
Closed-loop policies for curing epidemics on graphs

John N. Tsitsiklis

(with K. Drakopoulos and A. Ozdaglar)

September 2015

• Consider any standard dynamical model on networks

– Opinion dynamics:

x

i

(t+1) =
1

of nbr.

X

neighbors j

a

ij

x

j

(t)

– Voter model: adopt 0 or 1, by copying a random neighbor

– Hopfield-type models

– Ising-type models; dynamic graphical models

– Epidemic propagation models

Closed-loop policies for curing epidemics on graphs

John N. Tsitsiklis

(with K. Drakopoulos and A. Ozdaglar)

September 2015

• Consider any standard dynamical model on networks

– Opinion dynamics:

x

i

(t+1) =
1

of nbr.

X

neighbors j

a

ij

x

j

(t)

– Voter model: adopt 0 or 1, by copying a random neighbor

– Hopfield-type models

– Ising-type models; dynamic graphical models

– Epidemic propagation models

On the Power of (even a little)
Resource Pooling and Flexibility

John N. Tsitsiklis

(joint work with Kuang Xu)

Massachusetts Institute of Technology

June 27, 2014

1 / 35

Closed-loop policies for curing epidemics on graphs

John N. Tsitsiklis

(with K. Drakopoulos and A. Ozdaglar)

September 2015

Delay, memory, and messaging tradeo↵s

in distributed service systems

John N. Tsitsiklis

(with D. Gamarnik and M. Zubeldia)

October 2015

January 2016

HajekFest

Outline

• Motivation

• The SIS contagion/epidemic model

• Static versus dynamic policies

– line and mesh examples

• The CutWidth of a graph (and a generalization)

• A curing policy

– fast extinction if budget� c·CutWidth

• A lower bound

– slow extinction if budget c

0·CutWidth

• Extensions, open problems, future work

Outline

• Motivation

• The SIS contagion/epidemic model

• Static versus dynamic policies

– line and mesh examples

• The CutWidth of a graph (and a generalization)

• A curing policy

– fast extinction if budget� c·CutWidth

• A lower bound

– slow extinction if budget c

0·CutWidth

• Extensions, open problems, future work

Outline

• Motivation

• The SIS contagion/epidemic model

• Static versus dynamic policies

– line and mesh examples

• The CutWidth of a graph (and a generalization)

• A curing policy

– fast extinction if budget� c·CutWidth

• A lower bound

– slow extinction if budget c

0·CutWidth

• Extensions, open problems, future work

Outline

• Motivation

• The SIS contagion/epidemic model

• Static versus dynamic policies

– line and mesh examples

• The CutWidth of a graph (and a generalization)

• A curing policy

– fast extinction if budget� c·CutWidth

• A lower bound

– slow extinction if budget c

0·CutWidth

• Extensions, open problems, future work

Outline

• Motivation

• The SIS contagion/epidemic model

• Static versus dynamic policies

– line and mesh examples

• The CutWidth of a graph (and a generalization)

• A curing policy

– fast extinction if budget� c·CutWidth

• A lower bound

– slow extinction if budget c

0·CutWidth

• Extensions, open problems, future work

Outline

• Motivation

• The SIS contagion/epidemic model

• Static versus dynamic policies

– line and mesh examples

• The CutWidth of a graph (and a generalization)

• A curing policy

– fast extinction if budget� c·CutWidth

• A lower bound

– slow extinction if budget c

0·CutWidth

• Extensions, open problems, future work

Outline

• Motivation

• The SIS contagion/epidemic model

• Static versus dynamic policies

– line and mesh examples

• The CutWidth of a graph (and a generalization)

• A curing policy

– fast extinction if budget� c·CutWidth

• A lower bound

– slow extinction if budget c

0·CutWidth

• Extensions, open problems, future work

Outline

• Motivation

• The SIS contagion/epidemic model

• Static versus dynamic policies

– line and mesh examples

• The CutWidth of a graph (and a generalization)

• A curing policy

– fast extinction if budget� c·CutWidth

• A lower bound

– slow extinction if budget c

0·CutWidth

• Extensions, open problems, future work

Outline

• Motivation

• The SIS contagion/epidemic model

• Static versus dynamic policies

– line and mesh examples

• The CutWidth of a graph (and a generalization)

• A curing policy

– fast extinction if budget� c·CutWidth

• A lower bound

– slow extinction if budget c

0·CutWidth

• Extensions, open problems, future work

Outline

• Motivation

• The SIS contagion/epidemic model

• Static versus dynamic policies

– line and mesh examples

• The CutWidth of a graph (and a generalization)

• A curing policy

– fast extinction if budget� c·CutWidth

• A lower bound

– slow extinction if budget c

0·CutWidth

• Extensions, open problems, future work

Outline

• Motivation

• The SIS contagion/epidemic model

• Static versus dynamic policies

– line and mesh examples

• The CutWidth of a graph (and a generalization)

• A curing policy

– fast extinction if budget� c·CutWidth

• A lower bound

– slow extinction if budget c

0·CutWidth

• Extensions, open problems, future work

Outline

• Motivation

• The SIS contagion/epidemic model

• Static versus dynamic policies

– line and mesh examples

• The CutWidth of a graph (and a generalization)

• A curing policy

– fast extinction if budget� c·CutWidth

• A lower bound

– slow extinction if budget c

0·CutWidth

• Extensions, open problems, future work

Outline

• Motivation

• The SIS contagion/epidemic model

• Static versus dynamic policies

– line and mesh examples

• The CutWidth of a graph (and a generalization)

• A curing policy

– fast extinction if budget� c·CutWidth

• A lower bound

– slow extinction if budget c

0·CutWidth

• Extensions, open problems, future work

Outline

• Motivation

• The SIS contagion/epidemic model

• Static versus dynamic policies

– line and mesh examples

• The CutWidth of a graph (and a generalization)

• A curing policy

– fast extinction if budget� c·CutWidth

• A lower bound

– slow extinction if budget c

0·CutWidth

• Extensions, open problems, future work

Motivation

• . . . from all kinds of networks

– internet viruses

– propagation of opnions

– infectious diseases

• Traditionally: static strategies

– ex ante targeting of “central” nodes
(REFS....)

• Develop dynamic strategies

– use information about current state

– heuristics, mean-field approximations, etc.
(REFs)

• “Ebola drug could save a few lives, but whose?” [NYT]

Motivation

• . . . from all kinds of networks

– internet viruses

– propagation of opinions

– infectious diseases

• Traditionally: static strategies

– ex ante targeting of “central” nodes
(REFS....)

• Develop dynamic strategies

– use information about current state

– heuristics, mean-field approximations, etc.
(REFs)

• “Ebola drug could save a few lives, but whose?” [NYT]

Motivation

• . . . from all kinds of networks

– internet viruses

– propagation of opnions

– infectious diseases

• Traditionally: static strategies

– ex ante targeting of “central” nodes
(REFS....)

• Develop dynamic strategies

– use information about current state

– heuristics, mean-field approximations, etc.
(REFs)

• “Ebola drug could save a few lives, but whose?” [NYT]

Motivation

• . . . from all kinds of networks

– internet viruses

– propagation of opinions

– infectious diseases

• Traditionally: static strategies

– ex ante targeting of “central” nodes
(REFS....)

• Develop dynamic strategies

– use information about current state

– heuristics, mean-field approximations, etc.
(REFs)

• “Ebola drug could save a few lives, but whose?” [NYT]

Cohen et al., 2003; Van Mieghem et al., 2011; Schneider et al., 2011;
Zargham and Preciado, 2014; Gourdin et al., 2011; Chung et al., 2011;
Preciado et al., 2013, 2014

• Develop dynamic strategies

– use information about current state

– heuristics, mean-field approximations, etc.
(REFs)

• “Ebola drug could save a few lives, but whose?” [NYT]

Motivation

• . . . from all kinds of networks

– internet viruses

– propagation of opinions

– infectious diseases

• Traditionally: static strategies

– ex ante targeting of “central” nodes
R. Cohen, S. Havlin, and D. Ben-Avraham, 2003; P. V. Mieghem,
D. Stevanovic, F. Kuipers, C. Li, R. van de Bovenkamp, D. Liu, and
H. Wang, 2011 C. M. Schneider, T. Mihaljev, S. Havlin, and H. J.
Herrmann, 2011 M. Zargham and V. M. Preciado, 2014 E. Gourdin,
J. Omic, and P. V. Mieghem, 2011 F. R. K. Chung, P. Horn, and A.
Tsiatas, 2011 V. M. Preciado, M. Zargham, C. Enyioha, A. Jadbabaie,
and G. J. Pappas, 2013, 2014

C. Borgs, J. Chayes, A. Ganesh, and A. Saberi, 2010 (the only exact paper)
A. Khanafer and T. Basar, 2014 (mean field approximation)

Motivation

• . . . from all kinds of networks

– internet viruses

– propagation of opinions

– infectious diseases

• Traditionally: static strategies

– ex ante targeting of “central” nodes
R. Cohen, S. Havlin, and D. Ben-Avraham, 2003; P. V. Mieghem,
D. Stevanovic, F. Kuipers, C. Li, R. van de Bovenkamp, D. Liu, and
H. Wang, 2011 C. M. Schneider, T. Mihaljev, S. Havlin, and H. J.
Herrmann, 2011 M. Zargham and V. M. Preciado, 2014 E. Gourdin,
J. Omic, and P. V. Mieghem, 2011 F. R. K. Chung, P. Horn, and A.
Tsiatas, 2011 V. M. Preciado, M. Zargham, C. Enyioha, A. Jadbabaie,
and G. J. Pappas, 2013, 2014

C. Borgs, J. Chayes, A. Ganesh, and A. Saberi, 2010 (the only exact paper)
A. Khanafer and T. Basar, 2014 (mean field approximation)

Cohen et al., 2003; Van Mieghem et al., 2011; Schneider et al., 2011;
Zargham and Preciado, 2014; Gourdin et al., 2011; Chung et al., 2011;
Preciado et al., 2013, 2014

Borgs et al., 2010 (exact)
Khanafer and Basar, 2014 (mean field approximation)

• Develop dynamic strategies

– use information about current state

– includes heuristics, mean-field approximations, etc.
(REFs)

• “Ebola drug could save a few lives, but whose?” [NYT]

Motivation

• . . . from all kinds of networks

– internet viruses

– propagation of opnions

– infectious diseases

• Traditionally: static strategies

– ex ante targeting of “central” nodes
(REFS....)

• Develop dynamic strategies

– use information about current state

– heuristics, mean-field approximations, etc.
(REFs)

• “Ebola drug could save a few lives, but whose?” [NYT]

Motivation

• . . . from all kinds of networks

– internet viruses

– propagation of opinions

– infectious diseases

• Traditionally: static strategies

– ex ante targeting of “central” nodes
(REFS....)

• Develop dynamic strategies

– use information about current state

– heuristics, mean-field approximations, etc.
(REFs)

• “Ebola drug could save a few lives, but whose?” [NYT]

Cohen et al., 2003; Van Mieghem et al., 2011; Schneider et al., 2011;
Zargham and Preciado, 2014; Gourdin et al., 2011; Chung et al., 2011;
Preciado et al., 2013, 2014

• Develop dynamic strategies

– use information about current state

– heuristics, mean-field approximations, etc.
(REFs)

• “Ebola drug could save a few lives, but whose?” [NYT]

Motivation

• . . . from all kinds of networks

– internet viruses

– propagation of opinions

– infectious diseases

• Traditionally: static strategies

– ex ante targeting of “central” nodes
R. Cohen, S. Havlin, and D. Ben-Avraham, 2003; P. V. Mieghem,
D. Stevanovic, F. Kuipers, C. Li, R. van de Bovenkamp, D. Liu, and
H. Wang, 2011 C. M. Schneider, T. Mihaljev, S. Havlin, and H. J.
Herrmann, 2011 M. Zargham and V. M. Preciado, 2014 E. Gourdin,
J. Omic, and P. V. Mieghem, 2011 F. R. K. Chung, P. Horn, and A.
Tsiatas, 2011 V. M. Preciado, M. Zargham, C. Enyioha, A. Jadbabaie,
and G. J. Pappas, 2013, 2014

C. Borgs, J. Chayes, A. Ganesh, and A. Saberi, 2010 (the only exact paper)
A. Khanafer and T. Basar, 2014 (mean field approximation)

Motivation

• . . . from all kinds of networks

– internet viruses

– propagation of opinions

– infectious diseases

• Traditionally: static strategies

– ex ante targeting of “central” nodes
R. Cohen, S. Havlin, and D. Ben-Avraham, 2003; P. V. Mieghem,
D. Stevanovic, F. Kuipers, C. Li, R. van de Bovenkamp, D. Liu, and
H. Wang, 2011 C. M. Schneider, T. Mihaljev, S. Havlin, and H. J.
Herrmann, 2011 M. Zargham and V. M. Preciado, 2014 E. Gourdin,
J. Omic, and P. V. Mieghem, 2011 F. R. K. Chung, P. Horn, and A.
Tsiatas, 2011 V. M. Preciado, M. Zargham, C. Enyioha, A. Jadbabaie,
and G. J. Pappas, 2013, 2014

C. Borgs, J. Chayes, A. Ganesh, and A. Saberi, 2010 (the only exact paper)
A. Khanafer and T. Basar, 2014 (mean field approximation)

Cohen et al., 2003; Van Mieghem et al., 2011; Schneider et al., 2011;
Zargham and Preciado, 2014; Gourdin et al., 2011; Chung et al., 2011;
Preciado et al., 2013, 2014

Borgs et al., 2010 (exact)
Khanafer and Basar, 2014 (mean field approximation)

• Develop dynamic strategies

– use information about current state

– includes heuristics, mean-field approximations, etc.
(REFs)

• “Ebola drug could save a few lives, but whose?” [NYT]Cohen et al., 2003; Van Mieghem et al., 2011; Schneider et al., 2011;
Zargham and Preciado, 2014; Gourdin et al., 2011; Chung et al., 2011;
Preciado et al., 2013, 2014

Borgs et al., 2010 (exact)
Khanafer and Basar, 2014 (mean field approximation)

• Develop dynamic strategies

– use information about current state

– heuristics, mean-field approximations, etc.
(REFs)

• “Ebola drug could save a few lives, but whose?” [NYT]

Cohen et al., 2003; Van Mieghem et al., 2011; Schneider et al., 2011;
Zargham and Preciado, 2014; Gourdin et al., 2011; Chung et al., 2011;
Preciado et al., 2013, 2014

Borgs et al., 2010 (exact)
Khanafer and Basar, 2014 (mean field approximation)

• Develop dynamic strategies

– use information about current state

– includes heuristics, mean-field approximations, etc.
(REFs)

• “Ebola drug could save a few lives, but whose?” [NYT]

Cohen et al., 2003; Van Mieghem et al., 2011; Schneider et al., 2011;
Zargham and Preciado, 2014; Gourdin et al., 2011; Chung et al., 2011;
Preciado et al., 2013, 2014

Borgs et al., 2010 (exact)
Khanafer and Basar, 2014 (mean field approximation)

• Develop dynamic strategies

– use information about current state

– includes heuristics, mean-field approximations, etc.
(REFs)

• “Ebola drug could save a few lives, but whose?” [NYT]

The SIS (“susceptible! infected! susceptible”) modelThe SIS (“susceptible! infected! susceptible”) model

• Undirected graph: node set V ; n nodes; max-degree �

• State It: set of infected nodes at time t; I0: given

The SIS (“susceptible! infected! susceptible”) model

• Undirected graph: node set V ; n nodes; max-degree �

• State It: set of infected nodes at time t; I0: given

The SIS (“susceptible! infected! susceptible”) modelThe SIS (“susceptible! infected! susceptible”) model

• Undirected graph: node set V ; n nodes; max-degree �

• State It: set of infected nodes at time t; I0: given

The SIS (“susceptible! infected! susceptible”) model

• Undirected graph: node set V ; n nodes; max-degree �

• State It: set of infected nodes at time t; I0: given

The SIS (“susceptible! infected! susceptible”) model

• Undirected graph: node set V ; n nodes; max-degree �

• State It: set of infected nodes at time t; I0: given

• Node dynamics:

Healthy Infected

⇢: (curing rate)

�: infection rate (assume = 1)

of infected neighbors

The SIS (“susceptible! infected! susceptible”) model

• Undirected graph: node set V ; n nodes; max-degree �

• State It: set of infected nodes at time t; I0: given

Healthy Infected

The SIS (“susceptible! infected! susceptible”) model

• Undirected graph: node set V ; n nodes; max-degree �

• State It: set of infected nodes at time t; I0: given

Healthy Infected

The SIS (“susceptible! infected! susceptible”) model

• Undirected graph: node set V ; n nodes; max-degree �

• State It: set of infected nodes at time t; I0: given

• Node dynamics:

Healthy Infected

⇢: (curing rate)

�: infection rate (assume = 1)

of infected neighbors

The SIS (“susceptible! infected! susceptible”) model

• Undirected graph: node set V ; n nodes; max-degree �

• State It: set of infected nodes at time t; I0: given

• Node dynamics:

Healthy Infected

⇢: (curing rate)

�: infection rate (assume = 1)

of infected neighbors

The SIS (“susceptible! infected! susceptible”) modelThe SIS (“susceptible! infected! susceptible”) model

• Undirected graph: node set V ; n nodes; max-degree �

• State It: set of infected nodes at time t; I0: given

The SIS (“susceptible! infected! susceptible”) model

• Undirected graph: node set V ; n nodes; max-degree �

• State It: set of infected nodes at time t; I0: given

The SIS (“susceptible! infected! susceptible”) model

• Undirected graph: node set V ; n nodes; max-degree �

• State It: set of infected nodes at time t; I0: given

• Node dynamics:

Healthy Infected

⇢: (curing rate)

�: infection rate (assume = 1)

of infected neighbors

The SIS (“susceptible! infected! susceptible”) model

• Undirected graph: node set V ; n nodes; max-degree �

• State It: set of infected nodes at time t; I0: given

Healthy Infected

The SIS (“susceptible! infected! susceptible”) model

• Undirected graph: node set V ; n nodes; max-degree �

• State It: set of infected nodes at time t; I0: given

Healthy Infected

The SIS (“susceptible! infected! susceptible”) model

• Undirected graph: node set V ; n nodes; max-degree �

• State It: set of infected nodes at time t; I0: given

• Node dynamics:

Healthy Infected

⇢: (curing rate)

�: infection rate (assume = 1)

of infected neighbors

The SIS (“susceptible! infected! susceptible”) model

• Undirected graph: node set V ; n nodes; max-degree �

• State It: set of infected nodes at time t; I0: given

• Node dynamics:

Healthy Infected

⇢: (curing rate)

�: infection rate (assume = 1)

of infected neighbors

The SIS (“susceptible! infected! susceptible”) model

• Undirected graph: node set V ; n nodes; max-degree �

• State It: set of infected nodes at time t; I0: given

• Node dynamics:

Healthy Infected

⇢: (curing rate)

�: infection rate (assume = 1)

of infected neighbors

Curing resources=Budget= B = ⇢n

The SIS (“susceptible! infected! susceptible”) modelThe SIS (“susceptible! infected! susceptible”) model

• Undirected graph: node set V ; n nodes; max-degree �

• State It: set of infected nodes at time t; I0: given

The SIS (“susceptible! infected! susceptible”) model

• Undirected graph: node set V ; n nodes; max-degree �

• State It: set of infected nodes at time t; I0: given

The SIS (“susceptible! infected! susceptible”) model

• Undirected graph: node set V ; n nodes; max-degree �

• State It: set of infected nodes at time t; I0: given

• Node dynamics:

Healthy Infected

⇢: (curing rate)

�: infection rate (assume = 1)

of infected neighbors

The SIS (“susceptible! infected! susceptible”) model

• Undirected graph: node set V ; n nodes; max-degree �

• State It: set of infected nodes at time t; I0: given

Healthy Infected

The SIS (“susceptible! infected! susceptible”) model

• Undirected graph: node set V ; n nodes; max-degree �

• State It: set of infected nodes at time t; I0: given

Healthy Infected

The SIS (“susceptible! infected! susceptible”) model

• Undirected graph: node set V ; n nodes; max-degree �

• State It: set of infected nodes at time t; I0: given

• Node dynamics:

Healthy Infected

⇢: (curing rate)

�: infection rate (assume = 1)

of infected neighbors

The SIS (“susceptible! infected! susceptible”) model

• Undirected graph: node set V ; n nodes; max-degree �

• State It: set of infected nodes at time t; I0: given

• Node dynamics:

Healthy Infected

⇢: (curing rate)

�: infection rate (assume = 1)

of infected neighbors

• Total rate at time t:

– curing: ⇢ · |It|

– infection: # of arcs joining healthy to infected nodes

The SIS (“susceptible! infected! susceptible”) model

• Undirected graph: node set V ; n nodes; max-degree �

• State It: set of infected nodes at time t; I0: given

• Node dynamics:

Healthy Infected

⇢: (curing rate)

�: infection rate (assume = 1)

of infected neighbors

Curing resources=Budget= B = ⇢n

• Total rate at time t:

– curing: ⇢ · |It|

– infection: # of arcs joining healthy to infected nodes

• Total rate at time t:

– curing: ⇢ · |It|

– infection: # of arcs joining healthy to infected nodes

cut(It), c(It)

The SIS (“susceptible! infected! susceptible”) modelThe SIS (“susceptible! infected! susceptible”) model

• Undirected graph: node set V ; n nodes; max-degree �

• State It: set of infected nodes at time t; I0: given

The SIS (“susceptible! infected! susceptible”) model

• Undirected graph: node set V ; n nodes; max-degree �

• State It: set of infected nodes at time t; I0: given

The SIS (“susceptible! infected! susceptible”) model

• Undirected graph: node set V ; n nodes; max-degree �

• State It: set of infected nodes at time t; I0: given

• Node dynamics:

Healthy Infected

⇢: (curing rate)

�: infection rate (assume = 1)

of infected neighbors

The SIS (“susceptible! infected! susceptible”) model

• Undirected graph: node set V ; n nodes; max-degree �

• State It: set of infected nodes at time t; I0: given

Healthy Infected

The SIS (“susceptible! infected! susceptible”) model

• Undirected graph: node set V ; n nodes; max-degree �

• State It: set of infected nodes at time t; I0: given

Healthy Infected

The SIS (“susceptible! infected! susceptible”) model

• Undirected graph: node set V ; n nodes; max-degree �

• State It: set of infected nodes at time t; I0: given

• Node dynamics:

Healthy Infected

⇢: (curing rate)

�: infection rate (assume = 1)

of infected neighbors

The SIS (“susceptible! infected! susceptible”) model

• Undirected graph: node set V ; n nodes; max-degree �

• State It: set of infected nodes at time t; I0: given

• Node dynamics:

Healthy Infected

⇢: (curing rate)

�: infection rate (assume = 1)

of infected neighbors

• Total rate at time t:

– curing: ⇢ · |It|

– infection: # of arcs joining healthy to infected nodes

The SIS (“susceptible! infected! susceptible”) model

• Undirected graph: node set V ; n nodes; max-degree �

• State It: set of infected nodes at time t; I0: given

• Node dynamics:

Healthy Infected

⇢: (curing rate)

�: infection rate (assume = 1)

of infected neighbors

Curing resources=Budget= B = ⇢n

Curing rate allocation — Controlled SIS model

• Static:

X

i

⇢i = B (budget)

– e.g., ⇢i proportional to degree

X

i

⇢i(t) = B (budget)

– only allocate resources to infected nodes

• What B is needed to guarantee fast extinction?

Curing rate allocation — Controlled SIS model

• Static:

X

i

⇢i = B (budget)

– e.g., ⇢i proportional to degree

X

i

⇢i(t) = B (budget)

– only allocate resources to infected nodes

• What B is needed to guarantee fast extinction?

The SIS (“susceptible! infected! susceptible”) model

• Undirected graph: node set V ; n nodes; max-degree �

• State It: set of infected nodes at time t; I0: given

Healthy Infected

The SIS (“susceptible! infected! susceptible”) model

• Undirected graph: node set V ; n nodes; max-degree �

• State It: set of infected nodes at time t; I0: given

Healthy Infected

The SIS (“susceptible! infected! susceptible”) model

• Undirected graph: node set V ; n nodes; max-degree �

• State It: set of infected nodes at time t; I0: given

• Node dynamics:

Healthy Infected

⇢: (curing rate)

�: infection rate (assume = 1)

of infected neighbors

Curing rate allocation — Controlled SIS model

• Static:

X

i

⇢i = B (budget)

– e.g., ⇢i proportional to degree

X

i

⇢i(t) = B (budget)

– only allocate resources to infected nodes

• What B is needed to guarantee fast extinction?

Curing rate allocation — Controlled SIS model

• Static:

X

i

⇢i = B (budget)

– e.g., ⇢i proportional to degree

X

i

⇢i(t) = B (budget)

– only allocate resources to infected nodes

• What B is needed to guarantee fast extinction?

Curing rate allocation — Controlled SIS model

• Static:

X

i

⇢i = B (budget)

– e.g., ⇢i proportional to degree

X

i

⇢i(t) = B (budget)

– only allocate resources to infected nodes

• What B is needed to guarantee fast extinction?

Curing rate allocation — Controlled SIS model

• Static:

X

i

⇢i = B (budget)

– e.g., ⇢i proportional to degree

X

i

⇢i(t) = B (budget)

– only allocate resources to infected nodes

• What B is needed to guarantee fast extinction?

Curing rate allocation — Controlled SIS model

• Static:

X

i

⇢i = B (budget)

– e.g., ⇢i proportional to degree

X

i

⇢i(t) = B (budget)

– only allocate resources to infected nodes

• What B is needed to guarantee fast extinction?

The SIS (“susceptible! infected! susceptible”) model

• Undirected graph: node set V ; n nodes; max-degree �

• State It: set of infected nodes at time t; I0: given

Healthy Infected

The SIS (“susceptible! infected! susceptible”) model

• Undirected graph: node set V ; n nodes; max-degree �

• State It: set of infected nodes at time t; I0: given

Healthy Infected

The SIS (“susceptible! infected! susceptible”) model

• Undirected graph: node set V ; n nodes; max-degree �

• State It: set of infected nodes at time t; I0: given

• Node dynamics:

Healthy Infected

⇢: (curing rate)

�: infection rate (assume = 1)

of infected neighbors

Curing rate allocation — Controlled SIS model

• Static:

X

i

⇢i = B (budget)

– e.g., ⇢i proportional to degree

X

i

⇢i(t) = B (budget)

– only allocate resources to infected nodes

• What B is needed to guarantee fast extinction?

Curing rate allocation — Controlled SIS model

• Static:

X

i

⇢i = B (budget)

– e.g., ⇢i proportional to degree

X

i

⇢i(t) = B (budget)

– only allocate resources to infected nodes

• What B is needed to guarantee fast extinction?

Curing rate allocation — Controlled SIS model

• Static:

X

i

⇢i = B (budget)

– e.g., ⇢i proportional to degree

X

i

⇢i(t) = B (budget)

– only allocate resources to infected nodes

• What B is needed to guarantee fast extinction?

Curing rate allocation — Controlled SIS model

• Static:

X

i

⇢i = B (budget)

– e.g., ⇢i proportional to degree

X

i

⇢i(t) = B (budget)

– only allocate resources to infected nodes

• What B is needed to guarantee fast extinction?

Curing rate allocation — Controlled SIS model

• Static:

X

i

⇢i = B (budget)

– e.g., ⇢i proportional to degree

X

i

⇢i(t) = B (budget)

– only allocate resources to infected nodes

• What B is needed to guarantee fast extinction?

The SIS (“susceptible! infected! susceptible”) model

• Undirected graph: node set V ; n nodes; max-degree �

• State It: set of infected nodes at time t; I0: given

Healthy Infected

The SIS (“susceptible! infected! susceptible”) model

• Undirected graph: node set V ; n nodes; max-degree �

• State It: set of infected nodes at time t; I0: given

Healthy Infected

The SIS (“susceptible! infected! susceptible”) model

• Undirected graph: node set V ; n nodes; max-degree �

• State It: set of infected nodes at time t; I0: given

• Node dynamics:

Healthy Infected

⇢: (curing rate)

�: infection rate (assume = 1)

of infected neighbors

Curing rate allocation — Controlled SIS model

• Static:

X

i

⇢i = B (budget)

– e.g., ⇢i proportional to degree

X

i

⇢i(t) = B (budget)

– only allocate resources to infected nodes

• What B is needed to guarantee fast extinction?

Curing rate allocation — Controlled SIS model

• Static:

X

i

⇢i = B (budget)

– e.g., ⇢i proportional to degree

X

i

⇢i(t) = B (budget)

– only allocate resources to infected nodes

• What B is needed to guarantee fast extinction?

Curing rate allocation — Controlled SIS model

• Static:

• Dynamic:

X

i

⇢i = B (budget)

– e.g., ⇢i proportional to degree

X

i

⇢i(t) = B (budget)

– only allocate resources to infected nodes

• What B is needed to guarantee fast extinction?

Curing rate allocation — Controlled SIS model

• Static:

• Dynamic:

X

i

⇢i = B (budget)

– e.g., ⇢i proportional to degree

X

i

⇢i(t) = B (budget)

– only allocate resources to infected nodes

• What B is needed to guarantee fast extinction?

The SIS (“susceptible! infected! susceptible”) model

• Undirected graph: node set V ; n nodes; max-degree �

• State It: set of infected nodes at time t; I0: given

Healthy Infected

The SIS (“susceptible! infected! susceptible”) model

• Undirected graph: node set V ; n nodes; max-degree �

• State It: set of infected nodes at time t; I0: given

Healthy Infected

Curing rate allocation — Controlled SIS model

• Static:

• Dynamic:

X

i

⇢i = B (budget)

– e.g., ⇢i proportional to degree

X

i

⇢i(t) = B (budget)

– only allocate resources to infected nodes

• What B is needed to guarantee fast extinction?

The SIS (“susceptible! infected! susceptible”) model

• Undirected graph: node set V ; n nodes; max-degree �

• State It: set of infected nodes at time t; I0: given

• Node dynamics:

Healthy Infected

⇢: (curing rate)

�: infection rate (assume = 1)

of infected neighbors

Curing rate allocation — Controlled SIS model

• Static:

X

i

⇢i = B (budget)

– e.g., ⇢i proportional to degree

X

i

⇢i(t) = B (budget)

– only allocate resources to infected nodes

• What B is needed to guarantee fast extinction?

Curing rate allocation — Controlled SIS model

• Static:

X

i

⇢i = B (budget)

– e.g., ⇢i proportional to degree

X

i

⇢i(t) = B (budget)

– only allocate resources to infected nodes

• What B is needed to guarantee fast extinction?

Curing rate allocation — Controlled SIS model

• Static:

X

i

⇢i = B (budget)

– e.g., ⇢i proportional to degree

X

i

⇢i(t) = B (budget)

– only allocate resources to infected nodes

• What B is needed to guarantee fast extinction?

The SIS (“susceptible! infected! susceptible”) model

• Undirected graph: node set V ; n nodes; max-degree �

• State It: set of infected nodes at time t; I0: given

Healthy Infected

The SIS (“susceptible! infected! susceptible”) model

• Undirected graph: node set V ; n nodes; max-degree �

• State It: set of infected nodes at time t; I0: given

Healthy Infected

The SIS (“susceptible! infected! susceptible”) model

• Undirected graph: node set V ; n nodes; max-degree �

• State It: set of infected nodes at time t; I0: given

• Node dynamics:

Healthy Infected

⇢: (curing rate)

�: infection rate (assume = 1)

of infected neighbors

Curing rate allocation — Controlled SIS model

• Static:

X

i

⇢i = B (budget)

– e.g., ⇢i proportional to degree

X

i

⇢i(t) = B (budget)

– only allocate resources to infected nodes

• What B is needed to guarantee fast extinction?

Curing rate allocation — Controlled SIS model

• Static:

X

i

⇢i = B (budget)

– e.g., ⇢i proportional to degree

X

i

⇢i(t) = B (budget)

– only allocate resources to infected nodes

• What B is needed to guarantee fast extinction?

Curing rate allocation — Controlled SIS model

• Static:

• Dynamic:

X

i

⇢i = B (budget)

– e.g., ⇢i proportional to degree
X

i

⇢i(t) = B (budget)

– only allocate resources to infected nodes

• What B is needed to guarantee fast extinction?

Curing rate allocation — Controlled SIS model

• Static:

• Dynamic:

X

i

⇢i = B (budget)

– e.g., ⇢i proportional to degree

X

i

⇢i(t) = B (budget)

– only allocate resources to infected nodes

• What B is needed to guarantee fast extinction?

Curing rate allocation — Controlled SIS model

• Static:

• Dynamic:

X

i

⇢i = B (budget)

– e.g., ⇢i proportional to degree

X

i

⇢i(t) = B (budget)

– only allocate resources to infected nodes

• What B is needed to guarantee fast extinction?

The SIS (“susceptible! infected! susceptible”) model

• Undirected graph: node set V ; n nodes; max-degree �

• State It: set of infected nodes at time t; I0: given

Healthy Infected

The SIS (“susceptible! infected! susceptible”) model

• Undirected graph: node set V ; n nodes; max-degree �

• State It: set of infected nodes at time t; I0: given

Healthy Infected

Curing rate allocation — Controlled SIS model

• Static:

• Dynamic:

X

i

⇢i = B (budget)

– e.g., ⇢i proportional to degree

X

i

⇢i(t) = B (budget)

– only allocate resources to infected nodes

• What B is needed to guarantee fast extinction?

The SIS (“susceptible! infected! susceptible”) model

• Undirected graph: node set V ; n nodes; max-degree �

• State It: set of infected nodes at time t; I0: given

• Node dynamics:

Healthy Infected

⇢: (curing rate)

�: infection rate (assume = 1)

of infected neighbors

Curing rate allocation — Controlled SIS model

• Static:

X

i

⇢i = B (budget)

– e.g., ⇢i proportional to degree

X

i

⇢i(t) = B (budget)

– only allocate resources to infected nodes

• What B is needed to guarantee fast extinction?

Curing rate allocation — Controlled SIS model

• Static:

X

i

⇢i = B (budget)

– e.g., ⇢i proportional to degree

X

i

⇢i(t) = B (budget)

– only allocate resources to infected nodes

• What B is needed to guarantee fast extinction?

Curing rate allocation — Controlled SIS model

• Static:

X

i

⇢i = B (budget)

– e.g., ⇢i proportional to degree

X

i

⇢i(t) = B (budget)

– only allocate resources to infected nodes

• What B is needed to guarantee fast extinction?

The SIS (“susceptible! infected! susceptible”) model

• Undirected graph: node set V ; n nodes; max-degree �

• State It: set of infected nodes at time t; I0: given

Healthy Infected

The SIS (“susceptible! infected! susceptible”) model

• Undirected graph: node set V ; n nodes; max-degree �

• State It: set of infected nodes at time t; I0: given

Healthy Infected

The SIS (“susceptible! infected! susceptible”) model

• Undirected graph: node set V ; n nodes; max-degree �

• State It: set of infected nodes at time t; I0: given

• Node dynamics:

Healthy Infected

⇢: (curing rate)

�: infection rate (assume = 1)

of infected neighbors

Curing rate allocation — Controlled SIS model

• Static:

X

i

⇢i = B (budget)

– e.g., ⇢i proportional to degree

X

i

⇢i(t) = B (budget)

– only allocate resources to infected nodes

• What B is needed to guarantee fast extinction?

Curing rate allocation — Controlled SIS model

• Static:

X

i

⇢i = B (budget)

– e.g., ⇢i proportional to degree

X

i

⇢i(t) = B (budget)

– only allocate resources to infected nodes

• What B is needed to guarantee fast extinction?

Curing rate allocation — Controlled SIS model

• Static:

• Dynamic:

X

i

⇢i = B (budget)

– e.g., ⇢i proportional to degree
X

i

⇢i(t) = B (budget)

– only allocate resources to infected nodes

• What B is needed to guarantee fast extinction?

Curing rate allocation — Controlled SIS model

• Static:

• Dynamic:

X

i

⇢i = B (budget)

– e.g., ⇢i proportional to degree
X

i

⇢i(t) = B (budget)

– only allocate resources to infected nodes

• What B is needed to guarantee “fast extinction”?

Curing rate allocation — Controlled SIS model

• Static:

• Dynamic:

X

i

⇢i = B (budget)

– e.g., ⇢i proportional to degree

X

i

⇢i(t) = B (budget)

– only allocate resources to infected nodes

• What B is needed to guarantee fast extinction?

Curing rate allocation — Controlled SIS model

• Static:

• Dynamic:

X

i

⇢i = B (budget)

– e.g., ⇢i proportional to degree

X

i

⇢i(t) = B (budget)

– only allocate resources to infected nodes

• What B is needed to guarantee fast extinction?

The SIS (“susceptible! infected! susceptible”) model

• Undirected graph: node set V ; n nodes; max-degree �

• State It: set of infected nodes at time t; I0: given

Healthy Infected

The SIS (“susceptible! infected! susceptible”) model

• Undirected graph: node set V ; n nodes; max-degree �

• State It: set of infected nodes at time t; I0: given

Healthy Infected

Curing rate allocation — Controlled SIS model

• Static:

• Dynamic:

X

i

⇢i = B (budget)

– e.g., ⇢i proportional to degree

X

i

⇢i(t) = B (budget)

– only allocate resources to infected nodes

• What B is needed to guarantee fast extinction?

The SIS (“susceptible! infected! susceptible”) model

• Undirected graph: node set V ; n nodes; max-degree �

• State It: set of infected nodes at time t; I0: given

• Node dynamics:

Healthy Infected

⇢: (curing rate)

�: infection rate (assume = 1)

of infected neighbors

Slow versus fast extinction

• I0 = Ø (all healthy) is an absorbing state

– extinction guaranteed

– may take time exponential in n

• But with enough curing resources:

– total curing rate > total infection rate
X

i2It
⇢i(t) > cut(It)

– It has downward (expected) drift

– time to extinction is linear in n, or less

Slow versus fast extinction

• I0 = Ø (all healthy) is an absorbing state

– extinction guaranteed

– may take time exponential in n

• But with enough curing resources:

– total curing rate > total infection rate
X

i2It
⇢i(t) > cut(It)

– It has downward (expected) drift

– time to extinction is linear in n, or less

Slow versus fast extinction

• I0 = Ø (all healthy) is an absorbing state

– extinction guaranteed

– may take time exponential in n

• But with enough curing resources:

– total curing rate > total infection rate
X

i2It
⇢i(t) > cut(It)

– It has downward (expected) drift

– time to extinction is linear in n, or less

Slow versus fast extinction

• I0 = Ø (all healthy) is an absorbing state

– extinction guaranteed

– may take time exponential in n

• But with enough curing resources:

– total curing rate > total infection rate
X

i2It
⇢i(t) > cut(It)

– It has downward (expected) drift

– time to extinction is linear in n, or less

Slow versus fast extinction

• I0 = Ø (all healthy) is an absorbing state

– extinction guaranteed

– may take time exponential in n

• But with enough curing resources:

– total curing rate > total infection rate
X

i2It
⇢i(t) > cut(It)

– It has downward (expected) drift

– time to extinction is linear in n, or less

Slow versus fast extinction

• I0 = Ø (all healthy) is an absorbing state

– extinction guaranteed

– may take time exponential in n

• But with enough curing resources:

– total curing rate > total infection rate
X

i2It
⇢i(t) > cut(It)

– It has downward (expected) drift

– time to extinction is linear in n, or less

Slow versus fast extinction

• I0 = Ø (all healthy) is an absorbing state

– extinction guaranteed

– may take time exponential in n

• But with enough curing resources:

– total curing rate > total infection rate
X

i2It
⇢i(t) > cut(It)

– It has downward (expected) drift

– time to extinction is linear in n, or less

Slow versus fast extinction

• I0 = Ø (all healthy) is an absorbing state

– extinction guaranteed

– may take time exponential in n

• But with enough curing resources:

– total curing rate > total infection rate
X

i2It
⇢i(t) > cut(It)

– It has downward (expected) drift

– time to extinction is linear in n, or less

Slow versus fast extinction

• I0 = Ø (all healthy) is an absorbing state

– extinction guaranteed

– may take time exponential in n

• But with enough curing resources:

– total curing rate > total infection rate
X

i2It
⇢i(t) > cut(It)

– It has downward (expected) drift

– time to extinction is linear in n, or less

Slow versus fast extinction

• I0 = Ø (all healthy) is an absorbing state

– extinction guaranteed

– may take time exponential in n

• But with enough curing resources:

– total curing rate > total infection rate
X

i2It
⇢i(t) > cut(It)

– It has downward (expected) drift

– time to extinction is linear in n, or less

Slow versus fast extinction

• I0 = Ø (all healthy) is an absorbing state

– extinction guaranteed

– may take time exponential in n

• But with enough curing resources:

– total curing rate > total infection rate
X

i2It
⇢i(t) > cut(It)

– It has downward (expected) drift

– time to extinction is linear in n, or less

Slow versus fast extinction

• I0 = Ø (all healthy) is an absorbing state

– extinction guaranteed

– may take time exponential in n

• But with enough curing resources:

– total curing rate > total infection rate
X

i2It
⇢i(t) > cut(It)

– |It| has downward (expected) drift

– time to extinction is linear in n, or less

Example: Line graph

• Static:

– need ⇢i > 1, at each i) Budget= ⌦(n)

• A dynamic policy

⇢i(t) = 2

– expected extinction in time O(n)

– constant budget su�ces (and needed)

Example: Line graph

• Static:

– need ⇢i > 1, at each i) Budget= ⌦(n)

• A dynamic policy

⇢i(t) = 2

– expected extinction in time O(n)

– constant budget su�ces (and needed)

Example: Line graph

• Static:

– fast extinction needs ⇢i > 1, for most i) Budget= ⌦(n)

• A dynamic policy

⇢i(t) = 2

– expected extinction in time O(n)

– constant budget su�ces (and needed)

Example: Line graph

• Static:

– need ⇢i > 1, at each i) Budget= ⌦(n)

• A dynamic policy

⇢i(t) = 2

– expected extinction in time O(n)

– constant budget su�ces (and needed)

Example: Line graph

• Static:

– fast extinctiion needs ⇢i > 1, at each i) Budget= ⌦(n)

• A dynamic policy

⇢i(t) = 2

– expected extinction in time O(n)

– constant budget su�ces (and needed)

Example: Line graph

• Static:

– fast extinctiion needs ⇢i > 1, at each i) Budget= ⌦(n)

• A dynamic policy

⇢i(t) = 2

– expected extinction in time O(n)

– constant budget su�ces (and needed)

Example: Line graph

• Static:

– fast extinction needs ⇢i > 1, for most i) Budget= ⌦(n)

• A dynamic policy

⇢i(t) = 2

– expected extinction in time O(n)

– constant budget su�ces (and needed)

Example: Line graph

• Static:

– need ⇢i > 1, at each i) Budget= ⌦(n)

• A dynamic policy

⇢i(t) = 2

– expected extinction in time O(n)

– constant budget su�ces (and needed)

Example: Line graph

• Static:

– fast extinctiion needs ⇢i > 1, at each i) Budget= ⌦(n)

• A dynamic policy

⇢i(t) = 2

– expected extinction in time O(n)

– constant budget su�ces (and needed)

Example: Line graph

• Static:

– fast extinctiion needs ⇢i > 1, at each i) Budget= ⌦(n)

• A dynamic policy

⇢i(t) = 2

– expected extinction in time O(n)

– constant budget su�ces (and needed)

Example: Line graph

• Static:

– fast extinctiion needs ⇢i > 1, at each i) Budget= ⌦(n)

• A dynamic policy

⇢i(t) = 2

– expected extinction in time O(n)

– constant budget su�ces (and needed)

Example: Line graph

• Static:

– fast extinctiion needs ⇢i > 1, at each i) Budget= ⌦(n)

• A dynamic policy

⇢i(t) = 2

– expected extinction in time O(n)

– constant budget su�ces (and needed)

Example: Line graph

• Static:

– fast extinction needs ⇢i > 1, for most i) Budget= ⌦(n)

• A dynamic policy

⇢i(t) = 2

– expected extinction in time O(n)

– constant budget su�ces (and needed)

Example: Line graph

• Static:

– need ⇢i > 1, at each i) Budget= ⌦(n)

• A dynamic policy

⇢i(t) = 2

– expected extinction in time O(n)

– constant budget su�ces (and needed)

Example: Line graph

• Static:

– fast extinctiion needs ⇢i > 1, at each i) Budget= ⌦(n)

• A dynamic policy

⇢i(t) = 2

– expected extinction in time O(n)

– constant budget su�ces (and needed)

Example: Line graph

• Static:

– fast extinctiion needs ⇢i > 1, at each i) Budget= ⌦(n)

• A dynamic policy

⇢i(t) = 2

– expected extinction in time O(n)

– constant budget su�ces (and needed)

Example: Line graph

• Static:

– fast extinctiion needs ⇢i > 1, at each i) Budget= ⌦(n)

• A dynamic policy

⇢i(t) = 2

– expected extinction in time O(n)

– constant budget su�ces (and needed)

Example: Line graph

• Static:

– fast extinctiion needs ⇢i > 1, at each i) Budget= ⌦(n)

• A dynamic policy

⇢i(t) = 2

– expected extinction in time O(n)

– constant budget su�ces (and needed)

Example: Line graph

• Static:

– fast extinctiion needs ⇢i > 1, at each i) Budget= ⌦(n)

• A dynamic policy

⇢i(t) = 2

– expected extinction in time O(n)

– constant budget su�ces (and needed)

Example: Line graph

• Static:

– fast extinction needs ⇢i > 1, for most i) Budget= ⌦(n)

• A dynamic policy

⇢i(t) = 2

– expected extinction in time O(n)

– constant budget su�ces (and needed)

Example:
p
n⇥

p
n mesh

Example: Line graph

• Static:

– fast extinction needs ⇢i > 1, for most i) Budget= ⌦(n)

• A dynamic policy

⇢i(t) = 2

– expected extinction in time O(n)

– constant budget su�ces (and needed)

Example:
p
n⇥

p
n mesh

(⇢i � 5 su�ces)

Example:
p
n⇥

p
n mesh

Example: Line graph

• Static:

– fast extinction needs ⇢i > 1, for most i) Budget= ⌦(n)

• A dynamic policy

⇢i(t) = 2

– expected extinction in time O(n)

– constant budget su�ces (and needed)

Example:
p
n⇥

p
n mesh

(⇢i � 5 su�ces)
Example: Line graph

• Static:

– fast extinction needs ⇢i > 1, for most i) Budget= ⌦(n)

• A dynamic policy

⇢i(t) = 2

– expected extinction in time O(n)

– constant budget su�ces (and needed)

Example:
p
n⇥

p
n mesh

(⇢i � 5 su�ces)

– allocate ⇢i(t) = 5 on “boundary”

– O(
p
n) budget su�ces

– at times where about n/2 infected nodes:
cut(It) = ⌦(

p
n)

– to make progress: O(
p
n) budget necessary

Example:
p
n⇥

p
n mesh

Example: Line graph

• Static:

– fast extinction needs ⇢i > 1, for most i) Budget= ⌦(n)

• A dynamic policy

⇢i(t) = 2

– expected extinction in time O(n)

– constant budget su�ces (and needed)

Example:
p
n⇥

p
n mesh

(⇢i � 5 su�ces)
Example: Line graph

• Static:

– fast extinction needs ⇢i > 1, for most i) Budget= ⌦(n)

• A dynamic policy

⇢i(t) = 2

– expected extinction in time O(n)

– constant budget su�ces (and needed)

Example:
p
n⇥

p
n mesh

(⇢i � 5 su�ces)

– allocate ⇢i(t) = 5 on “boundary”

– O(
p
n) budget su�ces

– at times where about n/2 infected nodes:
cut(It) = ⌦(

p
n)

– to make progress: O(
p
n) budget necessary

Example:
p
n⇥

p
n mesh

Example: Line graph

• Static:

– fast extinction needs ⇢i > 1, for most i) Budget= ⌦(n)

• A dynamic policy

⇢i(t) = 2

– expected extinction in time O(n)

– constant budget su�ces (and needed)

Example:
p
n⇥

p
n mesh

(⇢i � 5 su�ces)
Example: Line graph

• Static:

– fast extinction needs ⇢i > 1, for most i) Budget= ⌦(n)

• A dynamic policy

⇢i(t) = 2

– expected extinction in time O(n)

– constant budget su�ces (and needed)

Example:
p
n⇥

p
n mesh

(⇢i � 5 su�ces)

– allocate ⇢i(t) = 5 on “boundary”

– O(
p
n) budget su�ces

– at times where about n/2 infected nodes:
cut(It) = ⌦(

p
n)

– to make progress: O(
p
n) budget necessary

Example:
p
n⇥

p
n mesh

(⇢i � 5 su�ces)

– allocate ⇢i(t) = 5 on “boundary”

– O(
p
n) budget su�ces

– at times where about n/2 infected nodes:
cut(It) = ⌦(

p
n)

– to make progress: O(
p
n) budget necessary

Example:
p
n⇥

p
n mesh

Example: Line graph

• Static:

– fast extinction needs ⇢i > 1, for most i) Budget= ⌦(n)

• A dynamic policy

⇢i(t) = 2

– expected extinction in time O(n)

– constant budget su�ces (and needed)

Example:
p
n⇥

p
n mesh

(⇢i � 5 su�ces)
Example: Line graph

• Static:

– fast extinction needs ⇢i > 1, for most i) Budget= ⌦(n)

• A dynamic policy

⇢i(t) = 2

– expected extinction in time O(n)

– constant budget su�ces (and needed)

Example:
p
n⇥

p
n mesh

(⇢i � 5 su�ces)

– allocate ⇢i(t) = 5 on “boundary”

– O(
p
n) budget su�ces

– at times where about n/2 infected nodes:
cut(It) = ⌦(

p
n)

– to make progress: O(
p
n) budget necessary

Example:
p
n⇥

p
n mesh

(⇢i � 5 su�ces)

– allocate ⇢i(t) = 5 on “boundary”

– O(
p
n) budget su�ces

– at times where about n/2 infected nodes:
cut(It) = ⌦(

p
n)

– to make progress: O(
p
n) budget necessary

Example:
p
n⇥

p
n mesh

(⇢i � 5 su�ces)

– allocate ⇢i(t) = 5 on “boundary”

– O(
p
n) budget su�ces

– at times where about n/2 infected nodes:
cut(It) = ⌦(

p
n)

– to make progress: O(
p
n) budget necessary

Example:
p
n⇥

p
n mesh

Example: Line graph

• Static:

– fast extinction needs ⇢i > 1, for most i) Budget= ⌦(n)

• A dynamic policy

⇢i(t) = 2

– expected extinction in time O(n)

– constant budget su�ces (and needed)

Example:
p
n⇥

p
n mesh

(⇢i � 5 su�ces)
Example: Line graph

• Static:

– fast extinction needs ⇢i > 1, for most i) Budget= ⌦(n)

• A dynamic policy

⇢i(t) = 2

– expected extinction in time O(n)

– constant budget su�ces (and needed)

Example:
p
n⇥

p
n mesh

(⇢i � 5 su�ces)

– allocate ⇢i(t) = 5 on “boundary”

– O(
p
n) budget su�ces

– at times where about n/2 infected nodes:
cut(It) = ⌦(

p
n)

– to make progress: O(
p
n) budget necessary

Example:
p
n⇥

p
n mesh

(⇢i � 5 su�ces)

– allocate ⇢i(t) = 5 on “boundary”

– O(
p
n) budget su�ces

– at times where about n/2 infected nodes:
cut(It) = ⌦(

p
n)

– to make progress: O(
p
n) budget necessary

Example:
p
n⇥

p
n mesh

(⇢i � 5 su�ces)

– allocate ⇢i(t) = 5 on “boundary”

– O(
p
n) budget su�ces

– at times where about n/2 infected nodes:
cut(It) = ⌦(

p
n)

– to make progress: O(
p
n) budget necessary

Example:
p
n⇥

p
n mesh

(⇢i � 5 su�ces)

– allocate ⇢i(t) = 5 on “boundary”

– O(
p
n) budget su�ces

– at times where about n/2 infected nodes:
cut(It) = ⌦(

p
n)

– to make progress: ⌦(
p
n) budget necessary

Cut Widths

• Budget should be large enough to counter worst cut(It) encountered

– (not exactly true, but close. . .)

• Crusade !: sequence I0, I1, . . . , Im = Ø, where at each step:

– remove one node, and/or

– add nodes at will

z(!) = max
n

cut(I1), . . . , c(Im)
o

• Resistance: �(I0) = min z(!)

• CutWidth=CW=W =�(V)

Cut Widths

• Budget should be large enough to counter large cut(It)

– [not at all times, but when it matters]

• Crusade !: sequence I0, I1, . . . , Im = Ø, where at each step:

– remove one node, and/or

– add nodes at will

z(!) = max
n

cut(I1), . . . , cut(Im)
o

• Resistance: �(I0) = min
!

z(!) = 1

• CutWidth=CW=W =�(V)

line: W = 1 mesh: W ⇡
p
n

Cut Widths

• Budget should be large enough to counter worst cut(It) encountered

– (not exactly true, but close. . .)

• Crusade !: sequence I0, I1, . . . , Im = Ø, where at each step:

– remove one node, and/or

– add nodes at will

z(!) = max
n

cut(I1), . . . , c(Im)
o

• Resistance: �(I0) = min z(!)

• CutWidth=CW=W =�(V)

• Monotone crusade: Remove one node at a time

I0 = V I1 I2 In�1 In = Ø

W = CutWidth = min
crusades



max
k

cut(Ik)
�

Cut Widths

• Budget should be large enough to counter large cut(It)

– [not at all times, but when it matters]

• Crusade !: sequence I0, I1, . . . , Im = Ø, where at each step:

– remove one node, and/or

– add nodes at will

z(!) = max
n

cut(I1), . . . , cut(Im)
o

• Resistance: �(I0) = min
!

z(!) = 1

• CutWidth=CW=W =�(V)

line: W = 1 mesh: W ⇡
p
n

Cut Widths

• Budget should be large enough to counter worst cut(It) encountered

– (not exactly true, but close. . .)

• Crusade !: sequence I0, I1, . . . , Im = Ø, where at each step:

– remove one node, and/or

– add nodes at will

z(!) = max
n

cut(I1), . . . , c(Im)
o

• Resistance: �(I0) = min z(!)

• CutWidth=CW=W =�(V)

• Monotone crusade: Remove one node at a time

I0 = V I1 I2 In�1 In = Ø

W = CutWidth = min
crusades



max
k

cut(Ik)
�

• Monotone crusade: Remove one node at a time

I0 = V I1 I2 In�1 In = Ø

W = CutWidth = min
crusades



max
k

cut(Ik)
�

Cut Widths

• Budget should be large enough to counter large cut(It)

– [not at all times, but when it matters]

• Crusade !: sequence I0, I1, . . . , Im = Ø, where at each step:

– remove one node, and/or

– add nodes at will

z(!) = max
n

cut(I1), . . . , cut(Im)
o

• Resistance: �(I0) = min
!

z(!) = 1

• CutWidth=CW=W =�(V)

line: W = 1 mesh: W ⇡
p
n

Cut Widths

• Budget should be large enough to counter worst cut(It) encountered

– (not exactly true, but close. . .)

• Crusade !: sequence I0, I1, . . . , Im = Ø, where at each step:

– remove one node, and/or

– add nodes at will

z(!) = max
n

cut(I1), . . . , c(Im)
o

• Resistance: �(I0) = min z(!)

• CutWidth=CW=W =�(V)

• Monotone crusade: Remove one node at a time

I0 = V I1 I2 In�1 In = Ø

W = CutWidth = min
crusades



max
k

cut(Ik)
�

• Monotone crusade: Remove one node at a time

I0 = V I1 I2 In�1 In = Ø

W = CutWidth = min
crusades



max
k

cut(Ik)
�

• Monotone crusade: Remove one node at a time

I0 = V I1 I2 In�1 In = Ø

W = CutWidth = min
crusades



max
k

cut(Ik)
�

Cut Widths

• Budget should be large enough to counter large cut(It)

– [not at all times, but when it matters]

• Crusade !: sequence I0, I1, . . . , Im = Ø, where at each step:

– remove one node, and/or

– add nodes at will

z(!) = max
n

cut(I1), . . . , cut(Im)
o

• Resistance: �(I0) = min
!

z(!) = 1

• CutWidth=CW=W =�(V)

line: W = 1 mesh: W ⇡
p
n

Cut Widths

• Budget should be large enough to counter worst cut(It) encountered

– (not exactly true, but close. . .)

• Crusade !: sequence I0, I1, . . . , Im = Ø, where at each step:

– remove one node, and/or

– add nodes at will

z(!) = max
n

cut(I1), . . . , c(Im)
o

• Resistance: �(I0) = min z(!)

• CutWidth=CW=W =�(V)

• Monotone crusade: Remove one node at a time

I0 = V I1 I2 In�1 In = Ø

W = CutWidth = min
crusades



max
k

cut(Ik)
�

• Monotone crusade: Remove one node at a time

I0 = V I1 I2 In�1 In = Ø

W = CutWidth = min
crusades



max
k

cut(Ik)
�

• Monotone crusade: Remove one node at a time

I0 = V I1 I2 In�1 In = Ø

W = CutWidth = min
crusades



max
k

cut(Ik)
�

• Monotone crusade: Remove one node at a time

I0 = V I1 I2 In�1 In = Ø

W = CutWidth = min
crusades



max
k

cut(Ik)
�

Cut Widths

• Budget should be large enough to counter large cut(It)

– [not at all times, but when it matters]

• Crusade !: sequence I0, I1, . . . , Im = Ø, where at each step:

– remove one node, and/or

– add nodes at will

z(!) = max
n

cut(I1), . . . , cut(Im)
o

• Resistance: �(I0) = min
!

z(!) = 1

• CutWidth=CW=W =�(V)

line: W = 1 mesh: W ⇡
p
n

Cut Widths

• Budget should be large enough to counter worst cut(It) encountered

– (not exactly true, but close. . .)

• Crusade !: sequence I0, I1, . . . , Im = Ø, where at each step:

– remove one node, and/or

– add nodes at will

z(!) = max
n

cut(I1), . . . , c(Im)
o

• Resistance: �(I0) = min z(!)

• CutWidth=CW=W =�(V)

• Monotone crusade: Remove one node at a time

I0 = V I1 I2 In�1 In = Ø

W = CutWidth = min
crusades



max
k

cut(Ik)
�

• Monotone crusade: Remove one node at a time

I0 = V I1 I2 In�1 In = Ø

W = CutWidth = min
crusades



max
k

cut(Ik)
�

• Monotone crusade: Remove one node at a time

I0 = V I1 I2 In�1 In = Ø

W = CutWidth = min
crusades



max
k

cut(Ik)
�

• Monotone crusade: Remove one node at a time

I0 = V I1 I2 In�1 In = Ø

W = CutWidth = min
crusades



max
k

cut(Ik)
�

• Monotone crusade: Remove one node at a time

I0 = V I1 I2 In�1 In = Ø

W = CutWidth = min
crusades



max
k

cut(Ik)
�

Cut Widths

• Budget should be large enough to counter large cut(It)

– [not at all times, but when it matters]

• Crusade !: sequence I0, I1, . . . , Im = Ø, where at each step:

– remove one node, and/or

– add nodes at will

z(!) = max
n

cut(I1), . . . , cut(Im)
o

• Resistance: �(I0) = min
!

z(!) = 1

• CutWidth=CW=W =�(V)

line: W = 1 mesh: W ⇡
p
n

Cut Widths

• Budget should be large enough to counter worst cut(It) encountered

– (not exactly true, but close. . .)

• Crusade !: sequence I0, I1, . . . , Im = Ø, where at each step:

– remove one node, and/or

– add nodes at will

z(!) = max
n

cut(I1), . . . , c(Im)
o

• Resistance: �(I0) = min z(!)

• CutWidth=CW=W =�(V)

• Monotone crusade: Remove one node at a time

I0 = V I1 I2 In�1 In = Ø

W = CutWidth = min
crusades



max
k

cut(Ik)
�

• Monotone crusade: Remove one node at a time

I0 = V I1 I2 In�1 In = Ø

W = CutWidth = min
crusades



max
k

cut(Ik)
�

• Monotone crusade: Remove one node at a time

I0 = V I1 I2 In�1 In = Ø

W = CutWidth = min
crusades



max
k

cut(Ik)
�

• Monotone crusade: Remove one node at a time

I0 = V I1 I2 In�1 In = Ø

W = CutWidth = min
crusades



max
k

cut(Ik)
�

• Monotone crusade: Remove one node at a time

I0 = V I1 I2 In�1 In = Ø

W = CutWidth = min
crusades



max
k

cut(Ik)
�

• Monotone crusade: Remove one node at a time

I0 = V I1 I2 In�1 In = Ø

W = CutWidth = min
crusades



max
k

cut(Ik)
�

Cut Widths

• Budget should be large enough to counter large cut(It)

– [not at all times, but when it matters]

• Crusade !: sequence I0, I1, . . . , Im = Ø, where at each step:

– remove one node, and/or

– add nodes at will

z(!) = max
n

cut(I1), . . . , cut(Im)
o

• Resistance: �(I0) = min
!

z(!) = 1

• CutWidth=CW=W =�(V)

line: W = 1 mesh: W ⇡
p
n

Cut Widths

• Budget should be large enough to counter worst cut(It) encountered

– (not exactly true, but close. . .)

• Crusade !: sequence I0, I1, . . . , Im = Ø, where at each step:

– remove one node, and/or

– add nodes at will

z(!) = max
n

cut(I1), . . . , c(Im)
o

• Resistance: �(I0) = min z(!)

• CutWidth=CW=W =�(V)

• Monotone crusade: Remove one node at a time

I0 = V I1 I2 In�1 In = Ø

W = CutWidth = min
crusades



max
k

cut(Ik)
�

• Monotone crusade: Remove one node at a time

I0 = V I1 I2 In�1 In = Ø

W = CutWidth = min
crusades



max
k

cut(Ik)
�

• Monotone crusade: Remove one node at a time

I0 = V I1 I2 In�1 In = Ø

W = CutWidth = min
crusades



max
k

cut(Ik)
�

• Monotone crusade: Remove one node at a time

I0 = V I1 I2 In�1 In = Ø

W = CutWidth = min
crusades



max
k

cut(Ik)
�

• Monotone crusade: Remove one node at a time

I0 = V I1 I2 In�1 In = Ø

W = CutWidth = min
crusades



max
k

cut(Ik)
�

• Monotone crusade: Remove one node at a time

I0 = V I1 I2 In�1 In = Ø

W = CutWidth = min
crusades



max
k

cut(Ik)
�

• Monotone crusade: Remove one node at a time

I0 = V I1 I2 In�1 In = Ø

W = CutWidth = min
crusades



max
k

cut(Ik)
�

Cut Widths

• Budget should be large enough to counter large cut(It)

– [not at all times, but when it matters]

• Crusade !: sequence I0, I1, . . . , Im = Ø, where at each step:

– remove one node, and/or

– add nodes at will

z(!) = max
n

cut(I1), . . . , cut(Im)
o

• Resistance: �(I0) = min
!

z(!) = 1

• CutWidth=CW=W =�(V)

line: W = 1 mesh: W ⇡
p
n

Cut Widths

• Budget should be large enough to counter worst cut(It) encountered

– (not exactly true, but close. . .)

• Crusade !: sequence I0, I1, . . . , Im = Ø, where at each step:

– remove one node, and/or

– add nodes at will

z(!) = max
n

cut(I1), . . . , c(Im)
o

• Resistance: �(I0) = min z(!)

• CutWidth=CW=W =�(V)

• Monotone crusade: Remove one node at a time

I0 = V I1 I2 In�1 In = Ø

W = CutWidth = min
crusades



max
k

cut(Ik)
�

• Monotone crusade: Remove one node at a time

I0 = V I1 I2 In�1 In = Ø

W = CutWidth = min
crusades



max
k

cut(Ik)
�

• Monotone crusade: Remove one node at a time

I0 = V I1 I2 In�1 In = Ø

W = CutWidth = min
crusades



max
k

cut(Ik)
�

• Monotone crusade: Remove one node at a time

I0 = V I1 I2 In�1 In = Ø

W = CutWidth = min
crusades



max
k

cut(Ik)
�

• Monotone crusade: Remove one node at a time

I0 = V I1 I2 In�1 In = Ø

W = CutWidth = min
crusades



max
k

cut(Ik)
�

• Monotone crusade: Remove one node at a time

I0 = V I1 I2 In�1 In = Ø

W = CutWidth = min
crusades



max
k

cut(Ik)
�

• Monotone crusade: Remove one node at a time

I0 = V I1 I2 In�1 In = Ø

W = CutWidth = min
crusades



max
k

cut(Ik)
�

• Monotone crusade: Remove one node at a time

I0 = V I1 I2 In�1 In = Ø

W = CutWidth = min
crusades



max
k

cut(Ik)
�

• Monotone crusade: Remove one node at a time

I0 = V I1 I2 In�1 In = Ø

W = CutWidth = min
crusades



max
k

cut(Ik)
�

Cut Widths

• Budget should be large enough to counter large cut(It)

– [not at all times, but when it matters]

• Crusade !: sequence I0, I1, . . . , Im = Ø, where at each step:

– remove one node, and/or

– add nodes at will

z(!) = max
n

cut(I1), . . . , cut(Im)
o

• Resistance: �(I0) = min
!

z(!) = 1

• CutWidth=CW=W =�(V)

line: W = 1 mesh: W ⇡
p
n

Cut Widths

• Budget should be large enough to counter worst cut(It) encountered

– (not exactly true, but close. . .)

• Crusade !: sequence I0, I1, . . . , Im = Ø, where at each step:

– remove one node, and/or

– add nodes at will

z(!) = max
n

cut(I1), . . . , c(Im)
o

• Resistance: �(I0) = min z(!)

• CutWidth=CW=W =�(V)

• Monotone crusade: Remove one node at a time

I0 = V I1 I2 In�1 In = Ø

W = CutWidth = min
crusades



max
k

cut(Ik)
�

• Monotone crusade: Remove one node at a time

I0 = V I1 I2 In�1 In = Ø

W = CutWidth = min
crusades



max
k

cut(Ik)
�

• Monotone crusade: Remove one node at a time

I0 = V I1 I2 In�1 In = Ø

W = CutWidth = min
crusades



max
k

cut(Ik)
�

• Monotone crusade: Remove one node at a time

I0 = V I1 I2 In�1 In = Ø

W = CutWidth = min
crusades



max
k

cut(Ik)
�

• Monotone crusade: Remove one node at a time

I0 = V I1 I2 In�1 In = Ø

W = CutWidth = min
crusades



max
k

cut(Ik)
�

• Monotone crusade: Remove one node at a time

I0 = V I1 I2 In�1 In = Ø

W = CutWidth = min
crusades



max
k

cut(Ik)
�

• Monotone crusade: Remove one node at a time

I0 = V I1 I2 In�1 In = Ø

W = CutWidth = min
crusades



max
k

cut(Ik)
�

• Monotone crusade: Remove one node at a time

I0 = V I1 I2 In�1 In = Ø

W = CutWidth = min
crusades



max
k

cut(Ik)
�

• Monotone crusade: Remove one node at a time

I0 = V I1 I2 In�1 In = Ø

W = CutWidth = min
crusades



max
k

cut(Ik)
�

• Monotone crusade: Remove one node at a time

I0 = V I1 I2 In�1 In = Ø

W = CutWidth = min
crusades



max
k

cut(Ik)
�

Cut Widths

• Budget should be large enough to counter large cut(It)

– [not at all times, but when it matters]

• Crusade !: sequence I0, I1, . . . , Im = Ø, where at each step:

– remove one node, and/or

– add nodes at will

z(!) = max
n

cut(I1), . . . , cut(Im)
o

• Resistance: �(I0) = min
!

z(!) = 1

• CutWidth=CW=W =�(V)

line: W = 1 mesh: W ⇡
p
n

I0: cut(I0) = n� 1

I1: cut(I1) = 1

I2: cut(I1) = 1

z(!) = max
n

cut(I1), . . . , cut(Im)
o

= 1

W = 1

I0: cut(I0) = n� 1

I1: cut(I1) = 1

I2: cut(I1) = 1

z(!) = max
n

cut(I1), . . . , cut(Im)
o

= 1

W = 1

Examples: line graph and mesh

I0: cut(I0) = n� 1

I1: cut(I1) = 1

I2: cut(I1) = 1

z(!) = max
n

cut(I1), . . . , cut(Im)
o

= 1

W = 1

Cut Widths

• Budget should be large enough to counter worst cut(It) encountered

– (not exactly true, but close. . .)

• Crusade !: sequence I0, I1, . . . , Im = Ø, where at each step:

– remove one node, and/or

– add nodes at will

z(!) = max
n

cut(I1), . . . , c(Im)
o

• Resistance: �(I0) = min
!

z(!)

• CutWidth=CW=W =�(V)

line: W = 1 mesh: W ⇡
p
n

I0: cut(I0) = n� 1

I1: cut(I1) = 1

I2: cut(I1) = 1

z(!) = max
n

cut(I1), . . . , cut(Im)
o

= 1

W = 1

Examples: line graph and mesh

Upper bound Thm: If B � 4 ·W [and B � � log2 n]

Upper bound Thm: If B � 4 ·W [and B � � log2 n]Upper bound Thm: If B � 4W , [and B � � log2 n]

there is a policy for which: E[time to extinction]  26 ·
n

B

• Note: No policy could do better than n/B.

Upper bound Thm: If B � 4W , [and B � � log2 n]

there is a policy for which: E[time to extinction]  26 ·
n

B

• Note: No policy could do better than n/B.

Upper bound Thm: If B � 4 ·W [and B � � log2 n]

Upper bound Thm: If B � 4 ·W [and B � � log2 n]Upper bound Thm: If B � 4W , [and B � � log2 n]

there is a policy for which: E[time to extinction]  26 ·
n

B

• Note: No policy could do better than n/B.

Upper bound Thm: If B � 4W , [and B � � log2 n]

there is a policy for which: E[time to extinction]  26 ·
n

B

• Note: No policy could do better than n/B.

Upper bound Thm: If B � 4W , [and B � � log2 n]

there is a policy for which: E[time to extinction]  26 ·
n

B

• Note: No policy can do better than n/B

Upper bound Thm: If B � 4 ·W [and B � � log2 n]

Upper bound Thm: If B � 4 ·W [and B � � log2 n]Upper bound Thm: If B � 4W , [and B � � log2 n]

there is a policy for which: E[time to extinction]  26 ·
n

B

• Note: No policy could do better than n/B.

Upper bound Thm: If B � 4W , [and B � � log2 n]

there is a policy for which: E[time to extinction]  26 ·
n

B

• Note: No policy could do better than n/B.

Upper bound Thm: If B � 4W , [and B � � log2 n]

there is a policy for which: E[time to extinction]  26 ·
n

B

• Note: No policy can do better than n/B

Upper bound Thm: If B � 4W , [and B � � log2 n]

there is a policy for which: E[time to extinction]  26 ·
n

B

• Note: No policy can do better than n/B

• Corollary: If W is sublinear in n [e.g., mesh],
can get “fast extinction” (sublinear time), with sublinear budget.

• Lemma: Starting from subset A,
there exists monotone crusade with:
(largest cut encountered)  cut(A) +W

For more general initial (or current) sets

• Lemma: Starting from subset A,
there exists monotone crusade with:
(largest cut encountered)  cut(A) +W

• Lemma: Starting from subset A,
there exists monotone crusade with:
(largest cut encountered)  cut(A) +W

For more general initial (or current) sets

• Lemma: Starting from subset A,
there exists monotone crusade with:
(largest cut encountered)  cut(A) +W

For more general initial (or current) sets

• Lemma: Starting from subset A,
there exists monotone crusade with:
(largest cut encountered)  cut(A) +W

• Proof: Start with crusade V = I0, . . . , In = Ø, with cut(Ik)  W

For more general initial (or current) sets

• Lemma: Starting from subset A,
there exists monotone crusade with:
(largest cut encountered)  cut(A) +W

• Proof: Start with crusade V = I0, . . . , In = Ø, with cut(Ik)  W

Ik A Ik \A

Consider crusade A = A \ I0, I1 \A, . . . In \A = Ø

For more general initial (or current) sets

• Lemma: Starting from subset A,
there exists monotone crusade with:
(largest cut encountered)  cut(A) +W

• Proof: Take “optimal” monotone crusade: V = I0, . . . , In = Ø
, with cut(Ik)  W

Ik A Ik \A

Consider crusade A = A \ I0, I1 \A, . . . In \A = Ø

• Lemma: Starting from subset A,
there exists monotone crusade with:
(largest cut encountered)  cut(A) +W

For more general initial (or current) sets

• Lemma: Starting from subset A,
there exists monotone crusade with:
(largest cut encountered)  cut(A) +W

For more general initial (or current) sets

• Lemma: Starting from subset A,
there exists monotone crusade with:
(largest cut encountered)  cut(A) +W

• Proof: Start with crusade V = I0, . . . , In = Ø, with cut(Ik)  W

For more general initial (or current) sets

• Lemma: Starting from subset A,
there exists monotone crusade with:
(largest cut encountered)  cut(A) +W

• Proof: Start with crusade V = I0, . . . , In = Ø, with cut(Ik)  W

Ik A Ik \A

Consider crusade A = A \ I0, I1 \A, . . . In \A = Ø

For more general initial (or current) sets

• Lemma: Starting from subset A,
there exists monotone crusade with:
(largest cut encountered)  cut(A) +W

• Proof: Take “optimal” monotone crusade: V = I0, . . . , In = Ø
, with cut(Ik)  W

Ik A Ik \A

Consider crusade A = A \ I0, I1 \A, . . . In \A = Ø

For more general initial (or current) sets

• Lemma: Starting from subset A,
there exists monotone crusade with:
(largest cut encountered)  cut(A) +W

• Proof: Take “optimal” monotone crusade: V = I0, . . . , In = Ø
, with cut(Ik)  W

Ik A Ik \A

Consider crusade A = A \ I0, I1 \A, . . . In \A = Ø

• Lemma: Starting from subset A,
there exists monotone crusade with:
(largest cut encountered)  cut(A) +W

For more general initial (or current) sets

• Lemma: Starting from subset A,
there exists monotone crusade with:
(largest cut encountered)  cut(A) +W

For more general initial (or current) sets

• Lemma: Starting from subset A,
there exists monotone crusade with:
(largest cut encountered)  cut(A) +W

• Proof: Start with crusade V = I0, . . . , In = Ø, with cut(Ik)  W

For more general initial (or current) sets

• Lemma: Starting from subset A,
there exists monotone crusade with:
(largest cut encountered)  cut(A) +W

• Proof: Start with crusade V = I0, . . . , In = Ø, with cut(Ik)  W

Ik A Ik \A

Consider crusade A = A \ I0, I1 \A, . . . In \A = Ø

For more general initial (or current) sets

• Lemma: Starting from subset A,
there exists monotone crusade with:
(largest cut encountered)  cut(A) +W

• Proof: Take “optimal” monotone crusade: V = I0, . . . , In = Ø
, with cut(Ik)  W

Ik A Ik \A

Consider crusade A = A \ I0, I1 \A, . . . In \A = Ø

For more general initial (or current) sets

• Lemma: Starting from subset A,
there exists monotone crusade with:
(largest cut encountered)  cut(A) +W

• Proof: Take “optimal” monotone crusade: V = I0, . . . , In = Ø
, with cut(Ik)  W

Ik A Ik \A

Consider crusade A = A \ I0, I1 \A, . . . In \A = Ø

For more general initial (or current) sets

• Lemma: Starting from subset A,
there exists monotone crusade with:
(largest cut encountered)  cut(A) +W

• Proof: Take “optimal” monotone crusade: V = I0, . . . , In = Ø
, with cut(Ik)  W

Ik A Ik \A

Consider crusade A = A \ I0, I1 \A, . . . In \A = Ø

For more general initial (or current) sets

• Lemma: Starting from subset A,
there exists monotone crusade with:
(largest cut encountered)  cut(A) +W

• Proof: Take “optimal” monotone crusade: V = I0, . . . , In = Ø
, with cut(Ik)  W

Ik A Ik \A

Consider crusade A = A \ I0, I1 \A, . . . In \A = Ø

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0 +W 
B

8
+

B

4
=

3B

8

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0 +W 
B

8
+

B

4
=

3B

8

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0 +W 
B

8
+

B

4
=

3B

8

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0 +W 
B

8
+

B

4
=

3B

8

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0 +W 
B

8
+

B

4
=

3B

8

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0 +W 
B

8
+

B

4
=

3B

8

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0) +W 
B

8
+

B

4
=

3B

8

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0) +W 
B

8
+

B

4
=

3B

8

• Once we reach Ik, allocate budget to nodes not in Ik+1

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0 +W 
B

8
+

B

4
=

3B

8

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0 +W 
B

8
+

B

4
=

3B

8

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0 +W 
B

8
+

B

4
=

3B

8

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0) +W 
B

8
+

B

4
=

3B

8

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0) +W 
B

8
+

B

4
=

3B

8

• Once we reach Ik, allocate budget to nodes not in Ik+1

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0 +W 
B

8
+

B

4
=

3B

8

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0 +W 
B

8
+

B

4
=

3B

8

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0 +W 
B

8
+

B

4
=

3B

8

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0) +W 
B

8
+

B

4
=

3B

8
The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0) +W 
B

8
+

B

4
=

3B

8

• Once we reach Ik, allocate budget to nodes not in Ik+1

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0) +W 
B

8
+

B

4
=

3B

8

• Once we reach Ik, allocate budget to nodes not in Ik+1

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0 +W 
B

8
+

B

4
=

3B

8

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0 +W 
B

8
+

B

4
=

3B

8

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0 +W 
B

8
+

B

4
=

3B

8

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0) +W 
B

8
+

B

4
=

3B

8

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0) +W 
B

8
+

B

4
=

3B

8

• Once we reach Ik, allocate budget to nodes not in Ik+1

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0) +W 
B

8
+

B

4
=

3B

8

• Once we reach Ik, allocate budget to nodes not in Ik+1

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0) +W 
B

8
+

B

4
=

3B

8

• Once we reach Ik, allocate budget to nodes not in Ik+1

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0) +W 
B

8
+

B

4
=

3B

8

• Once we reach Ik, allocate budget to nodes not in Ik+1

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0 +W 
B

8
+

B

4
=

3B

8

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0 +W 
B

8
+

B

4
=

3B

8

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0 +W 
B

8
+

B

4
=

3B

8

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0) +W 
B

8
+

B

4
=

3B

8

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0) +W 
B

8
+

B

4
=

3B

8

• Once we reach Ik, allocate budget to nodes not in Ik+1

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0) +W 
B

8
+

B

4
=

3B

8

• Once we reach Ik, allocate budget to nodes not in Ik+1

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0) +W 
B

8
+

B

4
=

3B

8

• Once we reach Ik, allocate budget to nodes not in Ik+1

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0) +W 
B

8
+

B

4
=

3B

8

• Once we reach Ik, allocate budget to nodes not in Ik+1

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0 +W 
B

8
+

B

4
=

3B

8

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0 +W 
B

8
+

B

4
=

3B

8

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0 +W 
B

8
+

B

4
=

3B

8

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0) +W 
B

8
+

B

4
=

3B

8

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0) +W 
B

8
+

B

4
=

3B

8

• Once we reach Ik, allocate budget to nodes not in Ik+1

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0) +W 
B

8
+

B

4
=

3B

8

• Once we reach Ik, allocate budget to nodes not in Ik+1

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0) +W 
B

8
+

B

4
=

3B

8

• Once we reach Ik, allocate budget to nodes not in Ik+1

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0) +W 
B

8
+

B

4
=

3B

8

• Once we reach Ik, allocate budget to nodes not in Ik+1

• # of extra nodes B/8/� 0

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0) +W 
B

8
+

B

4
=

3B

8

• Once we reach Ik, allocate budget to nodes not in Ik+1

• # of extra nodes B/8� 0

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0) +W 
B

8
+

B

4
=

3B

8

• Once we reach Ik, allocate budget to nodes not in Ik+1

• # of extra nodes B/8� 0

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0) +W 
B

8
+

B

4
=

3B

8

• Once we reach Ik, allocate budget to nodes not in Ik+1

• # of extra nodes B/8� 0

– rate down: B

– rate up: 
3B

8
+

B

8�
·� =

B

2
failure

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0) +W 
B

8
+

B

4
=

3B

8

• Once we reach Ik, allocate budget to nodes not in Ik+1

• # of extra nodes B/8� 0

– rate down: B

– rate up: 
3B

8
+

B

8�
·� =

B

2
failure

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0) +W 
B

8
+

B

4
=

3B

8

• Once we reach Ik, allocate budget to nodes not in Ik+1

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0 +W 
B

8
+

B

4
=

3B

8

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0 +W 
B

8
+

B

4
=

3B

8

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0 +W 
B

8
+

B

4
=

3B

8

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0) +W 
B

8
+

B

4
=

3B

8

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0) +W 
B

8
+

B

4
=

3B

8

• Once we reach Ik, allocate budget to nodes not in Ik+1

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0) +W 
B

8
+

B

4
=

3B

8

• Once we reach Ik, allocate budget to nodes not in Ik+1

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0) +W 
B

8
+

B

4
=

3B

8

• Once we reach Ik, allocate budget to nodes not in Ik+1

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0) +W 
B

8
+

B

4
=

3B

8

• Once we reach Ik, allocate budget to nodes not in Ik+1

• # of extra nodes B/8� 0

– rate down: B

– rate up: 
3B

8
+

B

8�
·� =

B

2

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0) +W 
B

8
+

B

4
=

3B

8

• Once we reach Ik, allocate budget to nodes not in Ik+1

• # of extra nodes B/8/� 0

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0) +W 
B

8
+

B

4
=

3B

8

• Once we reach Ik, allocate budget to nodes not in Ik+1

• # of extra nodes B/8� 0

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0) +W 
B

8
+

B

4
=

3B

8

• Once we reach Ik, allocate budget to nodes not in Ik+1

• # of extra nodes B/8� 0

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0) +W 
B

8
+

B

4
=

3B

8

• Once we reach Ik, allocate budget to nodes not in Ik+1

• # of extra nodes B/8� 0

– rate down: B

– rate up: 
3B

8
+

B

8�
·� =

B

2
failure

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0) +W 
B

8
+

B

4
=

3B

8

• Once we reach Ik, allocate budget to nodes not in Ik+1

• # of extra nodes B/8� 0

– rate down: B

– rate up: 
3B

8
+

B

8�
·� =

B

2
failure

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0) +W 
B

8
+

B

4
=

3B

8

• Once we reach Ik, allocate budget to nodes not in Ik+1

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0 +W 
B

8
+

B

4
=

3B

8

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0 +W 
B

8
+

B

4
=

3B

8

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0 +W 
B

8
+

B

4
=

3B

8

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0) +W 
B

8
+

B

4
=

3B

8

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0) +W 
B

8
+

B

4
=

3B

8

• Once we reach Ik, allocate budget to nodes not in Ik+1

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0) +W 
B

8
+

B

4
=

3B

8

• Once we reach Ik, allocate budget to nodes not in Ik+1

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0) +W 
B

8
+

B

4
=

3B

8

• Once we reach Ik, allocate budget to nodes not in Ik+1

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0) +W 
B

8
+

B

4
=

3B

8

• Once we reach Ik, allocate budget to nodes not in Ik+1

• # of extra nodes B/8� 0

– rate down: B

– rate up: 
3B

8
+

B

8�
·� =

B

2

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0) +W 
B

8
+

B

4
=

3B

8

• Once we reach Ik, allocate budget to nodes not in Ik+1

• # of extra nodes B/8� 0

– rate down: B

– rate up: 
3B

8
+

B

8�
·� =

B

2

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0) +W 
B

8
+

B

4
=

3B

8

• Once we reach Ik, allocate budget to nodes not in Ik+1

• # of extra nodes B/8/� 0

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0) +W 
B

8
+

B

4
=

3B

8

• Once we reach Ik, allocate budget to nodes not in Ik+1

• # of extra nodes B/8� 0

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0) +W 
B

8
+

B

4
=

3B

8

• Once we reach Ik, allocate budget to nodes not in Ik+1

• # of extra nodes B/8� 0

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0) +W 
B

8
+

B

4
=

3B

8

• Once we reach Ik, allocate budget to nodes not in Ik+1

• # of extra nodes B/8� 0

– rate down: B

– rate up: 
3B

8
+

B

8�
·� =

B

2
failure

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0) +W 
B

8
+

B

4
=

3B

8

• Once we reach Ik, allocate budget to nodes not in Ik+1

• # of extra nodes B/8� 0

– rate down: B

– rate up: 
3B

8
+

B

8�
·� =

B

2
failure

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0) +W 
B

8
+

B

4
=

3B

8

• Once we reach Ik, allocate budget to nodes not in Ik+1

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0 +W 
B

8
+

B

4
=

3B

8

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0 +W 
B

8
+

B

4
=

3B

8

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0 +W 
B

8
+

B

4
=

3B

8

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0) +W 
B

8
+

B

4
=

3B

8

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0) +W 
B

8
+

B

4
=

3B

8

• Once we reach Ik, allocate budget to nodes not in Ik+1

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0) +W 
B

8
+

B

4
=

3B

8

• Once we reach Ik, allocate budget to nodes not in Ik+1

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0) +W 
B

8
+

B

4
=

3B

8

• Once we reach Ik, allocate budget to nodes not in Ik+1

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0) +W 
B

8
+

B

4
=

3B

8

• Once we reach Ik, allocate budget to nodes not in Ik+1

• # of extra nodes B/8� 0

– rate down: B

– rate up: 
3B

8
+

B

8�
·� =

B

2

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0) +W 
B

8
+

B

4
=

3B

8

• Once we reach Ik, allocate budget to nodes not in Ik+1

• # of extra nodes B/8� 0

– rate down: B

– rate up: 
3B

8
+

B

8�
·� =

B

2

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0) +W 
B

8
+

B

4
=

3B

8

• Once we reach Ik, allocate budget to nodes not in Ik+1

• # of extra nodes B/8/� 0

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0) +W 
B

8
+

B

4
=

3B

8

• Once we reach Ik, allocate budget to nodes not in Ik+1

• # of extra nodes B/8� 0

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0) +W 
B

8
+

B

4
=

3B

8

• Once we reach Ik, allocate budget to nodes not in Ik+1

• # of extra nodes B/8� 0

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0) +W 
B

8
+

B

4
=

3B

8

• Once we reach Ik, allocate budget to nodes not in Ik+1

• # of extra nodes B/8� 0

– rate down: B

– rate up: 
3B

8
+

B

8�
·� =

B

2
failure

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0) +W 
B

8
+

B

4
=

3B

8

• Once we reach Ik, allocate budget to nodes not in Ik+1

• # of extra nodes B/8� 0

– rate down: B

– rate up: 
3B

8
+

B

8�
·� =

B

2
failure

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0) +W 
B

8
+

B

4
=

3B

8

• Once we reach Ik, allocate budget to nodes not in Ik+1

• # of extra nodes B/8� 0

– rate down: B

– rate up: 
3B

8
+

B

8�
·� =

B

2
failure

• Prob(failure): exponentially small

• If failure: let infections happen till cut(It)  B/8 and restart

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0) +W 
B

8
+

B

4
=

3B

8

• Once we reach Ik, allocate budget to nodes not in Ik+1

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0 +W 
B

8
+

B

4
=

3B

8

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0 +W 
B

8
+

B

4
=

3B

8

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0 +W 
B

8
+

B

4
=

3B

8

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0) +W 
B

8
+

B

4
=

3B

8

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0) +W 
B

8
+

B

4
=

3B

8

• Once we reach Ik, allocate budget to nodes not in Ik+1

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0) +W 
B

8
+

B

4
=

3B

8

• Once we reach Ik, allocate budget to nodes not in Ik+1

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0) +W 
B

8
+

B

4
=

3B

8

• Once we reach Ik, allocate budget to nodes not in Ik+1

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0) +W 
B

8
+

B

4
=

3B

8

• Once we reach Ik, allocate budget to nodes not in Ik+1

• # of extra nodes B/8� 0

– rate down: B

– rate up: 
3B

8
+

B

8�
·� =

B

2

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0) +W 
B

8
+

B

4
=

3B

8

• Once we reach Ik, allocate budget to nodes not in Ik+1

• # of extra nodes B/8� 0

– rate down: B

– rate up: 
3B

8
+

B

8�
·� =

B

2

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0) +W 
B

8
+

B

4
=

3B

8

• Once we reach Ik, allocate budget to nodes not in Ik+1

• # of extra nodes B/8/� 0

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0) +W 
B

8
+

B

4
=

3B

8

• Once we reach Ik, allocate budget to nodes not in Ik+1

• # of extra nodes B/8� 0

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0) +W 
B

8
+

B

4
=

3B

8

• Once we reach Ik, allocate budget to nodes not in Ik+1

• # of extra nodes B/8� 0

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0) +W 
B

8
+

B

4
=

3B

8

• Once we reach Ik, allocate budget to nodes not in Ik+1

• # of extra nodes B/8� 0

– rate down: B

– rate up: 
3B

8
+

B

8�
·� =

B

2
failure

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0) +W 
B

8
+

B

4
=

3B

8

• Once we reach Ik, allocate budget to nodes not in Ik+1

• # of extra nodes B/8� 0

– rate down: B

– rate up: 
3B

8
+

B

8�
·� =

B

2
failure

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0) +W 
B

8
+

B

4
=

3B

8

• Once we reach Ik, allocate budget to nodes not in Ik+1

• # of extra nodes B/8� 0

– rate down: B

– rate up: 
3B

8
+

B

8�
·� =

B

2
failure

• Prob(failure): exponentially small

• If failure: let infections happen till cut(It)  B/8 and restart

The policy (B � 4W, W  B/4)

• Suppose we start with cut(I0)  B/8; e.g., I0 = V

• Target path I0, I1, . . . , Im = Ø (monotone)

cut(Ik)  c(I0) +W 
B

8
+

B

4
=

3B

8

• Once we reach Ik, allocate budget to nodes not in Ik+1

• # of extra nodes B/8� 0

– rate down: B

– rate up: 
3B

8
+

B

8�
·� =

B

2
failure

• Prob(failure): exponentially small

• If failure: let infections happen
till cut(It)  B/8 and restart

Simulations, on a star graph

Simulations, on a star graph

n = 50 W ⇡ 25 20 40

budget extinction time

Can we do better? Lower bounds on expected extinction time

• Theorem: Assume: W � cwn B  cbn  W

If cb small enough [cb  f(cw,�)],
then E[extinction time] � cecn [c = f(cw,�) > 0]

• Idea: The actual (stochastic) trajectory It
will encounter a cut of size � W

W I = V I = Ø cut(It) |It| " W t

• Not enough. Must show upward drift for substantial amount of time

Simulations, on a star graph

n = 50 W ⇡ 25 20 40

budget extinction time

Can we do better? Lower bounds on expected extinction time

• Theorem: Assume: W � cwn B  cbn  W

If cb small enough [cb  f(cw,�)],
then E[extinction time] � cecn [c = f(cw,�) > 0]

• Idea: The actual (stochastic) trajectory It
will encounter a cut of size � W

W I = V I = Ø cut(It) |It| " W t

• Not enough. Must show upward drift for substantial amount of time

Simulations, on a star graph

Simulations, on a star graph

n = 50 W ⇡ 25 20 40

budget extinction time

Can we do better? Lower bounds on expected extinction time

• Theorem: Assume: W � cwn B  cbn  W

If cb small enough [cb  f(cw,�)],
then E[extinction time] � cecn [c = f(cw,�) > 0]

• Idea: The actual (stochastic) trajectory It
will encounter a cut of size � W

W I = V I = Ø cut(It) |It| " W t

• Not enough. Must show upward drift for substantial amount of time

Simulations, on a star graph

n = 50 W ⇡ 25 20 40

budget extinction time

Can we do better? Lower bounds on expected extinction time

• Theorem: Assume: W � cwn B  cbn  W

If cb small enough [cb  f(cw,�)],
then E[extinction time] � cecn [c = f(cw,�) > 0]

• Idea: The actual (stochastic) trajectory It
will encounter a cut of size � W

W I = V I = Ø cut(It) |It| " W t

• Not enough. Must show upward drift for substantial amount of time

Simulations on the star

2 4 6 8 10 12
0

500

1000

1500

budget

ex
pe

ct
ed

 e
xt

in
ct

io
n

tim
e

⇢i = R/n

⇢i = R

deg(i)P
i2V deg(i)

⇢i =
RP
Xj (t)

, Xi (t) = 1

⇢i = R

deg(i)P
Xj (t)=1 deg(j)

, Xi (t) = 1

⇢i = R

P
j⇠i Xj (t)P

Xk (t)=1

P
j⇠k Xj (t)

, Xi (t) = 1

⇢i� CW-optimal

Simulations, on a star graph

budget extinction time

Simulations, on a star graph

budget extinction time
Simulations, on a star graph

budget extinction time

Simulations, on a star graph

n = 50 W ⇡ 25 20 40

budget extinction time

Can we do better? Lower bounds on expected extinction time

• Theorem: Assume: W � cwn B  cbn  W

If cb small enough [cb  f(cw,�)],
then E[extinction time] � cecn [c = f(cw,�) > 0]

• Idea: The actual (stochastic) trajectory It
will encounter a cut of size � W

W I = V I = Ø cut(It) |It| " W t

• Not enough. Must show upward drift for substantial amount of time

Simulations, on a star graph

n = 50 W ⇡ 25 20 40

budget extinction time

Can we do better? Lower bounds on expected extinction time

• Theorem: Assume: W � cwn B  cbn  W

If cb small enough [cb  f(cw,�)],
then E[extinction time] � cecn [c = f(cw,�) > 0]

• Idea: The actual (stochastic) trajectory It
will encounter a cut of size � W

W I = V I = Ø cut(It) |It| " W t

• Not enough. Must show upward drift for substantial amount of time

Simulations, on a star graph
Simulations on the star

2 4 6 8 10 12
0

500

1000

1500

budget

ex
pe

ct
ed

 e
xt

in
ct

io
n

tim
e

⇢i = R/n

⇢i = R

deg(i)P
i2V deg(i)

⇢i =
RP
Xj (t)

, Xi (t) = 1

⇢i = R

deg(i)P
Xj (t)=1 deg(j)

, Xi (t) = 1

⇢i = R

P
j⇠i Xj (t)P

Xk (t)=1

P
j⇠k Xj (t)

, Xi (t) = 1

⇢i� CW-optimal

Simulations, on a star graph

n = 50 W ⇡ 25 20 40

budget extinction time

Can we do better? Lower bounds on expected extinction time

• Theorem: Assume: W � cwn B  cbn  W

If cb small enough [cb  f(cw,�)],
then E[extinction time] � cecn [c = f(cw,�) > 0]

• Idea: The actual (stochastic) trajectory It
will encounter a cut of size � W

W I = V I = Ø cut(It) |It| " W t

• Not enough. Must show upward drift for substantial amount of time

Simulations, on a star graph

n = 50 W ⇡ 25 20 40

budget extinction time

Can we do better? Lower bounds on expected extinction time

• Theorem: Assume: W � cwn B  cbn  W

If cb small enough [cb  f(cw,�)],
then E[extinction time] � cecn [c = f(cw,�) > 0]

• Idea: The actual (stochastic) trajectory It
will encounter a cut of size � W

W I = V I = Ø cut(It) |It| " W t

• Not enough. Must show upward drift for substantial amount of time

Simulations on the star

2 4 6 8 10 12
0

500

1000

1500

budget

ex
pe

ct
ed

 e
xt

in
ct

io
n

tim
e

⇢i = R/n

⇢i = R

deg(i)P
i2V deg(i)

⇢i =
RP
Xj (t)

, Xi (t) = 1

⇢i = R

deg(i)P
Xj (t)=1 deg(j)

, Xi (t) = 1

⇢i = R

P
j⇠i Xj (t)P

Xk (t)=1

P
j⇠k Xj (t)

, Xi (t) = 1

⇢i� CW-optimal

Simulations, on a star graph

budget extinction time

Simulations, on a star graph

budget extinction time
Simulations, on a star graph

budget extinction time

Simulations, on a star graph

n = 50 W ⇡ 25 20 40

budget extinction time

Can we do better? Lower bounds on expected extinction time

• Theorem: Assume: W � cwn B  cbn  W

If cb small enough [cb  f(cw,�)],
then E[extinction time] � cecn [c = f(cw,�) > 0]

• Idea: The actual (stochastic) trajectory It
will encounter a cut of size � W

W I = V I = Ø cut(It) |It| " W t

• Not enough. Must show upward drift for substantial amount of time

Simulations, on a star graph

n = 50 W ⇡ 25 20 40

budget extinction time

Can we do better? Lower bounds on expected extinction time

• Theorem: Assume: W � cwn B  cbn  W

If cb small enough [cb  f(cw,�)],
then E[extinction time] � cecn [c = f(cw,�) > 0]

• Idea: The actual (stochastic) trajectory It
will encounter a cut of size � W

W I = V I = Ø cut(It) |It| " W t

• Not enough. Must show upward drift for substantial amount of time

Simulations, on a star graph

budget extinction time

Can we do better? Lower bounds on expected extinction time

• Theorem: Assume: W � cwn B  cbn  W If cb small enough [cb 
f(cw,�)],
then E[extinction time] � xecn [c = f(cw,�) > 0]

• Idea: The actual (stochastic) trajectory will encounter
a cut of size � W

W I = V I = Ø cut(It) |It| " W t

• Not enough. Must show upward drift for substantial amount of time

Simulations, on a star graph

budget extinction time

Can we do better? Lower bounds on expected extinction time

• Theorem: Assume: W � cwn B  cbn  W

If cb small enough [cb  f(cw,�)],
then E[extinction time] � xecn [c = f(cw,�) > 0]

• Idea: The actual (stochastic) trajectory will encounter
a cut of size � W

W I = V I = Ø cut(It) |It| " W t

• Not enough. Must show upward drift for substantial amount of time

Simulations, on a star graph

budget extinction time

Can we do better? Lower bounds on expected extinction time

• Theorem: Assume: W � cwn B  cbn  W

If cb small enough [cb  f(cw,�)],
then E[extinction time] � xecn [c = f(cw,�) > 0]

• Idea: The actual (stochastic) trajectory will encounter
a cut of size � W

W I = V I = Ø cut(It) |It| " W t

• Not enough. Must show upward drift for substantial amount of time

Simulations, on a star graph

budget extinction time

Can we do better? Lower bounds on expected extinction time

• Theorem: Assume: W � cwn B  cbn  W

If cb small enough [cb  f(cw,�)],
then E[extinction time] � xecn [c = f(cw,�) > 0]

• Idea: The actual (stochastic) trajectory will encounter
a cut of size � W

W I = V I = Ø cut(It) |It| " W t

• Not enough. Must show upward drift for substantial amount of time

Simulations, on a star graph

budget extinction time

Can we do better? Lower bounds on expected extinction time

• Theorem: Assume: W � cwn B  cbn  W

If cb small enough [cb  f(cw,�)],
then E[extinction time] � xecn [c = f(cw,�) > 0]

• Idea: The actual (stochastic) trajectory will encounter
a cut of size � W

W I = V I = Ø cut(It) |It| " W t

• Not enough. Must show upward drift for substantial amount of time

Simulations, on a star graph

budget extinction time

Can we do better? Lower bounds on expected extinction time

• Theorem: Assume: W � cwn B  cbn  W

If cb small enough [cb  f(cw,�)],
then E[extinction time] � xecn [c = f(cw,�) > 0]

• Idea: The actual (stochastic) trajectory will encounter
a cut of size � W

W I = V I = Ø cut(It) |It| " W t

• Not enough. Must show upward drift for substantial amount of time

Simulations, on a star graph

budget extinction time

Can we do better? Lower bounds on expected extinction time

• Theorem: Assume: W � cwn B  cbn  W

If cb small enough [cb  f(cw,�)],
then E[extinction time] � cecn [c = f(cw,�) > 0]

• Idea: The actual (stochastic) trajectory will encounter
a cut of size � W

W I = V I = Ø cut(It) |It| " W t

• Not enough. Must show upward drift for substantial amount of time

Simulations, on a star graph

budget extinction time

Can we do better? Lower bounds on expected extinction time

• Theorem: Assume: W � cwn B  cbn  W If cb small enough [cb 
f(cw,�)],
then E[extinction time] � xecn [c = f(cw,�) > 0]

• Idea: The actual (stochastic) trajectory will encounter
a cut of size � W

W I = V I = Ø cut(It) |It| " W t

• Not enough. Must show upward drift for substantial amount of time

Simulations, on a star graph

budget extinction time

Can we do better? Lower bounds on expected extinction time

• Theorem: Assume: W � cwn B  cbn  W

If cb small enough [cb  f(cw,�)],
then E[extinction time] � xecn [c = f(cw,�) > 0]

• Idea: The actual (stochastic) trajectory will encounter
a cut of size � W

W I = V I = Ø cut(It) |It| " W t

• Not enough. Must show upward drift for substantial amount of time

Simulations, on a star graph

budget extinction time

Can we do better? Lower bounds on expected extinction time

• Theorem: Assume: W � cwn B  cbn  W

If cb small enough [cb  f(cw,�)],
then E[extinction time] � xecn [c = f(cw,�) > 0]

• Idea: The actual (stochastic) trajectory will encounter
a cut of size � W

W I = V I = Ø cut(It) |It| " W t

• Not enough. Must show upward drift for substantial amount of time

Simulations, on a star graph

budget extinction time

Can we do better? Lower bounds on expected extinction time

• Theorem: Assume: W � cwn B  cbn  W

If cb small enough [cb  f(cw,�)],
then E[extinction time] � xecn [c = f(cw,�) > 0]

• Idea: The actual (stochastic) trajectory will encounter
a cut of size � W

W I = V I = Ø cut(It) |It| " W t

• Not enough. Must show upward drift for substantial amount of time

Simulations, on a star graph

budget extinction time

Can we do better? Lower bounds on expected extinction time

• Theorem: Assume: W � cwn B  cbn  W

If cb small enough [cb  f(cw,�)],
then E[extinction time] � xecn [c = f(cw,�) > 0]

• Idea: The actual (stochastic) trajectory will encounter
a cut of size � W

W I = V I = Ø cut(It) |It| " W t

• Not enough. Must show upward drift for substantial amount of time

Simulations, on a star graph

budget extinction time

Can we do better? Lower bounds on expected extinction time

• Theorem: Assume: W � cwn B  cbn  W

If cb small enough [cb  f(cw,�)],
then E[extinction time] � xecn [c = f(cw,�) > 0]

• Idea: The actual (stochastic) trajectory will encounter
a cut of size � W

W I = V I = Ø cut(It) |It| " W t

• Not enough. Must show upward drift for substantial amount of time

Simulations, on a star graph

budget extinction time

Can we do better? Lower bounds on expected extinction time

• Theorem: Assume: W � cwn B  cbn  W

If cb small enough [cb  f(cw,�)],
then E[extinction time] � cecn [c = f(cw,�) > 0]

• Idea: The actual (stochastic) trajectory will encounter
a cut of size � W

W I = V I = Ø cut(It) |It| " W t

• Not enough. Must show upward drift for substantial amount of time

Simulations, on a star graph

budget extinction time

Can we do better? Lower bounds on expected extinction time

• Theorem: Assume: W � cwn B  cbn  W

If cb small enough [cb  f(cw,�)],
then E[extinction time] � cecn [c = f(cw,�) > 0]

• Idea: The actual (stochastic) trajectory It
will encounter a cut of size � W

W I = V I = Ø cut(It) |It| " W t

• Not enough. Must show upward drift for substantial amount of time

Simulations, on a star graph

budget extinction time

Can we do better? Lower bounds on expected extinction time

• Theorem: Assume: W � cwn B  cbn  W

If cb small enough [cb  f(cw,�)],
then E[extinction time] � cecn [c = f(cw,�) > 0]

• Idea: The actual (stochastic) trajectory It
will encounter a cut of size � W

W I = V I = Ø cut(It) |It| " W t

• Not enough. Must show upward drift for substantial amount of time

Simulations, on a star graph

budget extinction time

Can we do better? Lower bounds on expected extinction time

• Theorem: Assume: W � cwn B  cbn  W

If cb small enough [cb  f(cw,�)],
then E[extinction time] � cecn [c = f(cw,�) > 0]

• Idea: The actual (stochastic) trajectory It
will encounter a cut of size � W

W I = V I = Ø cut(It) |It| " W t

• Not enough. Must show upward drift for substantial amount of time

Simulations, on a star graph

budget extinction time

Can we do better? Lower bounds on expected extinction time

• Theorem: Assume: W � cwn B  cbn  W

If cb small enough [cb  f(cw,�)],
then E[extinction time] � cecn [c = f(cw,�) > 0]

• Idea: The actual (stochastic) trajectory It
will encounter a cut of size � W

W I = V I = Ø cut(It) |It| " W t

• Not enough. Must show upward drift for substantial amount of time

Simulations, on a star graph

budget extinction time

Can we do better? Lower bounds on expected extinction time

• Theorem: Assume: W � cwn B  cbn  W

If cb small enough [cb  f(cw,�)],
then E[extinction time] � cecn [c = f(cw,�) > 0]

• Idea: The actual (stochastic) trajectory It
will encounter a cut of size � W

W I = V I = Ø cut(It) |It| " W t

• Not enough. Must show upward drift for substantial amount of time

Simulations, on a star graph

budget extinction time

Can we do better? Lower bounds on expected extinction time

• Theorem: Assume: W � cwn B  cbn  W

If cb small enough [cb  f(cw,�)],
then E[extinction time] � cecn [c = f(cw,�) > 0]

• Idea: The actual (stochastic) trajectory It
will encounter a cut of size � W

W I = V I = Ø cut(It) |It| " W t

• Not enough. Must show upward drift for substantial amount of time

Simulations, on a star graph

budget extinction time

Can we do better? Lower bounds on expected extinction time

• Theorem: Assume: W � cwn B  cbn  W

If cb small enough [cb  f(cw,�)],
then E[extinction time] � cecn [c = f(cw,�) > 0]

• Idea: The actual (stochastic) trajectory It
will encounter a cut of size � W

W I = V I = Ø cut(It) |It| " W t

• Not enough. Must show upward drift for substantial amount of time

Simulations, on a star graph

budget extinction time

Can we do better? Lower bounds on expected extinction time

• Theorem: Assume: W � cwn B  cbn  W If cb small enough [cb 
f(cw,�)],
then E[extinction time] � xecn [c = f(cw,�) > 0]

• Idea: The actual (stochastic) trajectory will encounter
a cut of size � W

W I = V I = Ø cut(It) |It| " W t

• Not enough. Must show upward drift for substantial amount of time

Simulations, on a star graph

budget extinction time

Can we do better? Lower bounds on expected extinction time

• Theorem: Assume: W � cwn B  cbn  W

If cb small enough [cb  f(cw,�)],
then E[extinction time] � xecn [c = f(cw,�) > 0]

• Idea: The actual (stochastic) trajectory will encounter
a cut of size � W

W I = V I = Ø cut(It) |It| " W t

• Not enough. Must show upward drift for substantial amount of time

Simulations, on a star graph

budget extinction time

Can we do better? Lower bounds on expected extinction time

• Theorem: Assume: W � cwn B  cbn  W

If cb small enough [cb  f(cw,�)],
then E[extinction time] � xecn [c = f(cw,�) > 0]

• Idea: The actual (stochastic) trajectory will encounter
a cut of size � W

W I = V I = Ø cut(It) |It| " W t

• Not enough. Must show upward drift for substantial amount of time

Simulations, on a star graph

budget extinction time

Can we do better? Lower bounds on expected extinction time

• Theorem: Assume: W � cwn B  cbn  W

If cb small enough [cb  f(cw,�)],
then E[extinction time] � xecn [c = f(cw,�) > 0]

• Idea: The actual (stochastic) trajectory will encounter
a cut of size � W

W I = V I = Ø cut(It) |It| " W t

• Not enough. Must show upward drift for substantial amount of time

Simulations, on a star graph

budget extinction time

Can we do better? Lower bounds on expected extinction time

• Theorem: Assume: W � cwn B  cbn  W

If cb small enough [cb  f(cw,�)],
then E[extinction time] � xecn [c = f(cw,�) > 0]

• Idea: The actual (stochastic) trajectory will encounter
a cut of size � W

W I = V I = Ø cut(It) |It| " W t

• Not enough. Must show upward drift for substantial amount of time

Simulations, on a star graph

budget extinction time

Can we do better? Lower bounds on expected extinction time

• Theorem: Assume: W � cwn B  cbn  W

If cb small enough [cb  f(cw,�)],
then E[extinction time] � xecn [c = f(cw,�) > 0]

• Idea: The actual (stochastic) trajectory will encounter
a cut of size � W

W I = V I = Ø cut(It) |It| " W t

• Not enough. Must show upward drift for substantial amount of time

Simulations, on a star graph

budget extinction time

Can we do better? Lower bounds on expected extinction time

• Theorem: Assume: W � cwn B  cbn  W

If cb small enough [cb  f(cw,�)],
then E[extinction time] � cecn [c = f(cw,�) > 0]

• Idea: The actual (stochastic) trajectory will encounter
a cut of size � W

W I = V I = Ø cut(It) |It| " W t

• Not enough. Must show upward drift for substantial amount of time

Simulations, on a star graph

budget extinction time

Can we do better? Lower bounds on expected extinction time

• Theorem: Assume: W � cwn B  cbn  W

If cb small enough [cb  f(cw,�)],
then E[extinction time] � cecn [c = f(cw,�) > 0]

• Idea: The actual (stochastic) trajectory It
will encounter a cut of size � W

W I = V I = Ø cut(It) |It| " W t

• Not enough. Must show upward drift for substantial amount of time

Simulations, on a star graph

budget extinction time

Can we do better? Lower bounds on expected extinction time

• Theorem: Assume: W � cwn B  cbn  W

If cb small enough [cb  f(cw,�)],
then E[extinction time] � cecn [c = f(cw,�) > 0]

• Idea: The actual (stochastic) trajectory It
will encounter a cut of size � W

W I = V I = Ø cut(It) |It| " W t

• Not enough. Must show upward drift for substantial amount of time

Simulations, on a star graph

budget extinction time

Can we do better? Lower bounds on expected extinction time

• Theorem: Assume: W � cwn B  cbn  W

If cb small enough [cb  f(cw,�)],
then E[extinction time] � cecn [c = f(cw,�) > 0]

• Idea: The actual (stochastic) trajectory It
will encounter a cut of size � W

W I = V I = Ø cut(It) |It| " W t

• Not enough. Must show upward drift for substantial amount of time

Simulations, on a star graph

budget extinction time

Can we do better? Lower bounds on expected extinction time

• Theorem: Assume: W � cwn B  cbn  W

If cb small enough [cb  f(cw,�)],
then E[extinction time] � cecn [c = f(cw,�) > 0]

• Idea: The actual (stochastic) trajectory It
will encounter a cut of size � W

W I = V I = Ø cut(It) |It| " W t

• Not enough. Must show upward drift for substantial amount of time

Simulations, on a star graph

budget extinction time

Can we do better? Lower bounds on expected extinction time

• Theorem: Assume: W � cwn B  cbn  W

If cb small enough [cb  f(cw,�)],
then E[extinction time] � cecn [c = f(cw,�) > 0]

• Idea: The actual (stochastic) trajectory It
will encounter a cut of size � W

W I = V I = Ø cut(It) |It| " W t

• Not enough. Must show upward drift for substantial amount of time

Simulations, on a star graph

budget extinction time

Can we do better? Lower bounds on expected extinction time

• Theorem: Assume: W � cwn B  cbn  W

If cb small enough [cb  f(cw,�)],
then E[extinction time] � cecn [c = f(cw,�) > 0]

• Idea: The actual (stochastic) trajectory It
will encounter a cut of size � W

W I = V I = Ø cut(It) |It| " W t

• Not enough. Must show upward drift for substantial amount of time

Simulations, on a star graph

budget extinction time

Can we do better? Lower bounds on expected extinction time

• Theorem: Assume: W � cwn B  cbn  W

If cb small enough [cb  f(cw,�)],
then E[extinction time] � cecn [c = f(cw,�) > 0]

• Idea: The actual (stochastic) trajectory It
will encounter a cut of size � W

W I = V I = Ø cut(It) |It| " W t

• Not enough. Must show upward drift for substantial amount of time

Simulations, on a star graph

budget extinction time

Can we do better? Lower bounds on expected extinction time

• Theorem: Assume: W � cwn B  cbn  W

If cb small enough [cb  f(cw,�)],
then E[extinction time] � cecn [c = f(cw,�) > 0]

• Idea: The actual (stochastic) trajectory It
will encounter a cut of size � W

W I = V I = Ø cut(It) |It| " W t

• Not enough. Must show upward drift for substantial amount of time

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I)?

�(I) = min
crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I)?

�(I) = min
crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I)?

�(I) = min
crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I)?

�(I) = min
crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I)?

�(I) = min
crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I) = 1

�(I) = min
crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I)?

�(I) = min
crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I)?

�(I) = min
crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I)?

�(I) = min
crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I) = 1

�(I) = min
crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I)?

�(I) = min
crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I)?

�(I) = min
crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I) = 1

�(I) = min
crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I) = 1

�(I) = min
crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I)?

�(I) = min
crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I) = 1

�(I) = min
crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I)?

�(I) = min
crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I)?

�(I) = min
crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I) = 1

�(I) = min
crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I) = 1

�(I) = min
crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I)?

�(I) = min
crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I) = 1

�(I) = min
crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I) = 1 I0 Im = Ø I

remove one node at a time
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I)?

�(I) = min
crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I)?

�(I) = min
crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I) = 1

�(I) = min
crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I) = 1

�(I) = min
crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I)?

�(I) = min
crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I) = 1

�(I) = min
crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I) = 1 I0 Im = Ø

remove one node at a time
add/infect nodes

�(I) = min
crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I) = 1 I0 Im = Ø I

remove one node at a time
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I)?

�(I) = min
crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I)?

�(I) = min
crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I) = 1

�(I) = min
crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I) = 1

�(I) = min
crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I)?

�(I) = min
crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I) = 1

�(I) = min
crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

• Monotone crusade: Remove one node at a time

I0 = V I1 I2 In�1 In = Ø

W = CutWidth = min
crusades



max
k

cut(Ik)
�

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I) = 1 I0 Im = Ø

remove one node at a time
add/infect nodes

�(I) = min
crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I) = 1 I0 Im = Ø I

remove one node at a time
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I)?

�(I) = min
crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I)?

�(I) = min
crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I) = 1

�(I) = min
crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I) = 1

�(I) = min
crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I)?

�(I) = min
crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I) = 1

�(I) = min
crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

• Monotone crusade: Remove one node at a time

I0 = V I1 I2 In�1 In = Ø

W = CutWidth = min
crusades



max
k

cut(Ik)
�

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I) = 1 I0 Im = Ø

remove one node at a time
add/infect nodes

�(I) = min
crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I) = 1 I0 Im = Ø I

remove one node at a time
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I) = 1 I0 Im = Ø

�(I) = min
crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

• Monotone crusade: Remove one node at a time

I0 = V I1 I2 In�1 In = Ø

W = CutWidth = min
crusades



max
k

cut(Ik)
�

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I) = 1 I0 Im = Ø I

remove one node at a time, or add nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I)?

�(I) = min
crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I)?

�(I) = min
crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I) = 1

�(I) = min
crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I) = 1

�(I) = min
crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I)?

�(I) = min
crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I) = 1

�(I) = min
crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

• Monotone crusade: Remove one node at a time

I0 = V I1 I2 In�1 In = Ø

W = CutWidth = min
crusades



max
k

cut(Ik)
�

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I) = 1 I0 Im = Ø

remove one node at a time
add/infect nodes

�(I) = min
crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I) = 1 I0 Im = Ø I

remove one node at a time
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I) = 1 I0 Im = Ø I

remove one node at a time
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I) = 1 I0 Im = Ø

�(I) = min
crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

• Monotone crusade: Remove one node at a time

I0 = V I1 I2 In�1 In = Ø

W = CutWidth = min
crusades



max
k

cut(Ik)
�

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I) = 1 I0 Im = Ø I

remove one node at a time, or add nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I)?

�(I) = min
crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I)?

�(I) = min
crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I) = 1

�(I) = min
crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I) = 1

�(I) = min
crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I)?

�(I) = min
crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I) = 1

�(I) = min
crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

• Monotone crusade: Remove one node at a time

I0 = V I1 I2 In�1 In = Ø

W = CutWidth = min
crusades



max
k

cut(Ik)
�

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I) = 1 I0 Im = Ø

remove one node at a time
add/infect nodes

�(I) = min
crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I) = 1 I0 Im = Ø I

remove one node at a time
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I) = 1 I0 Im = Ø I

remove one node at a time
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I) = 1 I0 Im = Ø I

remove one node at a time
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I) = 1 I0 Im = Ø

�(I) = min
crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

• Monotone crusade: Remove one node at a time

I0 = V I1 I2 In�1 In = Ø

W = CutWidth = min
crusades



max
k

cut(Ik)
�

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I) = 1 I0 Im = Ø I

remove one node at a time, or add nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I)?

�(I) = min
crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I)?

�(I) = min
crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I) = 1

�(I) = min
crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I) = 1

�(I) = min
crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I)?

�(I) = min
crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I) = 1

�(I) = min
crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

• Monotone crusade: Remove one node at a time

I0 = V I1 I2 In�1 In = Ø

W = CutWidth = min
crusades



max
k

cut(Ik)
�

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I) = 1 I0 Im = Ø

remove one node at a time
add/infect nodes

�(I) = min
crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I) = 1 I0 Im = Ø I

remove one node at a time
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I) = 1 I0 Im = Ø I

remove one node at a time
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I) = 1 I0 Im = Ø I

remove one node at a time
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I) = 1 I0 Im = Ø I

remove one node at a time
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I) = 1 I0 Im = Ø

�(I) = min
crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

• Monotone crusade: Remove one node at a time

I0 = V I1 I2 In�1 In = Ø

W = CutWidth = min
crusades



max
k

cut(Ik)
�

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I) = 1 I0 Im = Ø I

remove one node at a time, or add nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Lower bound proof sketch

• Claim: During [T 0, T] have ⇥(n) recoveries

• Auxiliary (coupled) process I 0t: only recoveries

• cut(I 0t) increases by W/4
) at least W/4� recoveries
) needs constant time (w.h.p.)
) � 2n infections (w.h.p.): contradiction

• Probability of such a scenario: exponentially small

• Need exponential time for such a scenario to materialize

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I) = 1 I0 Im = Ø I

remove one node at a time, or add nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I) = 1 I0 Im = Ø I

remove one node at a time, or add nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Simulations, on a star graph

budget extinction time

Can we do better? Lower bounds on expected extinction time

• Theorem: Assume: W � cwn B  cbn  W

If cb small enough [cb  f(cw,�)],
then E[extinction time] � cecn [c = f(cw,�) > 0]

• Idea: The actual (stochastic) trajectory It
will encounter a cut of size � W

W I = V I = Ø cut(It) |It| " W t

• Not enough. Must show upward drift for substantial amount of time

Simulations, on a star graph

budget extinction time

Can we do better? Lower bounds on expected extinction time

• Theorem: Assume: W � cwn B  cbn  W

If cb small enough [cb  f(cw,�)],
then E[extinction time] � cecn [c = f(cw,�) > 0]

• Idea: The actual (stochastic) trajectory It
will encounter a cut of size � W

W I = V I = Ø cut(It) |It| " W t

• Not enough. Must show upward drift for substantial amount of time

Simulations, on a star graph

budget extinction time

Can we do better? Lower bounds on expected extinction time

• Theorem: Assume: W � cwn B  cbn  W

If cb small enough [cb  f(cw,�)],
then E[extinction time] � cecn [c = f(cw,�) > 0]

• Idea: The actual (stochastic) trajectory It
will encounter a cut of size � W

W I = V I = Ø cut(It) |It| " W t

• Not enough. Must show upward drift for substantial amount of time

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I

remove one node at a time, or add nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I

remove one node at a time, or add nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It)

remove one node at a time, or add nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Lower bound proof sketch

• Claim: During [T 0, T] have ⇥(n) recoveries

• Auxiliary (coupled) process I 0t: only recoveries

• cut(I 0t) increases by W/4
) at least W/4� recoveries
) needs constant time (w.h.p.)
) � 2n infections (w.h.p.): contradiction

• Probability of such a scenario: exponentially small

• Need exponential time for such a scenario to materialize

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I) = 1 I0 Im = Ø I

remove one node at a time, or add nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I) = 1 I0 Im = Ø I

remove one node at a time, or add nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Simulations, on a star graph

budget extinction time

Can we do better? Lower bounds on expected extinction time

• Theorem: Assume: W � cwn B  cbn  W

If cb small enough [cb  f(cw,�)],
then E[extinction time] � cecn [c = f(cw,�) > 0]

• Idea: The actual (stochastic) trajectory It
will encounter a cut of size � W

W I = V I = Ø cut(It) |It| " W t

• Not enough. Must show upward drift for substantial amount of time

Simulations, on a star graph

budget extinction time

Can we do better? Lower bounds on expected extinction time

• Theorem: Assume: W � cwn B  cbn  W

If cb small enough [cb  f(cw,�)],
then E[extinction time] � cecn [c = f(cw,�) > 0]

• Idea: The actual (stochastic) trajectory It
will encounter a cut of size � W

W I = V I = Ø cut(It) |It| " W t

• Not enough. Must show upward drift for substantial amount of time

Simulations, on a star graph

budget extinction time

Can we do better? Lower bounds on expected extinction time

• Theorem: Assume: W � cwn B  cbn  W

If cb small enough [cb  f(cw,�)],
then E[extinction time] � cecn [c = f(cw,�) > 0]

• Idea: The actual (stochastic) trajectory It
will encounter a cut of size � W

W I = V I = Ø cut(It) |It| " W t

• Not enough. Must show upward drift for substantial amount of time

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I

remove one node at a time, or add nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I

remove one node at a time, or add nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It)

remove one node at a time, or add nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It) T T 0

remove one node at a time, or add nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It) T T 0 cut(It) remove one node at a time, or add
nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Lower bound proof sketch

• Claim: During [T 0, T] have ⇥(n) recoveries

• Auxiliary (coupled) process I 0t: only recoveries

• cut(I 0t) increases by W/4
) at least W/4� recoveries
) needs constant time (w.h.p.)
) � 2n infections (w.h.p.): contradiction

• Probability of such a scenario: exponentially small

• Need exponential time for such a scenario to materialize

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I) = 1 I0 Im = Ø I

remove one node at a time, or add nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I) = 1 I0 Im = Ø I

remove one node at a time, or add nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Simulations, on a star graph

budget extinction time

Can we do better? Lower bounds on expected extinction time

• Theorem: Assume: W � cwn B  cbn  W

If cb small enough [cb  f(cw,�)],
then E[extinction time] � cecn [c = f(cw,�) > 0]

• Idea: The actual (stochastic) trajectory It
will encounter a cut of size � W

W I = V I = Ø cut(It) |It| " W t

• Not enough. Must show upward drift for substantial amount of time

Simulations, on a star graph

budget extinction time

Can we do better? Lower bounds on expected extinction time

• Theorem: Assume: W � cwn B  cbn  W

If cb small enough [cb  f(cw,�)],
then E[extinction time] � cecn [c = f(cw,�) > 0]

• Idea: The actual (stochastic) trajectory It
will encounter a cut of size � W

W I = V I = Ø cut(It) |It| " W t

• Not enough. Must show upward drift for substantial amount of time

Simulations, on a star graph

budget extinction time

Can we do better? Lower bounds on expected extinction time

• Theorem: Assume: W � cwn B  cbn  W

If cb small enough [cb  f(cw,�)],
then E[extinction time] � cecn [c = f(cw,�) > 0]

• Idea: The actual (stochastic) trajectory It
will encounter a cut of size � W

W I = V I = Ø cut(It) |It| " W t

• Not enough. Must show upward drift for substantial amount of time

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I

remove one node at a time, or add nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I

remove one node at a time, or add nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I

remove one node at a time, or add nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It)

remove one node at a time, or add nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It) T T 0

remove one node at a time, or add nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It) T T 0 cut(It) remove one node at a time, or add
nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Lower bound proof sketch

• Claim: During [T 0, T] have ⇥(n) recoveries

• Auxiliary (coupled) process I 0t: only recoveries

• cut(I 0t) increases by W/4
) at least W/4� recoveries
) needs constant time (w.h.p.)
) � 2n infections (w.h.p.): contradiction

• Probability of such a scenario: exponentially small

• Need exponential time for such a scenario to materialize

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I) = 1 I0 Im = Ø I

remove one node at a time, or add nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I) = 1 I0 Im = Ø I

remove one node at a time, or add nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Simulations, on a star graph

budget extinction time

Can we do better? Lower bounds on expected extinction time

• Theorem: Assume: W � cwn B  cbn  W

If cb small enough [cb  f(cw,�)],
then E[extinction time] � cecn [c = f(cw,�) > 0]

• Idea: The actual (stochastic) trajectory It
will encounter a cut of size � W

W I = V I = Ø cut(It) |It| " W t

• Not enough. Must show upward drift for substantial amount of time

Simulations, on a star graph

budget extinction time

Can we do better? Lower bounds on expected extinction time

• Theorem: Assume: W � cwn B  cbn  W

If cb small enough [cb  f(cw,�)],
then E[extinction time] � cecn [c = f(cw,�) > 0]

• Idea: The actual (stochastic) trajectory It
will encounter a cut of size � W

W I = V I = Ø cut(It) |It| " W t

• Not enough. Must show upward drift for substantial amount of time

Simulations, on a star graph

budget extinction time

Can we do better? Lower bounds on expected extinction time

• Theorem: Assume: W � cwn B  cbn  W

If cb small enough [cb  f(cw,�)],
then E[extinction time] � cecn [c = f(cw,�) > 0]

• Idea: The actual (stochastic) trajectory It
will encounter a cut of size � W

W I = V I = Ø cut(It) |It| " W t

• Not enough. Must show upward drift for substantial amount of time

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I

remove one node at a time, or add nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I

remove one node at a time, or add nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I

remove one node at a time, or add nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It)

remove one node at a time, or add nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It) T T 0 cut(It) remove one node at a time, or add
nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It) T T 0

remove one node at a time, or add nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It) T T 0 cut(It) remove one node at a time, or add
nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Lower bound proof sketch

• Claim: During [T 0, T] have ⇥(n) recoveries

• Auxiliary (coupled) process I 0t: only recoveries

• cut(I 0t) increases by W/4
) at least W/4� recoveries
) needs constant time (w.h.p.)
) � 2n infections (w.h.p.): contradiction

• Probability of such a scenario: exponentially small

• Need exponential time for such a scenario to materialize

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I) = 1 I0 Im = Ø I

remove one node at a time, or add nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I) = 1 I0 Im = Ø I

remove one node at a time, or add nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Simulations, on a star graph

budget extinction time

Can we do better? Lower bounds on expected extinction time

• Theorem: Assume: W � cwn B  cbn  W

If cb small enough [cb  f(cw,�)],
then E[extinction time] � cecn [c = f(cw,�) > 0]

• Idea: The actual (stochastic) trajectory It
will encounter a cut of size � W

W I = V I = Ø cut(It) |It| " W t

• Not enough. Must show upward drift for substantial amount of time

Simulations, on a star graph

budget extinction time

Can we do better? Lower bounds on expected extinction time

• Theorem: Assume: W � cwn B  cbn  W

If cb small enough [cb  f(cw,�)],
then E[extinction time] � cecn [c = f(cw,�) > 0]

• Idea: The actual (stochastic) trajectory It
will encounter a cut of size � W

W I = V I = Ø cut(It) |It| " W t

• Not enough. Must show upward drift for substantial amount of time

Simulations, on a star graph

budget extinction time

Can we do better? Lower bounds on expected extinction time

• Theorem: Assume: W � cwn B  cbn  W

If cb small enough [cb  f(cw,�)],
then E[extinction time] � cecn [c = f(cw,�) > 0]

• Idea: The actual (stochastic) trajectory It
will encounter a cut of size � W

W I = V I = Ø cut(It) |It| " W t

• Not enough. Must show upward drift for substantial amount of time

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I

remove one node at a time, or add nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I

remove one node at a time, or add nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I

remove one node at a time, or add nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It)

remove one node at a time, or add nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It) T T 0 cut(It) remove one node at a time, or add
nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It) T T 0

remove one node at a time, or add nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It) T T 0 cut(It) remove one node at a time, or add
nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Lower bound proof sketch

• Claim: During [T 0, T] have many recoveries (w.h.p.)

• Auxiliary (coupled) process I 0t: only recoveries

• cut(I 0t) increases by W/4
) at least W/4� recoveries
) needs constant time (w.h.p.)
) � 2n infections (w.h.p.): contradiction

• Probability of such a scenario: exponentially small

• Need exponential time for such a scenario to materialize

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It) T T 0 cut(It) remove one node at a time, or add
nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It) T T 0 cut(It) remove one node at a time, or add
nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It) T T 0 cut(It) remove one node at a time, or add
nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Lower bound proof sketch

• Claim: During [T 0, T] have ⇥(n) recoveries

• Auxiliary (coupled) process I 0t: only recoveries

• cut(I 0t) increases by W/4
) at least W/4� recoveries
) needs constant time (w.h.p.)
) � 2n infections (w.h.p.): contradiction

• Probability of such a scenario: exponentially small

• Need exponential time for such a scenario to materialize

Lower bound proof sketch

• Claim: During [T 0, T] have many recoveries (w.h.p.)

• Auxiliary (coupled) process I 0t: only recoveries

• cut(I 0t) increases by W/4
) at least W/4� recoveries
) needs constant time (w.h.p.)
) � 2n infections (w.h.p.): contradiction

• Probability of such a scenario: exponentially small

• Need exponential time for such a scenario to materialize

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I) = 1 I0 Im = Ø I

remove one node at a time, or add nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I) = 1 I0 Im = Ø I

remove one node at a time, or add nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Simulations, on a star graph

budget extinction time

Can we do better? Lower bounds on expected extinction time

• Theorem: Assume: W � cwn B  cbn  W

If cb small enough [cb  f(cw,�)],
then E[extinction time] � cecn [c = f(cw,�) > 0]

• Idea: The actual (stochastic) trajectory It
will encounter a cut of size � W

W I = V I = Ø cut(It) |It| " W t

• Not enough. Must show upward drift for substantial amount of time

Simulations, on a star graph

budget extinction time

Can we do better? Lower bounds on expected extinction time

• Theorem: Assume: W � cwn B  cbn  W

If cb small enough [cb  f(cw,�)],
then E[extinction time] � cecn [c = f(cw,�) > 0]

• Idea: The actual (stochastic) trajectory It
will encounter a cut of size � W

W I = V I = Ø cut(It) |It| " W t

• Not enough. Must show upward drift for substantial amount of time

Simulations, on a star graph

budget extinction time

Can we do better? Lower bounds on expected extinction time

• Theorem: Assume: W � cwn B  cbn  W

If cb small enough [cb  f(cw,�)],
then E[extinction time] � cecn [c = f(cw,�) > 0]

• Idea: The actual (stochastic) trajectory It
will encounter a cut of size � W

W I = V I = Ø cut(It) |It| " W t

• Not enough. Must show upward drift for substantial amount of time

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I

remove one node at a time, or add nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I

remove one node at a time, or add nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I

remove one node at a time, or add nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It)

remove one node at a time, or add nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It) T T 0 cut(It) remove one node at a time, or add
nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It) T T 0

remove one node at a time, or add nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It) T T 0 cut(It) remove one node at a time, or add
nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Lower bound proof sketch

• Claim: During [T 0, T] have many recoveries (w.h.p.)

• Auxiliary (coupled) process I 0t: only recoveries

• cut(I 0t) increases by W/4
) at least W/4� recoveries
) needs constant time (w.h.p.)
) � 2n infections (w.h.p.): contradiction

• Probability of such a scenario: exponentially small

• Need exponential time for such a scenario to materialize

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It) T T 0 cut(It) remove one node at a time, or add
nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It) T T 0 cut(It) remove one node at a time, or add
nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It) T T 0 cut(It) remove one node at a time, or add
nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It) T T 0 cut(It) remove one node at a time, or add
nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It) T T 0 cut(It) remove one node at a time, or add
nodes
add/infect nodes cut(I 0t) �(I 0t)

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Lower bound proof sketch

• Claim: During [T 0, T] have ⇥(n) recoveries

• Auxiliary (coupled) process I 0t: only recoveries

• cut(I 0t) increases by W/4
) at least W/4� recoveries
) needs constant time (w.h.p.)
) � 2n infections (w.h.p.): contradiction

• Probability of such a scenario: exponentially small

• Need exponential time for such a scenario to materialize

Lower bound proof sketch

• Claim: During [T 0, T] have many recoveries (w.h.p.)

• Auxiliary (coupled) process I 0t: only recoveries

• cut(I 0t) increases by W/4
) at least W/4� recoveries
) needs constant time (w.h.p.)
) � 2n infections (w.h.p.): contradiction

• Probability of such a scenario: exponentially small

• Need exponential time for such a scenario to materialize

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I) = 1 I0 Im = Ø I

remove one node at a time, or add nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I) = 1 I0 Im = Ø I

remove one node at a time, or add nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Simulations, on a star graph

budget extinction time

Can we do better? Lower bounds on expected extinction time

• Theorem: Assume: W � cwn B  cbn  W

If cb small enough [cb  f(cw,�)],
then E[extinction time] � cecn [c = f(cw,�) > 0]

• Idea: The actual (stochastic) trajectory It
will encounter a cut of size � W

W I = V I = Ø cut(It) |It| " W t

• Not enough. Must show upward drift for substantial amount of time

Simulations, on a star graph

budget extinction time

Can we do better? Lower bounds on expected extinction time

• Theorem: Assume: W � cwn B  cbn  W

If cb small enough [cb  f(cw,�)],
then E[extinction time] � cecn [c = f(cw,�) > 0]

• Idea: The actual (stochastic) trajectory It
will encounter a cut of size � W

W I = V I = Ø cut(It) |It| " W t

• Not enough. Must show upward drift for substantial amount of time

Simulations, on a star graph

budget extinction time

Can we do better? Lower bounds on expected extinction time

• Theorem: Assume: W � cwn B  cbn  W

If cb small enough [cb  f(cw,�)],
then E[extinction time] � cecn [c = f(cw,�) > 0]

• Idea: The actual (stochastic) trajectory It
will encounter a cut of size � W

W I = V I = Ø cut(It) |It| " W t

• Not enough. Must show upward drift for substantial amount of time

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I

remove one node at a time, or add nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I

remove one node at a time, or add nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I

remove one node at a time, or add nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It)

remove one node at a time, or add nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It) T T 0 cut(It) remove one node at a time, or add
nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It) T T 0

remove one node at a time, or add nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It) T T 0 cut(It) remove one node at a time, or add
nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Lower bound proof sketch

• Claim: During [T 0, T] have many recoveries (w.h.p.)

• Auxiliary (coupled) process I 0t: only recoveries

• cut(I 0t) increases by W/4
) at least W/4� recoveries
) needs constant time (w.h.p.)
) � 2n infections (w.h.p.): contradiction

• Probability of such a scenario: exponentially small

• Need exponential time for such a scenario to materialize

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It) T T 0 cut(It) remove one node at a time, or add
nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It) T T 0 cut(It) remove one node at a time, or add
nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It) T T 0 cut(It) remove one node at a time, or add
nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It) T T 0 cut(It) remove one node at a time, or add
nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It) T T 0 cut(It) remove one node at a time, or add
nodes
add/infect nodes cut(I 0t) �(I 0t)

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Lower bound proof sketch

• Claim: During [T 0, T] have ⇥(n) recoveries

• Auxiliary (coupled) process I 0t: only recoveries

• cut(I 0t) increases by W/4
) at least W/4� recoveries
) needs constant time (w.h.p.)
) � 2n infections (w.h.p.): contradiction

• Probability of such a scenario: exponentially small

• Need exponential time for such a scenario to materialize

Lower bound proof sketch

• Claim: During [T 0, T] have many recoveries (w.h.p.)

• Auxiliary (coupled) process I 0t: only recoveries

• cut(I 0t) increases by W/4
) at least W/4� recoveries
) needs constant time (w.h.p.)
) � 2n infections (w.h.p.): contradiction

• Probability of such a scenario: exponentially small

• Need exponential time for such a scenario to materialize

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I) = 1 I0 Im = Ø I

remove one node at a time, or add nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I) = 1 I0 Im = Ø I

remove one node at a time, or add nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Simulations, on a star graph

budget extinction time

Can we do better? Lower bounds on expected extinction time

• Theorem: Assume: W � cwn B  cbn  W

If cb small enough [cb  f(cw,�)],
then E[extinction time] � cecn [c = f(cw,�) > 0]

• Idea: The actual (stochastic) trajectory It
will encounter a cut of size � W

W I = V I = Ø cut(It) |It| " W t

• Not enough. Must show upward drift for substantial amount of time

Simulations, on a star graph

budget extinction time

Can we do better? Lower bounds on expected extinction time

• Theorem: Assume: W � cwn B  cbn  W

If cb small enough [cb  f(cw,�)],
then E[extinction time] � cecn [c = f(cw,�) > 0]

• Idea: The actual (stochastic) trajectory It
will encounter a cut of size � W

W I = V I = Ø cut(It) |It| " W t

• Not enough. Must show upward drift for substantial amount of time

Simulations, on a star graph

budget extinction time

Can we do better? Lower bounds on expected extinction time

• Theorem: Assume: W � cwn B  cbn  W

If cb small enough [cb  f(cw,�)],
then E[extinction time] � cecn [c = f(cw,�) > 0]

• Idea: The actual (stochastic) trajectory It
will encounter a cut of size � W

W I = V I = Ø cut(It) |It| " W t

• Not enough. Must show upward drift for substantial amount of time

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I

remove one node at a time, or add nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I

remove one node at a time, or add nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I

remove one node at a time, or add nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It)

remove one node at a time, or add nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It) T T 0 cut(It) remove one node at a time, or add
nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It) T T 0

remove one node at a time, or add nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It) T T 0 cut(It) remove one node at a time, or add
nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Lower bound proof sketch

• Claim: During [T 0, T] have many recoveries (w.h.p.)

• Auxiliary (coupled) process I 0t: only recoveries

• cut(I 0t) increases by W/4
) at least W/4� recoveries
) needs constant time (w.h.p.)
) � 2n infections (w.h.p.): contradiction

• Probability of such a scenario: exponentially small

• Need exponential time for such a scenario to materialize

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It) T T 0 cut(It) remove one node at a time, or add
nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It) T T 0 cut(It) remove one node at a time, or add
nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It) T T 0 cut(It) remove one node at a time, or add
nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It) T T 0 cut(It) remove one node at a time, or add
nodes
add/infect nodes cut(I 0t) �(I 0t)

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It) T T 0 cut(It) remove one node at a time, or add
nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It) T T 0 cut(It) remove one node at a time, or add
nodes
add/infect nodes cut(I 0t) �(I 0t)

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Lower bound proof sketch

• Claim: During [T 0, T] have ⇥(n) recoveries

• Auxiliary (coupled) process I 0t: only recoveries

• cut(I 0t) increases by W/4
) at least W/4� recoveries
) needs constant time (w.h.p.)
) � 2n infections (w.h.p.): contradiction

• Probability of such a scenario: exponentially small

• Need exponential time for such a scenario to materialize

Lower bound proof sketch

• Claim: During [T 0, T] have many recoveries (w.h.p.)

• Auxiliary (coupled) process I 0t: only recoveries

• cut(I 0t) increases by W/4
) at least W/4� recoveries
) needs constant time (w.h.p.)
) � 2n infections (w.h.p.): contradiction

• Probability of such a scenario: exponentially small

• Need exponential time for such a scenario to materialize

Lower bound proof sketch

• Claim: During [T 0, T] have many recoveries (w.h.p.)

• Auxiliary (coupled) process I 0t: only recoveries

• cut(I 0t) increases by W/4
) at least W/4� recoveries
) needs constant time (w.h.p.)
) � 2n infections (w.h.p.): contradiction

• Probability of such a scenario: exponentially small

• Need exponential time for such a scenario to materialize

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I) = 1 I0 Im = Ø I

remove one node at a time, or add nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I) = 1 I0 Im = Ø I

remove one node at a time, or add nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Simulations, on a star graph

budget extinction time

Can we do better? Lower bounds on expected extinction time

• Theorem: Assume: W � cwn B  cbn  W

If cb small enough [cb  f(cw,�)],
then E[extinction time] � cecn [c = f(cw,�) > 0]

• Idea: The actual (stochastic) trajectory It
will encounter a cut of size � W

W I = V I = Ø cut(It) |It| " W t

• Not enough. Must show upward drift for substantial amount of time

Simulations, on a star graph

budget extinction time

Can we do better? Lower bounds on expected extinction time

• Theorem: Assume: W � cwn B  cbn  W

If cb small enough [cb  f(cw,�)],
then E[extinction time] � cecn [c = f(cw,�) > 0]

• Idea: The actual (stochastic) trajectory It
will encounter a cut of size � W

W I = V I = Ø cut(It) |It| " W t

• Not enough. Must show upward drift for substantial amount of time

Simulations, on a star graph

budget extinction time

Can we do better? Lower bounds on expected extinction time

• Theorem: Assume: W � cwn B  cbn  W

If cb small enough [cb  f(cw,�)],
then E[extinction time] � cecn [c = f(cw,�) > 0]

• Idea: The actual (stochastic) trajectory It
will encounter a cut of size � W

W I = V I = Ø cut(It) |It| " W t

• Not enough. Must show upward drift for substantial amount of time

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I

remove one node at a time, or add nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I

remove one node at a time, or add nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I

remove one node at a time, or add nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It)

remove one node at a time, or add nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It) T T 0 cut(It) remove one node at a time, or add
nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It) T T 0

remove one node at a time, or add nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It) T T 0 cut(It) remove one node at a time, or add
nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Lower bound proof sketch

• Claim: During [T 0, T] have many recoveries (w.h.p.)

• Auxiliary (coupled) process I 0t: only recoveries

• cut(I 0t) increases by W/4
) at least W/4� recoveries
) needs constant time (w.h.p.)
) � 2n infections (w.h.p.): contradiction

• Probability of such a scenario: exponentially small

• Need exponential time for such a scenario to materialize

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It) T T 0 cut(It) remove one node at a time, or add
nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It) T T 0 cut(It) remove one node at a time, or add
nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It) T T 0 cut(It) remove one node at a time, or add
nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It) T T 0 cut(It) remove one node at a time, or add
nodes
add/infect nodes cut(I 0t) �(I 0t)

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It) T T 0 cut(It) remove one node at a time, or add
nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It) T T 0 cut(It) remove one node at a time, or add
nodes
add/infect nodes cut(I 0t) �(I 0t)

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Lower bound proof sketch

• Claim: During [T 0, T] have ⇥(n) recoveries

• Auxiliary (coupled) process I 0t: only recoveries

• cut(I 0t) increases by W/4
) at least W/4� recoveries
) needs constant time (w.h.p.)
) � 2n infections (w.h.p.): contradiction

• Probability of such a scenario: exponentially small

• Need exponential time for such a scenario to materialize

Lower bound proof sketch

• Claim: During [T 0, T] have many recoveries (w.h.p.)

• Auxiliary (coupled) process I 0t: only recoveries

• cut(I 0t) increases by W/4
) at least W/4� recoveries
) needs constant time (w.h.p.)
) � 2n infections (w.h.p.): contradiction

• Probability of such a scenario: exponentially small

• Need exponential time for such a scenario to materialize

Lower bound proof sketch

• Claim: During [T 0, T] have many recoveries (w.h.p.)

• Auxiliary (coupled) process I 0t: only recoveries

• cut(I 0t) increases by W/4
) at least W/4� recoveries
) needs constant time (w.h.p.)
) � 2n infections (w.h.p.): contradiction

• Probability of such a scenario: exponentially small

• Need exponential time for such a scenario to materialize

Lower bound proof sketch

• Claim: During [T 0, T] have many recoveries (w.h.p.)

• Auxiliary (coupled) process I 0t: only recoveries

• cut(I 0t) increases by W/4
) at least W/4� recoveries
) needs constant time (w.h.p.)
) � 2n infections (w.h.p.): contradiction

• Probability of such a scenario: exponentially small

• Need exponential time for such a scenario to materialize

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I) = 1 I0 Im = Ø I

remove one node at a time, or add nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I) = 1 I0 Im = Ø I

remove one node at a time, or add nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Simulations, on a star graph

budget extinction time

Can we do better? Lower bounds on expected extinction time

• Theorem: Assume: W � cwn B  cbn  W

If cb small enough [cb  f(cw,�)],
then E[extinction time] � cecn [c = f(cw,�) > 0]

• Idea: The actual (stochastic) trajectory It
will encounter a cut of size � W

W I = V I = Ø cut(It) |It| " W t

• Not enough. Must show upward drift for substantial amount of time

Simulations, on a star graph

budget extinction time

Can we do better? Lower bounds on expected extinction time

• Theorem: Assume: W � cwn B  cbn  W

If cb small enough [cb  f(cw,�)],
then E[extinction time] � cecn [c = f(cw,�) > 0]

• Idea: The actual (stochastic) trajectory It
will encounter a cut of size � W

W I = V I = Ø cut(It) |It| " W t

• Not enough. Must show upward drift for substantial amount of time

Simulations, on a star graph

budget extinction time

Can we do better? Lower bounds on expected extinction time

• Theorem: Assume: W � cwn B  cbn  W

If cb small enough [cb  f(cw,�)],
then E[extinction time] � cecn [c = f(cw,�) > 0]

• Idea: The actual (stochastic) trajectory It
will encounter a cut of size � W

W I = V I = Ø cut(It) |It| " W t

• Not enough. Must show upward drift for substantial amount of time

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I

remove one node at a time, or add nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I

remove one node at a time, or add nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I

remove one node at a time, or add nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It)

remove one node at a time, or add nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It) T T 0 cut(It) remove one node at a time, or add
nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It) T T 0

remove one node at a time, or add nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It) T T 0 cut(It) remove one node at a time, or add
nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Lower bound proof sketch

• Claim: During [T 0, T] have many recoveries (w.h.p.)

• Auxiliary (coupled) process I 0t: only recoveries

• cut(I 0t) increases by W/4
) at least W/4� recoveries
) needs constant time (w.h.p.)
) � 2n infections (w.h.p.): contradiction

• Probability of such a scenario: exponentially small

• Need exponential time for such a scenario to materialize

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It) T T 0 cut(It) remove one node at a time, or add
nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It) T T 0 cut(It) remove one node at a time, or add
nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It) T T 0 cut(It) remove one node at a time, or add
nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It) T T 0 cut(It) remove one node at a time, or add
nodes
add/infect nodes cut(I 0t) �(I 0t)

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It) T T 0 cut(It) remove one node at a time, or add
nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It) T T 0 cut(It) remove one node at a time, or add
nodes
add/infect nodes cut(I 0t) �(I 0t)

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Lower bound proof sketch

• Claim: During [T 0, T] have ⇥(n) recoveries

• Auxiliary (coupled) process I 0t: only recoveries

• cut(I 0t) increases by W/4
) at least W/4� recoveries
) needs constant time (w.h.p.)
) � 2n infections (w.h.p.): contradiction

• Probability of such a scenario: exponentially small

• Need exponential time for such a scenario to materialize

Lower bound proof sketch

• Claim: During [T 0, T] have many recoveries (w.h.p.)

• Auxiliary (coupled) process I 0t: only recoveries

• cut(I 0t) increases by W/4
) at least W/4� recoveries
) needs constant time (w.h.p.)
) � 2n infections (w.h.p.): contradiction

• Probability of such a scenario: exponentially small

• Need exponential time for such a scenario to materialize

Lower bound proof sketch

• Claim: During [T 0, T] have many recoveries (w.h.p.)

• Auxiliary (coupled) process I 0t: only recoveries

• cut(I 0t) increases by W/4
) at least W/4� recoveries
) needs constant time (w.h.p.)
) � 2n infections (w.h.p.): contradiction

• Probability of such a scenario: exponentially small

• Need exponential time for such a scenario to materialize

Lower bound proof sketch

• Claim: During [T 0, T] have many recoveries (w.h.p.)

• Auxiliary (coupled) process I 0t: only recoveries

• cut(I 0t) increases by W/4
) at least W/4� recoveries
) needs constant time (w.h.p.)
) � 2n infections (w.h.p.): contradiction

• Probability of such a scenario: exponentially small

• Need exponential time for such a scenario to materialize

Lower bound proof sketch

• Claim: During [T 0, T] have many recoveries (w.h.p.)

• Auxiliary (coupled) process I 0t: only recoveries

• cut(I 0t) increases by W/4
) at least W/4� recoveries
) needs constant time (w.h.p.)
) � 2n infections (w.h.p.): contradiction

• Probability of such a scenario: exponentially small

• Need exponential time for such a scenario to materialize

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I) = 1 I0 Im = Ø I

remove one node at a time, or add nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I) = 1 I0 Im = Ø I

remove one node at a time, or add nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Simulations, on a star graph

budget extinction time

Can we do better? Lower bounds on expected extinction time

• Theorem: Assume: W � cwn B  cbn  W

If cb small enough [cb  f(cw,�)],
then E[extinction time] � cecn [c = f(cw,�) > 0]

• Idea: The actual (stochastic) trajectory It
will encounter a cut of size � W

W I = V I = Ø cut(It) |It| " W t

• Not enough. Must show upward drift for substantial amount of time

Simulations, on a star graph

budget extinction time

Can we do better? Lower bounds on expected extinction time

• Theorem: Assume: W � cwn B  cbn  W

If cb small enough [cb  f(cw,�)],
then E[extinction time] � cecn [c = f(cw,�) > 0]

• Idea: The actual (stochastic) trajectory It
will encounter a cut of size � W

W I = V I = Ø cut(It) |It| " W t

• Not enough. Must show upward drift for substantial amount of time

Simulations, on a star graph

budget extinction time

Can we do better? Lower bounds on expected extinction time

• Theorem: Assume: W � cwn B  cbn  W

If cb small enough [cb  f(cw,�)],
then E[extinction time] � cecn [c = f(cw,�) > 0]

• Idea: The actual (stochastic) trajectory It
will encounter a cut of size � W

W I = V I = Ø cut(It) |It| " W t

• Not enough. Must show upward drift for substantial amount of time

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I

remove one node at a time, or add nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I

remove one node at a time, or add nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I

remove one node at a time, or add nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It)

remove one node at a time, or add nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It) T T 0 cut(It) remove one node at a time, or add
nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It) T T 0

remove one node at a time, or add nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It) T T 0 cut(It) remove one node at a time, or add
nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Lower bound proof sketch

• Claim: During [T 0, T] have many recoveries (w.h.p.)

• Auxiliary (coupled) process I 0t: only recoveries

• cut(I 0t) increases by W/4
) at least W/4� recoveries
) needs constant time (w.h.p.)
) � 2n infections (w.h.p.): contradiction

• Probability of such a scenario: exponentially small

• Need exponential time for such a scenario to materialize

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It) T T 0 cut(It) remove one node at a time, or add
nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It) T T 0 cut(It) remove one node at a time, or add
nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It) T T 0 cut(It) remove one node at a time, or add
nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It) T T 0 cut(It) remove one node at a time, or add
nodes
add/infect nodes cut(I 0t) �(I 0t)

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It) T T 0 cut(It) remove one node at a time, or add
nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It) T T 0 cut(It) remove one node at a time, or add
nodes
add/infect nodes cut(I 0t) �(I 0t)

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Lower bound proof sketch

• Claim: During [T 0, T] have ⇥(n) recoveries

• Auxiliary (coupled) process I 0t: only recoveries

• cut(I 0t) increases by W/4
) at least W/4� recoveries
) needs constant time (w.h.p.)
) � 2n infections (w.h.p.): contradiction

• Probability of such a scenario: exponentially small

• Need exponential time for such a scenario to materialize

Lower bound proof sketch

• Claim: During [T 0, T] have many recoveries (w.h.p.)

• Auxiliary (coupled) process I 0t: only recoveries

• cut(I 0t) increases by W/4
) at least W/4� recoveries
) needs constant time (w.h.p.)
) � 2n infections (w.h.p.): contradiction

• Probability of such a scenario: exponentially small

• Need exponential time for such a scenario to materialize

Lower bound proof sketch

• Claim: During [T 0, T] have many recoveries (w.h.p.)

• Auxiliary (coupled) process I 0t: only recoveries

• cut(I 0t) increases by W/4
) at least W/4� recoveries
) needs constant time (w.h.p.)
) � 2n infections (w.h.p.): contradiction

• Probability of such a scenario: exponentially small

• Need exponential time for such a scenario to materialize

Lower bound proof sketch

• Claim: During [T 0, T] have many recoveries (w.h.p.)

• Auxiliary (coupled) process I 0t: only recoveries

• cut(I 0t) increases by W/4
) at least W/4� recoveries
) needs constant time (w.h.p.)
) � 2n infections (w.h.p.): contradiction

• Probability of such a scenario: exponentially small

• Need exponential time for such a scenario to materialize

Lower bound proof sketch

• Claim: During [T 0, T] have many recoveries (w.h.p.)

• Auxiliary (coupled) process I 0t: only recoveries

• cut(I 0t) increases by W/4
) at least W/4� recoveries
) needs constant time (w.h.p.)
) � 2n infections (w.h.p.): contradiction

• Probability of such a scenario: exponentially small

• Need exponential time for such a scenario to materialize

Lower bound proof sketch

• Claim: During [T 0, T] have many recoveries (w.h.p.)

• Auxiliary (coupled) process I 0t: only recoveries

• cut(I 0t) increases by W/4
) at least W/4� recoveries
) needs constant time (w.h.p.)
) � 2n infections (w.h.p.): contradiction

• Probability of such a scenario: exponentially small

• Need exponential time for such a scenario to materialize

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I) = 1 I0 Im = Ø I

remove one node at a time, or add nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I) = 1 I0 Im = Ø I

remove one node at a time, or add nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Simulations, on a star graph

budget extinction time

Can we do better? Lower bounds on expected extinction time

• Theorem: Assume: W � cwn B  cbn  W

If cb small enough [cb  f(cw,�)],
then E[extinction time] � cecn [c = f(cw,�) > 0]

• Idea: The actual (stochastic) trajectory It
will encounter a cut of size � W

W I = V I = Ø cut(It) |It| " W t

• Not enough. Must show upward drift for substantial amount of time

Simulations, on a star graph

budget extinction time

Can we do better? Lower bounds on expected extinction time

• Theorem: Assume: W � cwn B  cbn  W

If cb small enough [cb  f(cw,�)],
then E[extinction time] � cecn [c = f(cw,�) > 0]

• Idea: The actual (stochastic) trajectory It
will encounter a cut of size � W

W I = V I = Ø cut(It) |It| " W t

• Not enough. Must show upward drift for substantial amount of time

Simulations, on a star graph

budget extinction time

Can we do better? Lower bounds on expected extinction time

• Theorem: Assume: W � cwn B  cbn  W

If cb small enough [cb  f(cw,�)],
then E[extinction time] � cecn [c = f(cw,�) > 0]

• Idea: The actual (stochastic) trajectory It
will encounter a cut of size � W

W I = V I = Ø cut(It) |It| " W t

• Not enough. Must show upward drift for substantial amount of time

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I

remove one node at a time, or add nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I

remove one node at a time, or add nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I

remove one node at a time, or add nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It)

remove one node at a time, or add nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It) T T 0 cut(It) remove one node at a time, or add
nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It) T T 0

remove one node at a time, or add nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It) T T 0 cut(It) remove one node at a time, or add
nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Lower bound proof sketch

• Claim: During [T 0, T] have many recoveries (w.h.p.)

• Auxiliary (coupled) process I 0t: only recoveries

• cut(I 0t) increases by W/4
) at least W/4� recoveries
) needs constant time (w.h.p.)
) � 2n infections (w.h.p.): contradiction

• Probability of such a scenario: exponentially small

• Need exponential time for such a scenario to materialize

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It) T T 0 cut(It) remove one node at a time, or add
nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It) T T 0 cut(It) remove one node at a time, or add
nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It) T T 0 cut(It) remove one node at a time, or add
nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It) T T 0 cut(It) remove one node at a time, or add
nodes
add/infect nodes cut(I 0t) �(I 0t)

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It) T T 0 cut(It) remove one node at a time, or add
nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It) T T 0 cut(It) remove one node at a time, or add
nodes
add/infect nodes cut(I 0t) �(I 0t)

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Lower bound proof sketch

• Claim: During [T 0, T] have ⇥(n) recoveries

• Auxiliary (coupled) process I 0t: only recoveries

• cut(I 0t) increases by W/4
) at least W/4� recoveries
) needs constant time (w.h.p.)
) � 2n infections (w.h.p.): contradiction

• Probability of such a scenario: exponentially small

• Need exponential time for such a scenario to materialize

Lower bound proof sketch

• Claim: During [T 0, T] have many recoveries (w.h.p.)

• Auxiliary (coupled) process I 0t: only recoveries

• cut(I 0t) increases by W/4
) at least W/4� recoveries
) needs constant time (w.h.p.)
) � 2n infections (w.h.p.): contradiction

• Probability of such a scenario: exponentially small

• Need exponential time for such a scenario to materialize

Lower bound proof sketch

• Claim: During [T 0, T] have many recoveries (w.h.p.)

• Auxiliary (coupled) process I 0t: only recoveries

• cut(I 0t) increases by W/4
) at least W/4� recoveries
) needs constant time (w.h.p.)
) � 2n infections (w.h.p.): contradiction

• Probability of such a scenario: exponentially small

• Need exponential time for such a scenario to materialize

Lower bound proof sketch

• Claim: During [T 0, T] have many recoveries (w.h.p.)

• Auxiliary (coupled) process I 0t: only recoveries

• cut(I 0t) increases by W/4
) at least W/4� recoveries
) needs constant time (w.h.p.)
) � 2n infections (w.h.p.): contradiction

• Probability of such a scenario: exponentially small

• Need exponential time for such a scenario to materialize

Lower bound proof sketch

• Claim: During [T 0, T] have many recoveries (w.h.p.)

• Auxiliary (coupled) process I 0t: only recoveries

• cut(I 0t) increases by W/4
) at least W/4� recoveries
) needs constant time (w.h.p.)
) � 2n infections (w.h.p.): contradiction

• Probability of such a scenario: exponentially small

• Need exponential time for such a scenario to materialize

Lower bound proof sketch

• Claim: During [T 0, T] have many recoveries (w.h.p.)

• Auxiliary (coupled) process I 0t: only recoveries

• cut(I 0t) increases by W/4
) at least W/4� recoveries
) needs constant time (w.h.p.)
) � 2n infections (w.h.p.): contradiction

• Probability of such a scenario: exponentially small

• Need exponential time for such a scenario to materialize

Lower bound proof sketch

• Claim: During [T 0, T] have many recoveries (w.h.p.)

• Auxiliary (coupled) process I 0t: only recoveries

• cut(I 0t) increases by W/4
) at least W/4� recoveries
) needs constant time (w.h.p.)
) � 2n infections (w.h.p.): contradiction

• Probability of such a scenario: exponentially small

• Need exponential time for such a scenario to materialize

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I) = 1 I0 Im = Ø I

remove one node at a time, or add nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I) = 1 I0 Im = Ø I

remove one node at a time, or add nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Simulations, on a star graph

budget extinction time

Can we do better? Lower bounds on expected extinction time

• Theorem: Assume: W � cwn B  cbn  W

If cb small enough [cb  f(cw,�)],
then E[extinction time] � cecn [c = f(cw,�) > 0]

• Idea: The actual (stochastic) trajectory It
will encounter a cut of size � W

W I = V I = Ø cut(It) |It| " W t

• Not enough. Must show upward drift for substantial amount of time

Simulations, on a star graph

budget extinction time

Can we do better? Lower bounds on expected extinction time

• Theorem: Assume: W � cwn B  cbn  W

If cb small enough [cb  f(cw,�)],
then E[extinction time] � cecn [c = f(cw,�) > 0]

• Idea: The actual (stochastic) trajectory It
will encounter a cut of size � W

W I = V I = Ø cut(It) |It| " W t

• Not enough. Must show upward drift for substantial amount of time

Simulations, on a star graph

budget extinction time

Can we do better? Lower bounds on expected extinction time

• Theorem: Assume: W � cwn B  cbn  W

If cb small enough [cb  f(cw,�)],
then E[extinction time] � cecn [c = f(cw,�) > 0]

• Idea: The actual (stochastic) trajectory It
will encounter a cut of size � W

W I = V I = Ø cut(It) |It| " W t

• Not enough. Must show upward drift for substantial amount of time

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I

remove one node at a time, or add nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I

remove one node at a time, or add nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I

remove one node at a time, or add nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It)

remove one node at a time, or add nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It) T T 0 cut(It) remove one node at a time, or add
nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It) T T 0

remove one node at a time, or add nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It) T T 0 cut(It) remove one node at a time, or add
nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Lower bound proof sketch

• Claim: During [T 0, T] have many recoveries (w.h.p.)

• Auxiliary (coupled) process I 0t: only recoveries

• cut(I 0t) increases by W/4
) at least W/4� recoveries
) needs constant time (w.h.p.)
) � 2n infections (w.h.p.): contradiction

• Probability of such a scenario: exponentially small

• Need exponential time for such a scenario to materialize

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It) T T 0 cut(It) remove one node at a time, or add
nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It) T T 0 cut(It) remove one node at a time, or add
nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It) T T 0 cut(It) remove one node at a time, or add
nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It) T T 0 cut(It) remove one node at a time, or add
nodes
add/infect nodes cut(I 0t) �(I 0t)

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It) T T 0 cut(It) remove one node at a time, or add
nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It) T T 0 cut(It) remove one node at a time, or add
nodes
add/infect nodes cut(I 0t) �(I 0t)

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Lower bound proof sketch

• Claim: During [T 0, T] have ⇥(n) recoveries

• Auxiliary (coupled) process I 0t: only recoveries

• cut(I 0t) increases by W/4
) at least W/4� recoveries
) needs constant time (w.h.p.)
) � 2n infections (w.h.p.): contradiction

• Probability of such a scenario: exponentially small

• Need exponential time for such a scenario to materialize

Lower bound proof sketch

• Claim: During [T 0, T] have many recoveries (w.h.p.)

• Auxiliary (coupled) process I 0t: only recoveries

• cut(I 0t) increases by W/4
) at least W/4� recoveries
) needs constant time (w.h.p.)
) � 2n infections (w.h.p.): contradiction

• Probability of such a scenario: exponentially small

• Need exponential time for such a scenario to materialize

Lower bound proof sketch

• Claim: During [T 0, T] have many recoveries (w.h.p.)

• Auxiliary (coupled) process I 0t: only recoveries

• cut(I 0t) increases by W/4
) at least W/4� recoveries
) needs constant time (w.h.p.)
) � 2n infections (w.h.p.): contradiction

• Probability of such a scenario: exponentially small

• Need exponential time for such a scenario to materialize

Lower bound proof sketch

• Claim: During [T 0, T] have many recoveries (w.h.p.)

• Auxiliary (coupled) process I 0t: only recoveries

• cut(I 0t) increases by W/4
) at least W/4� recoveries
) needs constant time (w.h.p.)
) � 2n infections (w.h.p.): contradiction

• Probability of such a scenario: exponentially small

• Need exponential time for such a scenario to materialize

Lower bound proof sketch

• Claim: During [T 0, T] have many recoveries (w.h.p.)

• Auxiliary (coupled) process I 0t: only recoveries

• cut(I 0t) increases by W/4
) at least W/4� recoveries
) needs constant time (w.h.p.)
) � 2n infections (w.h.p.): contradiction

• Probability of such a scenario: exponentially small

• Need exponential time for such a scenario to materialize

Lower bound proof sketch

• Claim: During [T 0, T] have many recoveries (w.h.p.)

• Auxiliary (coupled) process I 0t: only recoveries

• cut(I 0t) increases by W/4
) at least W/4� recoveries
) needs constant time (w.h.p.)
) � 2n infections (w.h.p.): contradiction

• Probability of such a scenario: exponentially small

• Need exponential time for such a scenario to materialize

Lower bound proof sketch

• Claim: During [T 0, T] have many recoveries (w.h.p.)

• Auxiliary (coupled) process I 0t: only recoveries

• cut(I 0t) increases by W/4
) at least W/4� recoveries
) needs constant time (w.h.p.)
) � 2n infections (w.h.p.): contradiction

• Probability of such a scenario: exponentially small

• Need exponential time for such a scenario to materialize

Lower bound proof sketch

• Claim: During [T 0, T] have many recoveries (w.h.p.)

• Auxiliary (coupled) process I 0t: only recoveries

• cut(I 0t) increases by W/4
) at least W/4� recoveries
) needs constant time (w.h.p.)
) � 2n infections (w.h.p.): contradiction

• Probability of such a scenario: exponentially small

• Need exponential time for such a scenario to materialize

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I) = 1 I0 Im = Ø I

remove one node at a time, or add nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W

�(I) = 1 I0 Im = Ø I

remove one node at a time, or add nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Simulations, on a star graph

budget extinction time

Can we do better? Lower bounds on expected extinction time

• Theorem: Assume: W � cwn B  cbn  W

If cb small enough [cb  f(cw,�)],
then E[extinction time] � cecn [c = f(cw,�) > 0]

• Idea: The actual (stochastic) trajectory It
will encounter a cut of size � W

W I = V I = Ø cut(It) |It| " W t

• Not enough. Must show upward drift for substantial amount of time

Simulations, on a star graph

budget extinction time

Can we do better? Lower bounds on expected extinction time

• Theorem: Assume: W � cwn B  cbn  W

If cb small enough [cb  f(cw,�)],
then E[extinction time] � cecn [c = f(cw,�) > 0]

• Idea: The actual (stochastic) trajectory It
will encounter a cut of size � W

W I = V I = Ø cut(It) |It| " W t

• Not enough. Must show upward drift for substantial amount of time

Simulations, on a star graph

budget extinction time

Can we do better? Lower bounds on expected extinction time

• Theorem: Assume: W � cwn B  cbn  W

If cb small enough [cb  f(cw,�)],
then E[extinction time] � cecn [c = f(cw,�) > 0]

• Idea: The actual (stochastic) trajectory It
will encounter a cut of size � W

W I = V I = Ø cut(It) |It| " W t

• Not enough. Must show upward drift for substantial amount of time

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I

remove one node at a time, or add nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I

remove one node at a time, or add nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I

remove one node at a time, or add nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It)

remove one node at a time, or add nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It) T T 0 cut(It) remove one node at a time, or add
nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It) T T 0

remove one node at a time, or add nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It) T T 0 cut(It) remove one node at a time, or add
nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Lower bound proof sketch

• Claim: During [T 0, T] have many recoveries (w.h.p.)

• Auxiliary (coupled) process I 0t: only recoveries

• cut(I 0t) increases by W/4
) at least W/4� recoveries
) needs constant time (w.h.p.)
) � 2n infections (w.h.p.): contradiction

• Probability of such a scenario: exponentially small

• Need exponential time for such a scenario to materialize

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It) T T 0 cut(It) remove one node at a time, or add
nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It) T T 0 cut(It) remove one node at a time, or add
nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It) T T 0 cut(It) remove one node at a time, or add
nodes
add/infect nodes

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Resistance �(I)

• Di�culty, starting from I

�(V) = W W/2 W/4 �(IT) = W/2 ⇡ cut(IT)

�(I) = 1 I0 Im = Ø I �(It) T T 0 cut(It) remove one node at a time, or add
nodes
add/infect nodes cut(I 0t) �(I 0t)

�(I) = min
such crusades



max
k�1

cut(Ik)
�

• A ⇢ B) �(A)  �(B)

• �(Ik+1) < �(Ik)) cut(Ik+1) = �(Ik)

Extensions, open problems

• W ⇠ cwn I0 = V

B = 4cwn su�ces
B > cn needed

• Any W , I0 = V

B = 4W su�ces
B � cW needed?

• General I0
B � c�(I0) su�ces (w.h.p.)
B � c�(I0) needed?

Extensions, open problems

• W ⇠ cwn, I0 = V

B = 4cwn su�ces
B > cn needed

• Any W , I0 = V

B = 4W su�ces
B � cW needed?

• General I0
B � c�(I0) su�ces (w.h.p.)
B � c�(I0) needed?

Extensions, open problems

• W ⇠ cwn, I0 = V

B = 4cwn su�ces
B > cn needed

• Any W , I0 = V

B = 4W su�ces
B � cW needed?

• General I0
B � c�(I0) su�ces (w.h.p.)
B � c�(I0) needed?

Extensions, open problems

• W ⇠ cwn, I0 = V

B = 4cwn su�ces
B > cn needed

• Any W , I0 = V

B = 4W su�ces
B � cW needed?

• General I0
B � c�(I0) su�ces (w.h.p.)
B � c�(I0) needed?

Extensions, open problems

• W ⇠ cwn I0 = V

B = 4cwn su�ces
B > cn needed

• Any W , I0 = V

B = 4W su�ces
B � cW needed?

• General I0
B � c�(I0) su�ces (w.h.p.)
B � c�(I0) needed?

Extensions, open problems

• W ⇠ cwn, I0 = V

B = 4cwn su�ces
B > cn needed

• Any W , I0 = V

B = 4W su�ces
B � cW needed?

• General I0
B � c�(I0) su�ces (w.h.p.)
B � c�(I0) needed?

Extensions, open problems

• W ⇠ cwn, I0 = V

B = 4cwn su�ces
B > cn needed

• Any W , I0 = V

B = 4W su�ces
B � cW needed?

• General I0
B � c�(I0) su�ces (w.h.p.)
B � c�(I0) needed?

Extensions, open problems

• W ⇠ cwn, I0 = V

B = 4cwn su�ces
B > cn needed

• Any W , I0 = V

B = 4W su�ces
B � cW needed?

• General I0
B � c�(I0) su�ces (w.h.p.)
B � c�(I0) needed?

Extensions, open problems

• W ⇠ cwn, I0 = V

B = 4cwn su�ces
B > cn needed

• Any W , I0 = V

B = 4W su�ces
B � cW needed?

• General I0
B � c�(I0) su�ces (w.h.p.)
B � c�(I0) needed?

Extensions, open problems

• W ⇠ cwn I0 = V

B = 4cwn su�ces
B > cn needed

• Any W , I0 = V

B = 4W su�ces
B � cW needed?

• General I0
B � c�(I0) su�ces (w.h.p.)
B � c�(I0) needed?

Extensions, open problems

• W ⇠ cwn, I0 = V

B = 4cwn su�ces
B > cn needed

• Any W , I0 = V

B = 4W su�ces
B � cW needed?

• General I0
B � c�(I0) su�ces (w.h.p.)
B � c�(I0) needed?

Extensions, open problems

• W ⇠ cwn, I0 = V

B = 4cwn su�ces
B > cn needed

• Any W , I0 = V

B = 4W su�ces
B � cW needed?

• General I0
B � c�(I0) su�ces (w.h.p.)
B � c�(I0) needed?

Extensions, open problems

• W ⇠ cwn, I0 = V

B = 4cwn su�ces
B > cn needed

• Any W , I0 = V

B = 4W su�ces
B � cW needed?

• General I0
B � c�(I0) su�ces (w.h.p.)
B � c�(I0) needed?

Extensions, open problems

• W ⇠ cwn, I0 = V

B = 4cwn su�ces
B > cn needed

• Any W , I0 = V

B = 4W su�ces
B � cW needed?

• General I0
B � c�(I0) su�ces (w.h.p.)
B � c�(I0) needed?

Extensions, open problems

• W ⇠ cwn, I0 = V

B = 4cwn su�ces
B > cn needed

• Any W , I0 = V

B = 4W su�ces
B � cW needed?

• General I0
B � c�(I0) su�ces (w.h.p.)
B � c�(I0) needed?

Extensions, open problems

• W ⇠ cwn I0 = V

B = 4cwn su�ces
B > cn needed

• Any W , I0 = V

B = 4W su�ces
B � cW needed?

• General I0
B � c�(I0) su�ces (w.h.p.)
B � c�(I0) needed?

Extensions, open problems

• W ⇠ cwn, I0 = V

B = 4cwn su�ces
B > cn needed

• Any W , I0 = V

B = 4W su�ces
B � cW needed?

• General I0
B � c�(I0) su�ces (w.h.p.)
B � c�(I0) needed?

Extensions, open problems

• W ⇠ cwn, I0 = V

B = 4cwn su�ces
B > cn needed

• Any W , I0 = V

B = 4W su�ces
B � cW needed?

• General I0
B � c�(I0) su�ces (w.h.p.)
B � c�(I0) needed?

Extensions, open problems

• W ⇠ cwn, I0 = V

B = 4cwn su�ces
B > cn needed

• Any W , I0 = V

B = 4W su�ces
B � cW needed?

• General I0
B � c�(I0) su�ces (w.h.p.)
B � c�(I0) needed?

Extensions, open problems

• W ⇠ cwn, I0 = V

B = 4cwn su�ces
B > cn needed

• Any W , I0 = V

B = 4W su�ces
B � cW needed?

• General I0
B � c�(I0) su�ces (w.h.p.)
B � c�(I0) needed?

Extensions, open problems

• W ⇠ cwn, I0 = V

B = 4cwn su�ces
B > cn needed

• Any W , I0 = V

B = 4W su�ces
B � cW needed?

• General I0
B � c�(I0) su�ces (w.h.p.)
B � c�(I0) needed?

Extensions, open problems

• W ⇠ cwn, I0 = V

B = 4cwn su�ces
B > cn needed

• Any W , I0 = V

B = 4W su�ces
B � cW needed?

• General I0
B � c�(I0) su�ces (w.h.p.)
B � c�(I0) needed?

Extensions, open problems

• W ⇠ cwn I0 = V

B = 4cwn su�ces
B > cn needed

• Any W , I0 = V

B = 4W su�ces
B � cW needed?

• General I0
B � c�(I0) su�ces (w.h.p.)
B � c�(I0) needed?

Extensions, open problems

• W ⇠ cwn, I0 = V

B = 4cwn su�ces
B > cn needed

• Any W , I0 = V

B = 4W su�ces
B � cW needed?

• General I0
B � c�(I0) su�ces (w.h.p.)
B � c�(I0) needed?

Extensions, open problems

• W ⇠ cwn, I0 = V

B = 4cwn su�ces
B > cn needed

• Any W , I0 = V

B = 4W su�ces
B � cW needed?

• General I0
B � c�(I0) su�ces (w.h.p.)
B � c�(I0) needed?

Extensions, open problems

• W ⇠ cwn, I0 = V

B = 4cwn su�ces
B > cn needed

• Any W , I0 = V

B = 4W su�ces
B � cW needed?

• General I0
B � c�(I0) su�ces (w.h.p.)
B � c�(I0) needed?

Extensions, open problems

• W ⇠ cwn, I0 = V

B = 4cwn su�ces
B > cn needed

• Any W , I0 = V

B = 4W su�ces
B � cW needed?

• General I0
B � c�(I0) su�ces (w.h.p.)
B � c�(I0) needed?

Extensions, open problems

• W ⇠ cwn, I0 = V

B = 4cwn su�ces
B > cn needed

• Any W , I0 = V

B = 4W su�ces
B � cW needed?

• General I0
B � c�(I0) su�ces (w.h.p.)
B � c�(I0) needed?

Extensions, open problems

• W ⇠ cwn, I0 = V

B = 4cwn su�ces
B > cn needed

• Any W , I0 = V

B = 4W su�ces
B � cW needed?

• General I0
B � c�(I0) su�ces (w.h.p.)
B � c�(I0) needed?

Extensions, open problems

• W ⇠ cwn, I0 = V

B = 4cwn su�ces
B > cn needed

• Any W , I0 = V

B = 4W su�ces
B � cW needed?

• General I0
B � c�(I0) su�ces (w.h.p.)
B � c�(I0) needed?

Extensions, open problems

• W ⇠ cwn I0 = V

B = 4cwn su�ces
B > cn needed

• Any W , I0 = V

B = 4W su�ces
B � cW needed?

• General I0
B � c�(I0) su�ces (w.h.p.)
B � c�(I0) needed?

Extensions, open problems

• W ⇠ cwn, I0 = V

B = 4cwn su�ces
B > cn needed

• Any W , I0 = V

B = 4W su�ces
B � cW needed?

• General I0
B � c�(I0) su�ces (w.h.p.)
B � c�(I0) needed?

Extensions, open problems

• W ⇠ cwn, I0 = V

B = 4cwn su�ces
B > cn needed

• Any W , I0 = V

B = 4W su�ces
B � cW needed?

• General I0
B � c�(I0) su�ces (w.h.p.)
B � c�(I0) needed?

Extensions, open problems

• W ⇠ cwn, I0 = V

B = 4cwn su�ces
B > cn needed

• Any W , I0 = V

B = 4W su�ces
B � cW needed?

• General I0
B � c�(I0) su�ces (w.h.p.)
B � c�(I0) needed?

Extensions, open problems

• W ⇠ cwn, I0 = V

B = 4cwn su�ces
B > cn needed

• Any W , I0 = V

B = 4W su�ces
B � cW needed?

• General I0
B � c�(I0) su�ces (w.h.p.)
B � c�(I0) needed?

Extensions, open problems

• W ⇠ cwn, I0 = V

B = 4cwn su�ces
B > cn needed

• Any W , I0 = V

B = 4W su�ces
B � cW needed?

• General I0
B � c�(I0) su�ces (w.h.p.)
B � c�(I0) needed?

Extensions, open problems

• W ⇠ cwn, I0 = V

B = 4cwn su�ces
B > cn needed

• Any W , I0 = V

B = 4W su�ces
B � cW needed?

• General I0
B � c�(I0) su�ces (w.h.p.)
B � c�(I0) needed?

Extensions, open problems

• W ⇠ cwn, I0 = V

B = 4cwn su�ces
B > cn needed

• Any W , I0 = V

B = 4W su�ces
B � cW needed?

• General I0
B � c�(I0) su�ces (w.h.p.)
B � c�(I0) needed?

Extensions, open problems

• W ⇠ cwn, I0 = V

B = 4cwn su�ces
B > cn needed

• Any W , I0 = V

B = 4W su�ces
B � cW needed?

• General I0
B � c�(I0) su�ces (w.h.p.)
B � c�(I0) needed?

Extensions, open problems

• W ⇠ cwn, I0 = V

B = 4cwn su�ces
B > cn needed

• Any W , I0 = V

B = 4W su�ces
B � cW needed?

• General I0
B � c�(I0) su�ces (w.h.p.)
B � c�(I0) needed?

Extensions, open problems

• W ⇠ cwn I0 = V

B = 4cwn su�ces
B > cn needed

• Any W , I0 = V

B = 4W su�ces
B � cW needed?

• General I0
B � c�(I0) su�ces (w.h.p.)
B � c�(I0) needed?

Extensions, open problems

• W ⇠ cwn, I0 = V

B = 4cwn su�ces
B > cn needed

• Any W , I0 = V

B = 4W su�ces
B � cW needed?

• General I0
B � c�(I0) su�ces (w.h.p.)
B � c�(I0) needed?

Extensions, open problems

• W ⇠ cwn, I0 = V

B = 4cwn su�ces
B > cn needed

• Any W , I0 = V

B = 4W su�ces
B � cW needed?

• General I0
B � c�(I0) su�ces (w.h.p.)
B � c�(I0) needed?

Extensions, open problems

• W ⇠ cwn, I0 = V

B = 4cwn su�ces
B > cn needed

• Any W , I0 = V

B = 4W su�ces
B � cW needed?

• General I0
B � c�(I0) su�ces (w.h.p.)
B � c�(I0) needed?

Extensions, open problems

• W ⇠ cwn, I0 = V

B = 4cwn su�ces
B > cn needed

• Any W , I0 = V

B = 4W su�ces
B � cW needed?

• General I0
B � c�(I0) su�ces (w.h.p.)
B � c�(I0) needed?

Extensions, open problems

• W ⇠ cwn, I0 = V

B = 4cwn su�ces
B > cn needed

• Any W , I0 = V

B = 4W su�ces
B � cW needed?

• General I0
B � c�(I0) su�ces (w.h.p.)
B � c�(I0) needed?

Extensions, open problems

• W ⇠ cwn, I0 = V

B = 4cwn su�ces
B > cn needed

• Any W , I0 = V

B = 4W su�ces
B � cW needed?

• General I0
B � c�(I0) su�ces (w.h.p.)
B � c�(I0) needed?

Extensions, open problems

• W ⇠ cwn, I0 = V

B = 4cwn su�ces
B > cn needed

• Any W , I0 = V

B = 4W su�ces
B � cW needed?

• General I0
B � c�(I0) su�ces (w.h.p.)
B � c�(I0) needed?

Extensions, open problems

• W ⇠ cwn, I0 = V

B = 4cwn su�ces
B > cn needed

• Any W , I0 = V

B = 4W su�ces
B � cW needed?

• General I0
B � c�(I0) su�ces (w.h.p.)
B � c�(I0) needed?

Extensions, open problems

• W ⇠ cwn, I0 = V

B = 4cwn su�ces
B > cn needed

• Any W , I0 = V

B = 4W su�ces
B � cW needed?

• General I0
B � c�(I0) su�ces (w.h.p.)
B � c�(I0) needed?

Extensions, open problems

• W ⇠ cwn, I0 = V

B = 4cwn su�ces
B > cn needed

• Any W , I0 = V

B = 4W su�ces
B � cW needed?

• General I0
B � c�(I0) su�ces (w.h.p.)
B � c�(I0) needed?

Extensions, open problems

• W ⇠ cwn I0 = V

B = 4cwn su�ces
B > cn needed

• Any W , I0 = V

B = 4W su�ces
B � cW needed?

• General I0
B � c�(I0) su�ces (w.h.p.)
B � c�(I0) needed?

Extensions, open problems

• W ⇠ cwn, I0 = V

B = 4cwn su�ces
B > cn needed

• Any W , I0 = V

B = 4W su�ces
B � cW needed?

• General I0
B � c�(I0) su�ces (w.h.p.)
B � c�(I0) needed?

Extensions, open problems

• W ⇠ cwn, I0 = V

B = 4cwn su�ces
B > cn needed

• Any W , I0 = V

B = 4W su�ces
B � cW needed?

• General I0
B � c�(I0) su�ces (w.h.p.)
B � c�(I0) needed?

Extensions, open problems

• W ⇠ cwn, I0 = V

B = 4cwn su�ces
B > cn needed

• Any W , I0 = V

B = 4W su�ces
B � cW needed?

• General I0
B � c�(I0) su�ces (w.h.p.)
B � c�(I0) needed?

Extensions, open problems

• W ⇠ cwn, I0 = V

B = 4cwn su�ces
B > cn needed

• Any W , I0 = V

B = 4W su�ces
B � cW needed?

• General I0
B � c�(I0) su�ces (w.h.p.)
B � c�(I0) needed?

Extensions, open problems

• W ⇠ cwn, I0 = V

B = 4cwn su�ces
B > cn needed

• Any W , I0 = V

B = 4W su�ces
B � cW needed?

• General I0
B � c�(I0) su�ces (w.h.p.)
B � c�(I0) needed?

Extensions, open problems

• W ⇠ cwn, I0 = V

B = 4cwn su�ces
B > cn needed

• Any W , I0 = V

B = 4W su�ces
B � cW needed?

• General I0
B � c�(I0) su�ces (w.h.p.)
B � c�(I0) needed?

Extensions, open problems

• W ⇠ cwn, I0 = V

B = 4cwn su�ces
B > cn needed

• Any W , I0 = V

B = 4W su�ces
B � cW needed?

• General I0
B � c�(I0) su�ces (w.h.p.)
B � c�(I0) needed?

Extensions, open problems

• W ⇠ cwn, I0 = V

B = 4cwn su�ces
B > cn needed

• Any W , I0 = V

B = 4W su�ces
B � cW needed?

• General I0
B � c�(I0) su�ces (w.h.p.)
B � c�(I0) needed?

Extensions, open problems

• W ⇠ cwn, I0 = V

B = 4cwn su�ces
B > cn needed

• Any W , I0 = V

B = 4W su�ces
B � cW needed?

• General I0
B � c�(I0) su�ces (w.h.p.)
B � c�(I0) needed?

Extensions, open problems

• W ⇠ cwn, I0 = V

B = 4cwn su�ces
B > cn needed

• Any W , I0 = V

B = 4W su�ces
B � cW needed?

• General I0
B � c�(I0) su�ces (w.h.p.)
B � c�(I0) needed?

Extensions, open problems

• W ⇠ cwn, I0 = V

B = 4cwn su�ces
B > cn needed

• Any W , I0 = V

B = 4W su�ces
B � cW needed?

• General I0
B � c�(I0) su�ces (w.h.p.)
B � c�(I0) needed?

• SIR models (cured cannot get reinfected)

• Imperfect information, etc.

Extensions, open problems

• W ⇠ cwn I0 = V

B = 4cwn su�ces
B > cn needed

• Any W , I0 = V

B = 4W su�ces
B � cW needed?

• General I0
B � c�(I0) su�ces (w.h.p.)
B � c�(I0) needed?

Extensions, open problems

• W ⇠ cwn, I0 = V

B = 4cwn su�ces
B > cn needed

• Any W , I0 = V

B = 4W su�ces
B � cW needed?

• General I0
B � c�(I0) su�ces (w.h.p.)
B � c�(I0) needed?

Extensions, open problems

• W ⇠ cwn, I0 = V

B = 4cwn su�ces
B > cn needed

• Any W , I0 = V

B = 4W su�ces
B � cW needed?

• General I0
B � c�(I0) su�ces (w.h.p.)
B � c�(I0) needed?

Extensions, open problems

• W ⇠ cwn, I0 = V

B = 4cwn su�ces
B > cn needed

• Any W , I0 = V

B = 4W su�ces
B � cW needed?

• General I0
B � c�(I0) su�ces (w.h.p.)
B � c�(I0) needed?

Extensions, open problems

• W ⇠ cwn, I0 = V

B = 4cwn su�ces
B > cn needed

• Any W , I0 = V

B = 4W su�ces
B � cW needed?

• General I0
B � c�(I0) su�ces (w.h.p.)
B � c�(I0) needed?

Extensions, open problems

• W ⇠ cwn, I0 = V

B = 4cwn su�ces
B > cn needed

• Any W , I0 = V

B = 4W su�ces
B � cW needed?

• General I0
B � c�(I0) su�ces (w.h.p.)
B � c�(I0) needed?

Extensions, open problems

• W ⇠ cwn, I0 = V

B = 4cwn su�ces
B > cn needed

• Any W , I0 = V

B = 4W su�ces
B � cW needed?

• General I0
B � c�(I0) su�ces (w.h.p.)
B � c�(I0) needed?

Extensions, open problems

• W ⇠ cwn, I0 = V

B = 4cwn su�ces
B > cn needed

• Any W , I0 = V

B = 4W su�ces
B � cW needed?

• General I0
B � c�(I0) su�ces (w.h.p.)
B � c�(I0) needed?

Extensions, open problems

• W ⇠ cwn, I0 = V

B = 4cwn su�ces
B > cn needed

• Any W , I0 = V

B = 4W su�ces
B � cW needed?

• General I0
B � c�(I0) su�ces (w.h.p.)
B � c�(I0) needed?

Extensions, open problems

• W ⇠ cwn, I0 = V

B = 4cwn su�ces
B > cn needed

• Any W , I0 = V

B = 4W su�ces
B � cW needed?

• General I0
B � c�(I0) su�ces (w.h.p.)
B � c�(I0) needed?

Extensions, open problems

• W ⇠ cwn, I0 = V

B = 4cwn su�ces
B > cn needed

• Any W , I0 = V

B = 4W su�ces
B � cW needed?

• General I0
B � c�(I0) su�ces (w.h.p.)
B � c�(I0) needed?

Extensions, open problems

• W ⇠ cwn, I0 = V

B = 4cwn su�ces
B > cn needed

• Any W , I0 = V

B = 4W su�ces
B � cW needed?

• General I0
B � c�(I0) su�ces (w.h.p.)
B � c�(I0) needed?

• SIR models (cured cannot get reinfected)

• Imperfect information, etc.

Extensions, open problems

• W ⇠ cwn, I0 = V

B = 4cwn su�ces
B > cn needed

• Any W , I0 = V

B = 4W su�ces
B � cW needed?

• General I0
B � c�(I0) su�ces (w.h.p.)
B � c�(I0) needed?

• SIR models (cured cannot get reinfected)

• Imperfect information, etc.

