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– extinction guaranteed
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⇢i(t) > cut(It)

– It has downward (expected) drift

– time to extinction is linear in n, or less
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• Prob(failure): exponentially small

• If failure: let infections happen till cut(It)  B/8 and restart
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Lower bound proof sketch

• Claim: During [T 0, T ] have ⇥(n) recoveries

• Auxiliary (coupled) process I 0t: only recoveries

• cut(I 0t) increases by W/4
) at least W/4� recoveries
) needs constant time (w.h.p.)
) � 2n infections (w.h.p.): contradiction

• Probability of such a scenario: exponentially small

• Need exponential time for such a scenario to materialize
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Simulations, on a star graph

budget extinction time

Can we do better? Lower bounds on expected extinction time

• Theorem: Assume: W � cwn B  cbn  W

If cb small enough [cb  f(cw,�)],
then E[extinction time] � cecn [c = f(cw,�) > 0]

• Idea: The actual (stochastic) trajectory It
will encounter a cut of size � W

W I = V I = Ø cut(It) |It| " W t

• Not enough. Must show upward drift for substantial amount of time
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Can we do better? Lower bounds on expected extinction time

• Theorem: Assume: W � cwn B  cbn  W

If cb small enough [cb  f(cw,�)],
then E[extinction time] � cecn [c = f(cw,�) > 0]

• Idea: The actual (stochastic) trajectory It
will encounter a cut of size � W

W I = V I = Ø cut(It) |It| " W t

• Not enough. Must show upward drift for substantial amount of time
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• cut(I 0t) increases by W/4
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W I = V I = Ø cut(It) |It| " W t

• Not enough. Must show upward drift for substantial amount of time
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Simulations, on a star graph

budget extinction time

Can we do better? Lower bounds on expected extinction time

• Theorem: Assume: W � cwn B  cbn  W

If cb small enough [cb  f(cw,�)],
then E[extinction time] � cecn [c = f(cw,�) > 0]

• Idea: The actual (stochastic) trajectory It
will encounter a cut of size � W

W I = V I = Ø cut(It) |It| " W t

• Not enough. Must show upward drift for substantial amount of time
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Simulations, on a star graph

budget extinction time

Can we do better? Lower bounds on expected extinction time

• Theorem: Assume: W � cwn B  cbn  W

If cb small enough [cb  f(cw,�)],
then E[extinction time] � cecn [c = f(cw,�) > 0]

• Idea: The actual (stochastic) trajectory It
will encounter a cut of size � W

W I = V I = Ø cut(It) |It| " W t

• Not enough. Must show upward drift for substantial amount of time
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Extensions, open problems

• W ⇠ cwn I0 = V

B = 4cwn su�ces
B > cn needed

• Any W , I0 = V

B = 4W su�ces
B � cW needed?

• General I0
B � c�(I0) su�ces (w.h.p.)
B � c�(I0) needed?
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• SIR models (cured cannot get reinfected)

• Imperfect information, etc.
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