

/

e EXxpressions for delay
via fluid models

Parsimonious regime Queue of tokens
Cn

e 1, = constant

Jobs to

empty queues

® ¢, — constant

00O OC

An .
— 3y | Dispatcher
: .
e queueing delay /4 O T Vn
Mmemory 4 Messages from
(b |tS) P u | | idle servers)
O (n) ® e EXpressions for delay

via fluid models
e Bounded delay as A — 1

> logn ®
O(logn)eRR @ @
JSQ
Rak o——eisQ(dH o
©(1) >1 n

messages per job

Parsimonious regime Queue of tokens
Cn

e 1, = constant

Jobs to

empty queues

e cp, = constant

00O OC

A_-n) Dispatcher
e queueing delay 4 O r U
memory A Messages from
(b |tS) P u | | idle servers)
S(n) ® e Expressions for delay
via fluid models
| e Bounded delay as A —» 1
> 1ogn O e Better than JSQ(d)
O(logn)9RR @ ®
JSQ
RaRe——edsath o~
e(1) >1 n

messages per job

Parsimonious regime Queue of tokens
Cn

e v, — constant

Jobs to

empty queues

® ¢, — constant

00O OC

A_-n) Dispatcher
r.
e queueing delay 4 0O e Un
m em ory 4 Messages from
(b |tS) Pull idle servers)
O (n) ® e EXpressions for delay
via fluid models
| e Bounded delay as A — 1
= [eg 0 e Better than JSQ(d)
S(logn)9RR @ O N
JSQ
RaR @——eisa(H - Bof
©(1) >1 n b
messages per job o I I S P

05 1 15 2 25 3 35 4 45 5 55
log(1/(1-A))

Cannot do better

memory

>

memory

Jobs to

empty queues

___ | Dispatcher

.
.
.
. n
.
.

Messages from

idle servers

(bits) Pull
©(n) O
> logn ®
O(logn)eRR @ @
JSQ
RaRe——edsath A
e(1) >1 n

messages per job

Cannot do better

memory
e 1, = constant Jobs to
empty queues
o O(logn) memory A_n) Dispatcher
r.
Messages from
idle servers
memaory 4
(bits) Pull
©(n) ®
> logn P
O(logn)eRR e o
JSQ
RaRe—edsq(h 4
O(1) >1 n

messages per job

Cannot do better — \
memory —_—
e 1, = constant Jobs to
empty queues
e O©(logn) memory >‘_””; Dispatcher

.
.
.
. n
.
.

Messages from e

idle servers

00 OC

/

>

memaory

(bits) Pull
S(n) ® |
e Thm: queueing delay 4 0O
> logn PS
S(logn)gRR @ O
JSQ
RaRe——edsath o
e(1) >1 n

messages per job

Cannot do better — \
memory —_—
e 1, = constant Jobs to
empty queues
e O©(logn) memory >‘_””; Dispatcher

memory 4
(bits) Pull
©(n) O
> logn O
S(logn)gRR @ O
JSQ
RaRe——edsath o
e(1) >1 n

messages per job

.
.
.
. n
.
.

Messages from e, —

idle servers

00 OC

/

e Thm: queueing delay 4 0O

e Assumptions:
— NO queueing at dispatcher
— Y“symmetric’ policy

— not too many
back-and-forths
iIn too little time

T he technical side

Two time scale dynamics

Queue of tokens

Cn

Jobs to

empty queues

e Dispatcher

Messages from

idle servers

Two time scale dynamics

o S7'(t): fraction of servers
with at least ¢ jobs
(in queue or in service)

Queue of tokens

Cn

Jobs to

empty queues

e Dispatcher

Messages from

idle servers

Two time scale dynamics

o S7'(t): fraction of servers
with at least ¢ jobs
(in queue or in service)

— (oco-dimensional) state: S™(t)

Queue of tokens

Cn

Jobs to

empty queues

e Dispatcher

Messages from

idle servers

Two time scale dynamics

o S7'(t): fraction of servers

Queue of tokens

Cn

Jobs to

with at least ¢ jobs
(in queue or in service)

Dispatcher

empty queues

— (oco-dimensional) state: S™(t)

o S"(t) =5 = S*™M(r)~sfort<rt<t+e

Messages from

idle servers

Two time scale dynamics o e

o S7'(t): fraction of servers /
with at least i jobs "

e Dispatcher

(in queue or in service)

— (oco-dimensional) state: S™(t)

Messages from

idle servers

o S"(t) =5 = S*™M(r)~sfort<rt<t+e

e During e time interval have Q2(n) arrivals/departures

OO QOO

Two time scale dynamics Quene ofttokens —

Cn

o S7'(t): fraction of servers /
with at least i jobs "

e Dispatcher

(in queue or in service)

— (oco-dimensional) state: S™(t)

Messages from e ——

idle servers

o S"(t) =5 = S*™M(r)~sfort<rt<t+e -

OO QOO

e During e time interval have Q2(n) arrivals/departures

e With bounded token queue, enough time for it to reach steady state

Two time scale dynamics Quene ofttokens —

Cn

o S7'(t): fraction of servers /
with at least i jobs "

e Dispatcher

(in queue or in service)

— (oco-dimensional) state: S™(t)

Messages from e ——

OO QOO

idle servers

o S"(t) =5 = S*™M(r)~sfort<rt<t+e
e During e time interval have Q2(n) arrivals/departures
e With bounded token queue, enough time for it to reach steady state

e [H(s): steady-state prob(empty)

Two time scale dynamics

o S7'(t): fraction of servers
with at least ¢ jobs
(in queue or in service)

— (oco-dimensional) state: S™(t)

Queue of tokens

e Dispatcher

Cn

Jobs to
empty queues

Messages from ’

o S"(t) =5 = S*™M(r)~sfort<rt<t+e

idle servers

e During e time interval have Q2(n) arrivals/departures

OO QOO

e With bounded token queue, enough time for it to reach steady state

e [H(s): steady-state prob(empty)

v(1l —s1)n T

The “easy’ cases

e [y(s): steady-state prob(empty)

v(1l —s1)n T

e—0—0—0— 0O

The “easy’ cases

e [y(s): steady-state prob(empty)

e High message rate regime: v — oo:
= delay — O

v(1l —s1)n T

PO(S) — 0

e—0—0—0— 0O

The “easy’ cases

e [y(s): steady-state prob(empty)

e High message rate regime: v — oo:
= delay — O

e High memory regime: memory — oo

v(1l —s1)n T

PO(S) — 0

e—0—0—0— 0O

The “easy’ cases

e [y(s): steady-state prob(empty) v(l —s1)n T

e High message rate regime: v — oco: Py(s) — 0
= delay — 0O

e High memory regime: memory — oo

— Py(s) — 0, as long as drift is upwards

e—0—0—0— 0O

The “easy’ cases

e [y(s): steady-state prob(empty) v(l —s1)n T

e High message rate regime: v — oco: Py(s) — 0
= delay — 0O

e High memory regime: memory — oo

— Py(s) — 0, as long as drift is upwards

— In steady state: s; = X\ (Little’s law)

e—0—0—0— 0O

The “easy’ cases

e [y(s): steady-state prob(empty) v(l —s1)n T

e High message rate regime: v — oco: Py(s) — 0
= delay — 0O

e High memory regime: memory — oo

— Py(s) — 0, as long as drift is upwards

— In steady state: s; = X\ (Little’s law)

— delay — 0 iff (1 —X) > A

e—0—0—0— 0O

The resource constrained case - fluid model

Po(s) =

> (

k=0

v(1l—s1)

A

’

—1

v(1l —s1)n T

e—0—0—0— 0O

T he resource constrained case - fluid model

Po(s) =

C

> (

k=0

v(1l—s1)

A

’

Lipschitz continuous in s

—1

v(1l —s1)n T

e—0—0—0— 0O

T he resource constrained case - fluid model

Po(s) = i (V(]_—Sl))k-

k=0 A

—1

v(1l —s1)n T

Lipschitz continuous in s

e S™(t) evolves in a slower time scale

e—0—0—0— 0O

T he resource constrained case - fluid model

Po(s) = i (V(]_—Sl))k-

k=0 A

—1

v(1l —s1)n T

e—0—0—0— 0O

Lipschitz continuous in s

e S™(t) evolves in a slower time scale

e during [t,t+ €], fraction Py(s) of arriving jobs get routed randomly

T he resource constrained case - fluid model

Po(s) = i (V(l—sl))k-

k=0 A

—1

v(1l —s1)n T

e—0—0—0— 0O

Lipschitz continuous in s

e S™(t) evolves in a slower time scale

e during [t,t+ €], fraction Py(s) of arriving jobs get routed randomly

dsq
dt

ds;
dt

(1) = Al1l = Po($)] + A1 — s1(0)]Po(t) — [s1(t) — s2(¢)]

(1) = Alsi—1(t) — si()] Po(t) — [si(2) — si41(D)], @ 2> 2

T he theorems

T he theorems

e [he fluid equations have a solution

(indirect proof: stochastic system trajectories have limit points,
and these satisfy fluid equations)

T he theorems

e [he fluid equations have a solution

(indirect proof: stochastic system trajectories have limit points,
and these satisfy fluid equations)

e Unique solution

(resource constrained case: from Lipschitz continuity of r.h.s.
other cases: more delicate, because FPy(s) is discontinuous)

T he theorems

e [he fluid equations have a solution

(indirect proof: stochastic system trajectories have limit points,
and these satisfy fluid equations)

e Unique solution

(resource constrained case: from Lipschitz continuity of r.h.s.
other cases: more delicate, because FPy(s) is discontinuous)

e Unique equilibrium point s* (algebra)
which is asymptotically stable for all (interesting) initial conditions
(sandwich between tractable solutions)

The theorems (ctd.)

n — oo

Sn(t) >5(t)
t — o0 t — 00
v v
n —> *
n n — 00 >

e sStandard “proof technology”

The theorems (ctd.)

n — o0

Sn(t) >5(t)
t — o0 t — 00
v v
n —> *
n n — 00 >

e sStandard “proof technology”

o0
e E, [delay] — E.«[delay] = Z S;
i=1

Delay analysis (resource constrained case)

Delay analysis (resource constrained case)

Delay analysis (resource constrained case)

o Pj = Py(s™) =

C

> (

| k=0

v(l—MX\)

A

’

Delay analysis (resource constrained case)

Cou(l =) k
® s¥T =\ OP*:P(S*):
! 070 ,;::O(A)

. %(t) = A1 = Po(O)] + A[1 = s1(O)]Po(t) — [51(£) — s2(¢)]

. %(t) = Alsi—1(8) — si(D]Po(t) — [si(t) — ;421 (H)], ¢ 22

Delay analysis (resource constrained case)

Cou(l =) k
® s¥T =\ OP*:P(S*):
! 070 ,;::O(A)

. %(t) = A1 = Po(O)] + A[1 = s1(O)]Po(t) — [51(£) — s2(¢)]

. %(t) = Alsi—1(8) — si(D]Po(t) — [si(t) — ;421 (H)], ¢ 22

AP
1— AP}

o sf=\O\Pg)1 o Eldelay] =

Delay analysis (resource constrained case)

Cou(1 =) k
o st =) o Py = Py(s*) =
1 00 ,;::O(A)

. %(t) = A1 = Po(O)] + A[1 = s1(O)]Po(t) — [51(£) — s2(¢)]

. %(t) = Alsi—1(8) — si(D]Po(t) — [si(t) — ;421 (H)], ¢ 22

AP
1— AP}

¢ sf= A()\pg)i—l e E[delay] =

Heavy-traffic analysis, A {1

Delay analysis (resource constrained case)

Cou(l =) k
® s¥T =\ OP*:P(S*):
1 0= "0 ,;::O()\)

. %(t) = A1 = Po(O)] + A[1 = s1(O)]Po(t) — [51(£) — s2(¢)]

. %(t) = Alsi—1(8) — si(D]Po(t) — [si(t) — ;421 (H)], ¢ 22

AP
1— AP}

o sf=\O\Pg)1 o Eldelay] =

Heavy-traffic analysis, A {1

e Choose v so that v(1 —)\) = X\d

Delay analysis (resource constrained case)

X
.S’i

C

v(l — A\

=\ o Pi=Py(s*) = Z((/\)
k=0
%(t) = A1 = Po()] + Al1 = s1()]Po(t) — [s1(2) — s2(2)]
(1) = A1 () — OV — [5:(8) — saa (D], i 2

= XX(APg) 1 e E[delay] = 0
(AFG) [delay] Y

Heavy-traffic analysis, A {1

e Choose v so that v(1 —)\) = X\d

Messages per unit time: Adn

’

Delay analysis (resource constrained case)

Cou(1 =) k
® s¥T =\ OP*:P(S*):
! 0= "0 ,;::O()\)

. %(t) = A1 = Po(®)] + A1 = s1(0)]Po(t) — [s1() — s2(¢)]

. %(t) = Alsi—1(8) — si(D]Po(t) — [si(t) — ;421 (H)], ¢ 22

AP
1— AP}

o sf=\O\Pg)1 o Eldelay] =

Heavy-traffic analysis, A {1

e Choose v so that v(1 —)\) = X\d

— Messages per unit time: Adn

— Pg (and therefore, delay): independent of A

Delay analysis (resource constrained case)

Cou(1 =) k
o st =) o Py = Py(s*) =
1 00 go(A)

. %(t) = A1 = Po(®)] + A1 = s1(0)]Po(t) — [s1() — s2(¢)]

. %(t) = Alsi—1(8) — si(D]Po(t) — [si(t) — ;421 (H)], ¢ 22

AP
1— AP}

¢ sf= A()\pg)i—l e E[delay] =

Heavy-traffic analysis, A {1

e Choose v so that v(1 —)\) = X\d

— Messages per unit time: Adn
— Pg (and therefore, delay): independent of A

e Send to shortest of d sampled queues
— Messages per unit time: Adn

Delay analysis (resource constrained case)
Cou(l -)\))k

o si =) o Pj = Py(s™) = kzo(X

. %(t) = A1 = Po(®)] + A1 = s1(0)]Po(t) — [s1() — s2(¢)]

. %(t) = Alsi—1(8) — si(D]Po(t) — [si(t) — ;421 (H)], ¢ 22

AP
1— AP}

¢ sf= A()\pg)i—l e E[delay] =

Heavy-traffic analysis, A {1

e Choose v so that v(1 —)\) = X\d

— Messages per unit time: Adn
— Pg (and therefore, delay): independent of A

e Send to shortest of d sampled queues
— Messages per unit time: Adn

— Prob(find an empty queue) = 1 — X4 = 0

Delay analysis (resource constrained case)

Cou(1 =) k
o st =) o Py = Py(s*) =
1 00 ,;::O(A)

. %(t) = A1 = Po(®)] + A1 = s1(0)]Po(t) — [s1() — s2(¢)]

. %(t) = Alsi—1(8) — si(D]Po(t) — [si(t) — ;421 (H)], ¢ 22

AP
1— AP}

¢ sf= A()\pg)i—l e E[delay] =

Heavy-traffic analysis, A {1

e Choose v so that v(1 —)\) = X\d

— Messages per unit time: Adn

— Pg (and therefore, delay): independent of A

e Send to shortest of d sampled queues
— Messages per unit time: Adn

— Prob(find an empty queue) = 1 — X4 = 0

051 &
— D 1 1 1 1
delay — oo P A !
log(1/(1-A))

Negative result

e Thm: Under symmetric policies:
(I\/Iemory size < C'logn bits, message rate < om,) = delay > f(C,a) >0

Negative result

Thm: Under symmetric policies:
(I\/Iemory size < C'logn bits, message rate < om,) = delay > f(C,a) >0

Symmetric policies: “If some memory state m leads to certain events,
any given permutation of these events occurs
under some other memory state m/ "

Negative result

Thm: Under symmetric policies:
(I\/Iemory size < C'logn bits, message rate < om,) = delay > f(C,a) >0

Symmetric policies: “If some memory state m leads to certain events,
any given permutation of these events occurs
under some other memory state m/ "

— Example: Under m, I query queues 1,3.4
= Jm/, under which I query 2.4.6

Negative result

e Thm: Under symmetric policies:
(I\/Iemory size < C'logn bits, message rate < om,) = delay > f(C,a) >0

e Symmetric policies: “If some memory state m leads to certain events,
any given permutation of these events occurs
under some other memory state m/ "

— Example: Under m, I query queues 1,3.4
= Jm/, under which I query 2.4.6

e Some possible actions:
— Under m, I query 1,...,C

Negative result

e Thm: Under symmetric policies:
(I\/Iemory size < C'logn bits, message rate < om,) = delay > f(C,a) >0

e Symmetric policies: “If some memory state m leads to certain events,
any given permutation of these events occurs
under some other memory state m/ "

— Example: Under m, I query queues 1,3.4
= Jm/, under which I query 2.4.6

e Some possible actions:
— Under m, I query 1,...,C

— can also query other queues with equal probabilities

Negative result

e Thm: Under symmetric policies:
(I\/Iemory size < C'logn bits, message rate < om,) = delay > f(C,a) >0

e Symmetric policies: “If some memory state m leads to certain events,
any given permutation of these events occurs
under some other memory state m/ "

— Example: Under m, I query queues 1,3.4
= Jm/, under which I query 2.4.6

e Some possible actions:
— Under m, I query 1,...,C

— can also query other queues with equal probabilities

e Impossible: Under m, I query 1,...,C 41

Negative result

e Thm: Under symmetric policies:
(I\/Iemory size < C'logn bits, message rate < om,) = delay > f(C,a) >0

e Symmetric policies: “If some memory state m leads to certain events,
any given permutation of these events occurs
under some other memory state m/ "

— Example: Under m, I query queues 1,3.4
= Jm/, under which I query 2.4.6

e Some possible actions:
— Under m, I query 1,...,C

— can also query other queues with equal probabilities
e Impossible: Under m, I query 1,...,C 41

e | oosely speaking: only C nodes can be treated in a ‘special’” manner

Negative result

e Thm: Under symmetric policies:
(I\/Iemory size < C'logn bits, message rate < om,) = delay > f(C,a) >0

e Symmetric policies: “If some memory state m leads to certain events,
any given permutation of these events occurs
under some other memory state m/ "

— Example: Under m, I query queues 1,3.4
= Jm/, under which I query 2.4.6

e Some possible actions:
— Under m, I query 1,...,C

— can also query other queues with equal probabilities
e Impossible: Under m, I query 1,...,C 41

e | oosely speaking: only C nodes can be treated in a ‘special’” manner

o If we get '+ 1 arrivals in a row, and no messages from idle servers,
at least one job will be sent to a “random’ server

Extensions, variations

Extensions, variations

e Allow queue at the dispatcher, queue capacity — oo

Extensions, variations

e Allow queue at the dispatcher, queue capacity — oo

— can get vanishing delay with constant message rate and zero memory
(essentially M/M/n queue)

— but this is like the large memory case

Extensions, variations

e Allow queue at the dispatcher, queue capacity — oo

— can get vanishing delay with constant message rate and zero memory
(essentially M/M/n queue)

— but this is like the large memory case

e Allow finite capacity queue at the dispatcher

— Same negative result

Extensions, variations

e Allow queue at the dispatcher, queue capacity — oo

— can get vanishing delay with constant message rate and zero memory
(essentially M/M/n queue)

— but this is like the large memory case

e Allow finite capacity queue at the dispatcher

— Same negative result

e Conjecture: the impossibility result holds
for arbitrary (non-symmetric) policies

