Closed-loop policies for curing epidemics on graphs

John N. Tsitsiklis
(with K. Drakopoulos and A. Ozdaglar)
IIII

January 2016

Outline

- Motivation
- The SIS contagion/epidemic model
- Static versus dynamic policies
- line and mesh examples

Outline

- Motivation
- The SIS contagion/epidemic model
- Static versus dynamic policies
- line and mesh examples
- The CutWidth of a graph (and a generalization)

Outline

- Motivation
- The SIS contagion/epidemic model
- Static versus dynamic policies
- line and mesh examples
- The CutWidth of a graph (and a generalization)
- A curing policy
- fast extinction if budget $\geq c$.CutWidth
- A lower bound
- slow extinction if budget $\leq c^{\prime} \cdot$ CutWidth

Outline

- Motivation
- The SIS contagion/epidemic model
- Static versus dynamic policies
- line and mesh examples
- The CutWidth of a graph (and a generalization)
- A curing policy
- fast extinction if budget $\geq c$.CutWidth
- A lower bound
- slow extinction if budget $\leq c^{\prime} \cdot$ CutWidth
- Extensions, open problems, future work

Motivation

- ... from all kinds of networks
- internet viruses
- propagation of opinions
- infectious diseases

Motivation

- ... from all kinds of networks
- internet viruses
- propagation of opinions
- infectious diseases
- Traditionally: static strategies
- ex ante targeting of "central" nodes
- includes heuristics, mean-field approximations, etc.

Cohen et al., 2003; Van Mieghem et al., 2011; Schneider et al., 2011;
Zargham and Preciado, 2014; Gourdin et al., 2011; Chung et al., 2011;
Preciado et al., 2013, 2014

Motivation

- ... from all kinds of networks
- internet viruses
- propagation of opinions
- infectious diseases
- Traditionally: static strategies
- ex ante targeting of "central" nodes
- includes heuristics, mean-field approximations, etc.

Cohen et al., 2003; Van Mieghem et al., 2011; Schneider et al., 2011; Zargham and Preciado, 2014; Gourdin et al., 2011; Chung et al., 2011; Preciado et al., 2013, 2014

- Develop dynamic strategies
- use information about current state

Borgs et al., 2010 (exact)
Khanafer and Basar, 2014 (mean field approximation)

The SIS ("susceptible \rightarrow infected \rightarrow susceptible") model

- Undirected graph: node set V; n nodes; max-degree Δ
- State I_{t} : set of infected nodes at time $t ; \quad I_{0}$: given

The SIS ("susceptible \rightarrow infected \rightarrow susceptible") model

- Undirected graph: node set V; n nodes; max-degree Δ
- State I_{t} : set of infected nodes at time $t ; \quad I_{0}$: given
- Node dynamics:

\# of infected neighbors

Healthy Infected

The SIS ("susceptible \rightarrow infected \rightarrow susceptible") model

- Undirected graph: node set V; n nodes; max-degree Δ
- State I_{t} : set of infected nodes at time $t ; \quad I_{0}$: given
- Node dynamics:

The SIS ("susceptible \rightarrow infected \rightarrow susceptible") model

- Undirected graph: node set V; n nodes; max-degree Δ
- State I_{t} : set of infected nodes at time $t ; \quad I_{0}$: given
- Node dynamics:

> \# of infected neighbors

Healthy Infected

Curing resources $=$ Budget $=B=\rho n$

- Total rate at time t :
- curing: $\rho \cdot\left|I_{t}\right|$

The SIS ("susceptible \rightarrow infected \rightarrow susceptible") model

- Undirected graph: node set V; n nodes; max-degree \triangle
- State I_{t} : set of infected nodes at time $t ; \quad I_{0}$: given
- Node dynamics:

> \# of infected neighbors

Healthy

Curing resources $=$ Budget $=B=\rho n$

- Total rate at time t :
- curing: $\rho \cdot\left|I_{t}\right|$
- infection: \# of arcs joining healthy to infected nodes $\operatorname{cut}\left(I_{t}\right)$

Curing rate allocation - Controlled SIS model

- Static:

Curing rate allocation - Controlled SIS model

- Static:
\# of infected neighbors

Healthy

Curing rate allocation - Controlled SIS model

- Static:

\# of infected neighbors

Healthy

- Dynamic:

$$
\sum_{i} \rho_{i}(t)=B(\text { budget })
$$

Healthy
Infected

Curing rate allocation - Controlled SIS model

- Static:

\# of infected neighbors

Healthy

- e.g., ρ_{i} proportional to degree
- Dynamic:

> \# of infected neighbors

$$
\sum_{i} \rho_{i}(t)=B(\text { budget })
$$

Healthy
Infected

- only allocate resources to infected nodes

Curing rate allocation - Controlled SIS model

- Static:

\# of infected neighbors

Healthy

- Dynamic:

$$
\sum_{i} \rho_{i}=B \text { (budget) }
$$

\# of infected neighbors

$$
\sum_{i} \rho_{i}(t)=B(\text { budget })
$$

Healthy
Infected

- only allocate resources to infected nodes
- What B is needed to guarantee "fast extinction"?

Slow versus fast extinction

Slow versus fast extinction

- $I_{0}=\varnothing$ (all healthy) is an absorbing state
- extinction guaranteed
- may take time exponential in n

Slow versus fast extinction

- $I_{0}=\varnothing$ (all healthy) is an absorbing state
- extinction guaranteed
- may take time exponential in n
- But with enough curing resources:
- total curing rate $>$ total infection rate

$$
\sum_{i \in I_{t}} \rho_{i}(t)>\operatorname{cut}\left(I_{t}\right)
$$

Slow versus fast extinction

- $I_{0}=\varnothing$ (all healthy) is an absorbing state
- extinction guaranteed
- may take time exponential in n
- But with enough curing resources:
- total curing rate $>$ total infection rate

$$
\sum_{i \in I_{t}} \rho_{i}(t)>\operatorname{cut}\left(I_{t}\right)
$$

- $\left|I_{t}\right|$ has downward (expected) drift
- time to extinction is linear in n, or less

Example: Line graph

Example: Line graph

- Static:
- fast extinction needs $\rho_{i}>1$, for most $i \Rightarrow$ Budget $=\Omega(n)$

Example: Line graph

- Static:
- fast extinction needs $\rho_{i}>1$, for most $i \Rightarrow$ Budget $=\Omega(n)$

- A dynamic policy

Example: Line graph

- Static:
- fast extinction needs $\rho_{i}>1$, for most $i \Rightarrow$ Budget $=\Omega(n)$

- A dynamic policy
- expected extinction in time $O(n)$
- constant budget suffices

Example: Line graph

- Static:
- fast extinction needs $\rho_{i}>1$, for most $i \Rightarrow$ Budget $=\Omega(n)$

- A dynamic policy
- expected extinction in time $O(n)$
- constant budget suffices (and needed)

Example: $\sqrt{n} \times \sqrt{n}$ mesh

- Static:
- fast extinction needs $\rho_{i}>1$, for most $i \Rightarrow$ Budget $=\Omega(n)$

$$
\text { (} \rho_{i} \geq 5 \text { suffices) }
$$

Example: $\sqrt{n} \times \sqrt{n}$ mesh

- Static:
- fast extinction needs $\rho_{i}>1$, for most $i \Rightarrow$ Budget $=\Omega(n)$

$$
\text { (} \rho_{i} \geq 5 \text { suffices) }
$$

- A dynamic policy
- allocate $\rho_{i}(t)=5$ on "boundary"

Example: $\sqrt{n} \times \sqrt{n}$ mesh

- Static:
- fast extinction needs $\rho_{i}>1$, for most $i \Rightarrow$ Budget $=\Omega(n)$

$$
\text { (} \rho_{i} \geq 5 \text { suffices) }
$$

- A dynamic policy
- allocate $\rho_{i}(t)=5$ on "boundary"

Example: $\sqrt{n} \times \sqrt{n}$ mesh

- Static:
- fast extinction needs $\rho_{i}>1$, for most $i \Rightarrow$ Budget $=\Omega(n)$

$$
\text { (} \rho_{i} \geq 5 \text { suffices) }
$$

- A dynamic policy
- allocate $\rho_{i}(t)=5$ on "boundary"

- $O(\sqrt{n})$ budget suffices

Example: $\sqrt{n} \times \sqrt{n}$ mesh

- Static:
- fast extinction needs $\rho_{i}>1$, for most $i \Rightarrow$ Budget $=\Omega(n)$

$$
\text { (} \rho_{i} \geq 5 \text { suffices) }
$$

- A dynamic policy
- allocate $\rho_{i}(t)=5$ on "boundary"

- $O(\sqrt{n})$ budget suffices
- at times where about $n / 2$ infected nodes: $\operatorname{cut}\left(I_{t}\right)=\Omega(\sqrt{n})$

Example: $\sqrt{n} \times \sqrt{n}$ mesh

- Static:
- fast extinction needs $\rho_{i}>1$, for most $i \Rightarrow$ Budget $=\Omega(n)$

$$
\text { (} \rho_{i} \geq 5 \text { suffices) }
$$

- A dynamic policy
- allocate $\rho_{i}(t)=5$ on "boundary"

- $O(\sqrt{n})$ budget suffices
- at times where about $n / 2$ infected nodes: $\operatorname{cut}\left(I_{t}\right)=\Omega(\sqrt{n})$
- to make progress: $\Omega(\sqrt{n})$ budget necessary

Cut Widths

- Budget should be large enough to counter large cut $\left(I_{t}\right)$
- [not at all times, but when it matters]

Cut Widths

- Budget should be large enough to counter large cut $\left(I_{t}\right)$
- [not at all times, but when it matters]

$$
I_{0}=V
$$

Cut Widths

- Budget should be large enough to counter large cut $\left(I_{t}\right)$
- [not at all times, but when it matters]
- Monotone crusade: Remove one node at a time

$$
I_{0}=V
$$

Cut Widths

- Budget should be large enough to counter large cut $\left(I_{t}\right)$
- [not at all times, but when it matters]
- Monotone crusade: Remove one node at a time

$$
I_{0}=V \quad I_{1}
$$

Cut Widths

- Budget should be large enough to counter large cut $\left(I_{t}\right)$
- [not at all times, but when it matters]
- Monotone crusade: Remove one node at a time

$$
I_{0}=V
$$

$$
I_{1}
$$

$$
I_{2}
$$

Cut Widths

- Budget should be large enough to counter large cut $\left(I_{t}\right)$
- [not at all times, but when it matters]
- Monotone crusade: Remove one node at a time

$$
I_{0}=V
$$

$$
I_{1}
$$

I_{2}

$$
I_{n-1}
$$

Cut Widths

- Budget should be large enough to counter large cut $\left(I_{t}\right)$
- [not at all times, but when it matters]
- Monotone crusade: Remove one node at a time

$$
I_{0}=V
$$

$$
I_{1}
$$

I_{2}

$$
I_{n-1}
$$

$$
I_{n}=\varnothing
$$

Cut Widths

- Budget should be large enough to counter large cut $\left(I_{t}\right)$
- [not at all times, but when it matters]
- Monotone crusade: Remove one node at a time
$I_{0}=V$

I_{2}
I_{n-1}
$I_{n}=\varnothing$

$\max _{k} \operatorname{cut}\left(I_{k}\right)$

Cut Widths

- Budget should be large enough to counter large cut $\left(I_{t}\right)$
- [not at all times, but when it matters]
- Monotone crusade: Remove one node at a time
$I_{0}=V$
I_{1}
I_{2}
I_{n-1}
$I_{n}=\varnothing$

$$
\min _{\text {crusades }}\left[\max _{k} \operatorname{cut}\left(I_{k}\right)\right]
$$

Cut Widths

- Budget should be large enough to counter large cut $\left(I_{t}\right)$
- [not at all times, but when it matters]
- Monotone crusade: Remove one node at a time
$I_{0}=V$ I_{1}
I_{2}

$$
I_{n-1}
$$

$$
I_{n}=\varnothing
$$

$$
W=\text { CutWidth }=\min _{\text {crusades }}\left[\max _{k} \operatorname{cut}\left(I_{k}\right)\right]
$$

Examples: line graph and mesh

$$
W=1
$$

Examples: line graph and mesh

$W=1$

mesh: $W \approx \sqrt{n}$

Upper bound

Thm: If $B \geq 4 W, \quad\left[\right.$ and $\left.B \geq \Delta \log _{2} n\right]$
there is a policy for which: $\mathrm{E}[$ time to extinction $] \leq 26 \cdot \frac{n}{B}$

Upper bound

Thm: If $B \geq 4 W, \quad\left[\right.$ and $\left.B \geq \Delta \log _{2} n\right]$
there is a policy for which: $\mathrm{E}[$ time to extinction $] \leq 26 \cdot \frac{n}{B}$

- Note: No policy can do better than n / B

Upper bound

Thm: If $B \geq 4 W, \quad\left[\right.$ and $\left.B \geq \Delta \log _{2} n\right]$
there is a policy for which: $\mathrm{E}[$ time to extinction $] \leq 26 \cdot \frac{n}{B}$

- Note: No policy can do better than n / B
- Corollary: If W is sublinear in n [e.g., mesh], can get "fast extinction" (sublinear time), with sublinear budget.

For more general initial (or current) sets

- Lemma: Starting from subset A, there exists monotone crusade with: (largest cut encountered) $\leq \operatorname{cut}(A)+W$

For more general initial (or current) sets

- Lemma: Starting from subset A, there exists monotone crusade with: (largest cut encountered) $\leq \operatorname{cut}(A)+W$
- Proof: Take "optimal" monotone crusade: $V=I_{0}, \ldots, I_{n}=\varnothing$

For more general initial (or current) sets

- Lemma: Starting from subset A, there exists monotone crusade with: (largest cut encountered) $\leq \operatorname{cut}(A)+W$
- Proof: Take "optimal" monotone crusade: $V=I_{0}, \ldots, I_{n}=\varnothing$

For more general initial (or current) sets

- Lemma: Starting from subset A, there exists monotone crusade with: (largest cut encountered) $\leq \operatorname{cut}(A)+W$
- Proof: Take "optimal" monotone crusade: $V=I_{0}, \ldots, I_{n}=\varnothing$

Consider crusade $A=A \cap I_{0}, I_{1} \cap A, \ldots I_{n} \cap A=\varnothing$

The policy $\quad(B \geq 4 W, \quad W \leq B / 4)$

The policy $\quad(B \geq 4 W, \quad W \leq B / 4)$

- Suppose we start with $\operatorname{cut}\left(I_{0}\right) \leq B / 8 ; \quad$ e.g., $I_{0}=V$

The policy $\quad(B \geq 4 W, \quad W \leq B / 4)$

- Suppose we start with $\operatorname{cut}\left(I_{0}\right) \leq B / 8 ; \quad$ e.g., $I_{0}=V$
- Target path $I_{0}, I_{1}, \ldots, I_{m}=\varnothing$ (monotone)

$$
\operatorname{cut}\left(I_{k}\right) \leq c\left(I_{0}\right)+W \leq \frac{B}{8}+\frac{B}{4}=\frac{3 B}{8}
$$

The policy $\quad(B \geq 4 W, \quad W \leq B / 4)$

- Suppose we start with $\operatorname{cut}\left(I_{0}\right) \leq B / 8 ; \quad$ e.g., $I_{0}=V$
- Target path $I_{0}, I_{1}, \ldots, I_{m}=\varnothing$ (monotone)

$$
\operatorname{cut}\left(I_{k}\right) \leq c\left(I_{0}\right)+W \leq \frac{B}{8}+\frac{B}{4}=\frac{3 B}{8}
$$

The policy $\quad(B \geq 4 W, \quad W \leq B / 4)$

- Suppose we start with $\operatorname{cut}\left(I_{0}\right) \leq B / 8 ; \quad$ e.g., $I_{0}=V$
- Target path $I_{0}, I_{1}, \ldots, I_{m}=\varnothing$ (monotone)

$$
\operatorname{cut}\left(I_{k}\right) \leq c\left(I_{0}\right)+W \leq \frac{B}{8}+\frac{B}{4}=\frac{3 B}{8}
$$

The policy $\quad(B \geq 4 W, \quad W \leq B / 4)$

- Suppose we start with $\operatorname{cut}\left(I_{0}\right) \leq B / 8 ; \quad$ e.g., $I_{0}=V$
- Target path $I_{0}, I_{1}, \ldots, I_{m}=\varnothing$ (monotone)
$\operatorname{cut}\left(I_{k}\right) \leq c\left(I_{0}\right)+W \leq \frac{B}{8}+\frac{B}{4}=\frac{3 B}{8}$

- Once we reach I_{k}, allocate budget to nodes not in I_{k+1}

The policy $\quad(B \geq 4 W, \quad W \leq B / 4)$

- Suppose we start with $\operatorname{cut}\left(I_{0}\right) \leq B / 8 ; \quad$ e.g., $I_{0}=V$
- Target path $I_{0}, I_{1}, \ldots, I_{m}=\varnothing$ (monotone)

$$
\operatorname{cut}\left(I_{k}\right) \leq c\left(I_{0}\right)+W \leq \frac{B}{8}+\frac{B}{4}=\frac{3 B}{8}
$$

- Once we reach I_{k}, allocate budget to nodes not in I_{k+1}

The policy $\quad(B \geq 4 W, \quad W \leq B / 4)$

- Suppose we start with $\operatorname{cut}\left(I_{0}\right) \leq B / 8 ; \quad$ e.g., $I_{0}=V$
- Target path $I_{0}, I_{1}, \ldots, I_{m}=\varnothing$ (monotone)
$\operatorname{cut}\left(I_{k}\right) \leq c\left(I_{0}\right)+W \leq \frac{B}{8}+\frac{B}{4}=\frac{3 B}{8}$

- Once we reach I_{k}, allocate budget to nodes not in I_{k+1}

$$
B / 8 \Delta \quad \text { failure }
$$

- \# of extra nodes \longrightarrow

$$
I_{k+1}
$$

The policy $\quad(B \geq 4 W, \quad W \leq B / 4)$

- Suppose we start with $\operatorname{cut}\left(I_{0}\right) \leq B / 8 ; \quad$ e.g., $I_{0}=V$
- Target path $I_{0}, I_{1}, \ldots, I_{m}=\varnothing$ (monotone)
$\operatorname{cut}\left(I_{k}\right) \leq c\left(I_{0}\right)+W \leq \frac{B}{8}+\frac{B}{4}=\frac{3 B}{8}$

- Once we reach I_{k}, allocate budget to nodes not in I_{k+1}

$$
B / 8 \Delta \quad \text { failure }
$$

- \# of extra nodes \longrightarrow

$$
I_{k+1}
$$

- rate down: B

The policy $\quad(B \geq 4 W, \quad W \leq B / 4)$

- Suppose we start with $\operatorname{cut}\left(I_{0}\right) \leq B / 8 ; \quad$ e.g., $I_{0}=V$
- Target path $I_{0}, I_{1}, \ldots, I_{m}=\varnothing$ (monotone)
$\operatorname{cut}\left(I_{k}\right) \leq c\left(I_{0}\right)+W \leq \frac{B}{8}+\frac{B}{4}=\frac{3 B}{8}$

- Once we reach I_{k}, allocate budget to nodes not in I_{k+1}

$$
B / 8 \Delta \quad \text { failure }
$$

- \# of extra nodes \longrightarrow

$$
I_{k+1}
$$

- rate down: B
- rate up: $\leq \frac{3 B}{8}+\frac{B}{8 \Delta} \cdot \Delta=\frac{B}{2}$

The policy $\quad(B \geq 4 W, \quad W \leq B / 4)$

- Suppose we start with $\operatorname{cut}\left(I_{0}\right) \leq B / 8 ; \quad$ e.g., $I_{0}=V$
- Target path $I_{0}, I_{1}, \ldots, I_{m}=\varnothing$ (monotone)

$$
\operatorname{cut}\left(I_{k}\right) \leq c\left(I_{0}\right)+W \leq \frac{B}{8}+\frac{B}{4}=\frac{3 B}{8}
$$

- Once we reach I_{k}, allocate budget to nodes not in I_{k+1}

$$
B / 8 \Delta \quad \text { failure }
$$

- \# of extra nodes \longrightarrow

$$
I_{k+1}
$$

- rate down: B
- rate up: $\leq \frac{3 B}{8}+\frac{B}{8 \Delta} \cdot \Delta=\frac{B}{2}$
- Prob(failure): exponentially small

The policy $\quad(B \geq 4 W, \quad W \leq B / 4)$

- Suppose we start with $\operatorname{cut}\left(I_{0}\right) \leq B / 8 ; \quad$ e.g., $I_{0}=V$
- Target path $I_{0}, I_{1}, \ldots, I_{m}=\varnothing$ (monotone)

$$
\operatorname{cut}\left(I_{k}\right) \leq c\left(I_{0}\right)+W \leq \frac{B}{8}+\frac{B}{4}=\frac{3 B}{8}
$$

- Once we reach I_{k}, allocate budget to nodes not in I_{k+1}

$$
B / 8 \Delta \quad \text { failure }
$$

- \# of extra nodes \longrightarrow

$$
I_{k+1}
$$

- rate down: B
- rate up: $\leq \frac{3 B}{8}+\frac{B}{8 \Delta} \cdot \Delta=\frac{B}{2}$
- Prob(failure): exponentially small
- If failure: let infections happen till cut $\left(I_{t}\right) \leq B / 8$ and restart

Simulations, on a star graph

Simulations, on a star graph

Simulations, on a star graph

$$
\begin{aligned}
& n=50 \\
& \rho_{i}=R / n \\
& \rho_{i}=R \frac{\operatorname{deg}(i)}{\sum_{i \in v} \operatorname{deg}(i)} \\
& \rho_{i}=\frac{R}{x_{j_{j}(t)}}, x_{i}(t)=1 \\
& \rho_{i}=R \frac{\operatorname{deg}(i)}{\sum_{x_{j}(t)=1} \operatorname{deg}(j)}, x_{i}(t)=1 \\
& \rho_{i}=R \frac{\sum_{j i i} x_{j}(t)}{\sum_{x_{k}(t)=1} \sum_{j \sim k} x_{j}(t)}, x_{i}(t)=1 \\
& \rho_{i}-\mathrm{CW}-\text { optimal }
\end{aligned}
$$

Can we do better? Lower bounds on expected extinction time

- Theorem: Assume: $W \geq c_{w} n \quad B \leq c_{b} n \leq W$

If c_{b} small enough $\left[c_{b} \leq f\left(c_{w}, \Delta\right)\right]$,
then $\mathrm{E}[$ extinction time $] \geq c e^{c n} \quad\left[c=f\left(c_{w}, \Delta\right)>0\right]$

Can we do better? Lower bounds on expected extinction time

- Theorem: Assume: $W \geq c_{w} n \quad B \leq c_{b} n \leq W$

If c_{b} small enough $\left[c_{b} \leq f\left(c_{w}, \Delta\right)\right]$,
then $\mathrm{E}[$ extinction time $] \geq c e^{c n} \quad\left[c=f\left(c_{w}, \Delta\right)>0\right]$

- Idea: The actual (stochastic) trajectory I_{t} will encounter a cut of size $\geq W$

Can we do better? Lower bounds on expected extinction time

- Theorem: Assume: $W \geq c_{w} n \quad B \leq c_{b} n \leq W$

If c_{b} small enough $\left[c_{b} \leq f\left(c_{w}, \Delta\right)\right]$,
then $\mathrm{E}[$ extinction time $] \geq c e^{c n} \quad\left[c=f\left(c_{w}, \Delta\right)>0\right]$

- Idea: The actual (stochastic) trajectory I_{t} will encounter a cut of size $\geq W$

- Not enough. Must show upward drift for substantial amount of time

Resistance $\gamma(I)$

- Difficulty, starting from I

Resistance $\gamma(I)$

- Difficulty, starting from I

$$
\gamma(V)=W=1
$$

Resistance $\gamma(I)$

- Difficulty, starting from I

$$
\gamma(V)=W=1
$$

Resistance $\gamma(I)$

- Difficulty, starting from I

$$
\begin{aligned}
\gamma(V) & =W=1 \\
\gamma(I) & =1
\end{aligned}
$$

Resistance $\gamma(I)$

- Difficulty, starting from I

$$
\begin{aligned}
\gamma(V) & =W=1 \\
\gamma(I) & =1
\end{aligned}
$$

Resistance $\gamma(I)$

- Difficulty, starting from I

$$
\begin{aligned}
& \gamma(V)=W=1 \\
& \gamma(I)=1
\end{aligned}
$$

add/infect nodes

Resistance $\gamma(I)$

- Difficulty, starting from I

$$
\begin{aligned}
& \gamma(V)=W=1 \\
& \gamma(I)=1
\end{aligned}
$$

add/infect nodes

Resistance $\gamma(I)$

- Difficulty, starting from I

$$
\gamma(I)=1
$$

add/infect nodes

$\bullet \bullet \quad I_{m}=\varnothing$
remove one node at a time, or add nodes

Resistance $\gamma(I)$

- Difficulty, starting from I

$$
\begin{aligned}
& \gamma(V)=W=1 \\
& \gamma(I)=1
\end{aligned}
$$

add/infect nodes

$\bullet \bullet \quad I_{m}=\varnothing$
remove one node at a time, or add nodes

$$
\gamma(I)=\min _{\text {such }} \operatorname{crusades}\left[\max _{k \geq 1} \operatorname{cut}\left(I_{k}\right)\right]
$$

Resistance $\gamma(I)$

- Difficulty, starting from I

$$
\gamma(I)=1
$$

add/infect nodes

$\bullet \bullet \quad I_{m}=\varnothing$
remove one node at a time, or add nodes

$$
\gamma(I)=\min _{\text {such crusades }}\left[\max _{k \geq 1} \operatorname{cut}\left(I_{k}\right)\right] \quad \text { - } A \subset B \Rightarrow \gamma(A) \leq \gamma(B)
$$

Resistance $\gamma(I)$

- Difficulty, starting from I

$$
\begin{aligned}
& \gamma(V)=W=1 \\
& \gamma(I)=1
\end{aligned}
$$

add/infect nodes

$\bullet \bullet \quad I_{m}=\varnothing$
remove one node at a time, or add nodes

$$
\gamma(I)=\min _{\text {such }} \operatorname{crusades}\left[\max _{k \geq 1} \operatorname{cut}\left(I_{k}\right)\right] \quad \text { - } A \subset B \Rightarrow \gamma(A) \leq \gamma(B)
$$

- $\gamma\left(I_{k+1}\right)<\gamma\left(I_{k}\right) \Rightarrow \operatorname{cut}\left(I_{k+1}\right)=\gamma\left(I_{k}\right)$

Lower bound proof sketch

$$
A \subset B \Rightarrow \gamma(A) \leq \gamma(B)
$$

$$
W \geq c_{w} n \quad B \leq c_{b} n \quad \gamma\left(I_{k+1}\right)<\gamma\left(I_{k}\right) \Rightarrow \operatorname{cut}\left(I_{k+1}\right)=\gamma\left(I_{k}\right)
$$

Lower bound proof sketch

$$
W \geq c_{w} n \quad B \leq c_{b} n
$$

$$
\begin{array}{r}
A \subset B \Rightarrow \gamma(A) \leq \gamma(B) \\
\gamma\left(I_{k+1}\right)<\gamma\left(I_{k}\right) \Rightarrow \operatorname{cut}\left(I_{k+1}\right)=\gamma\left(I_{k}\right)
\end{array}
$$

Lower bound proof sketch

$W \geq c_{w} n \quad B \leq c_{b} n$

$$
\begin{array}{r}
A \subset B \Rightarrow \gamma(A) \leq \gamma(B) \\
\gamma\left(I_{k+1}\right)<\gamma\left(I_{k}\right) \Rightarrow \operatorname{cut}\left(I_{k+1}\right)=\gamma\left(I_{k}\right)
\end{array}
$$

Lower bound proof sketch

$$
A \subset B \Rightarrow \gamma(A) \leq \gamma(B)
$$

$W \geq c_{w} n \quad B \leq c_{b} n$
$\gamma\left(I_{k+1}\right)<\gamma\left(I_{k}\right) \Rightarrow \operatorname{cut}\left(I_{k+1}\right)=\gamma\left(I_{k}\right)$

Lower bound proof sketch $W \geq c_{w} n \quad B \leq c_{b} n$

$$
A \subset B \Rightarrow \gamma(A) \leq \gamma(B)
$$

$\gamma\left(I_{k+1}\right)<\gamma\left(I_{k}\right) \Rightarrow \operatorname{cut}\left(I_{k+1}\right)=\gamma\left(I_{k}\right)$

- Claim: During $\left[T^{\prime}, T\right]$ have many recoveries (w.h.p.)

Lower bound proof sketch
$W \geq c_{w} n \quad B \leq c_{b} n$

$$
A \subset B \Rightarrow \gamma(A) \leq \gamma(B)
$$

$\gamma\left(I_{k+1}\right)<\gamma\left(I_{k}\right) \Rightarrow \operatorname{cut}\left(I_{k+1}\right)=\gamma\left(I_{k}\right)$

- Claim: During $\left[T^{\prime}, T\right]$ have many recoveries (w.h.p.)
- Auxiliary (coupled) process I_{t}^{\prime} : only recoveries

Lower bound proof sketch $A \subset B \Rightarrow \gamma(A) \leq \gamma(B)$

$$
W \geq c_{w} n \quad B \leq c_{b} n \quad \gamma\left(I_{k+1}\right)<\gamma\left(I_{k}\right) \Rightarrow \operatorname{cut}\left(I_{k+1}\right)=\gamma\left(I_{k}\right)
$$

- Claim: During $\left[T^{\prime}, T\right]$ have many recoveries (w.h.p.)
- Auxiliary (coupled) process I_{t}^{\prime} : only recoveries

Lower bound proof sketch $A \subset B \Rightarrow \gamma(A) \leq \gamma(B)$

$$
W \geq c_{w} n \quad B \leq c_{b} n \quad \gamma\left(I_{k+1}\right)<\gamma\left(I_{k}\right) \Rightarrow \operatorname{cut}\left(I_{k+1}\right)=\gamma\left(I_{k}\right)
$$

- Claim: During $\left[T^{\prime}, T\right]$ have many recoveries (w.h.p.)
- Auxiliary (coupled) process I_{t}^{\prime} : only recoveries

Lower bound proof sketch

$$
A \subset B \Rightarrow \gamma(A) \leq \gamma(B)
$$

$$
W \geq c_{w} n \quad B \leq c_{b} n \quad \gamma\left(I_{k+1}\right)<\gamma\left(I_{k}\right) \Rightarrow \operatorname{cut}\left(I_{k+1}\right)=\gamma\left(I_{k}\right)
$$

- Claim: During $\left[T^{\prime}, T\right]$ have many recoveries (w.h.p.)
- Auxiliary (coupled) process I_{t}^{\prime} : only recoveries
- cut $\left(I_{t}^{\prime}\right)$ increases by $W / 4$

Lower bound proof sketch

$$
A \subset B \Rightarrow \gamma(A) \leq \gamma(B)
$$

$$
W \geq c_{w} n \quad B \leq c_{b} n \quad \gamma\left(I_{k+1}\right)<\gamma\left(I_{k}\right) \Rightarrow \operatorname{cut}\left(I_{k+1}\right)=\gamma\left(I_{k}\right)
$$

- Claim: During $\left[T^{\prime}, T\right]$ have many recoveries (w.h.p.)
- Auxiliary (coupled) process I_{t}^{\prime} : only recoveries
- cut $\left(I_{t}^{\prime}\right)$ increases by $W / 4 \Rightarrow$ at least $W / 4 \Delta$ recoveries

Lower bound proof sketch

$$
A \subset B \Rightarrow \gamma(A) \leq \gamma(B)
$$

$$
W \geq c_{w} n \quad B \leq c_{b} n \quad \gamma\left(I_{k+1}\right)<\gamma\left(I_{k}\right) \Rightarrow \operatorname{cut}\left(I_{k+1}\right)=\gamma\left(I_{k}\right)
$$

- Claim: During $\left[T^{\prime}, T\right]$ have many recoveries (w.h.p.)
- Auxiliary (coupled) process I_{t}^{\prime} : only recoveries
- cut $\left(I_{t}^{\prime}\right)$ increases by $W / 4 \Rightarrow$ at least $W / 4 \Delta$ recoveries
\Rightarrow needs constant time (w.h.p.)

Lower bound proof sketch

$$
A \subset B \Rightarrow \gamma(A) \leq \gamma(B)
$$

$$
W \geq c_{w} n \quad B \leq c_{b} n \quad \gamma\left(I_{k+1}\right)<\gamma\left(I_{k}\right) \Rightarrow \operatorname{cut}\left(I_{k+1}\right)=\gamma\left(I_{k}\right)
$$

- Claim: During $\left[T^{\prime}, T\right]$ have many recoveries (w.h.p.)
- Auxiliary (coupled) process I_{t}^{\prime} : only recoveries
- cut $\left(I_{t}^{\prime}\right)$ increases by $W / 4 \Rightarrow$ at least $W / 4 \Delta$ recoveries
\Rightarrow needs constant time (w.h.p.)
$\Rightarrow \geq 2 n$ infections (w.h.p.): contradiction

Lower bound proof sketch

$$
A \subset B \Rightarrow \gamma(A) \leq \gamma(B)
$$

$$
W \geq c_{w} n \quad B \leq c_{b} n \quad \gamma\left(I_{k+1}\right)<\gamma\left(I_{k}\right) \Rightarrow \operatorname{cut}\left(I_{k+1}\right)=\gamma\left(I_{k}\right)
$$

- Claim: During $\left[T^{\prime}, T\right]$ have many recoveries (w.h.p.)
- Auxiliary (coupled) process I_{t}^{\prime} : only recoveries
- cut $\left(I_{t}^{\prime}\right)$ increases by $W / 4 \Rightarrow$ at least $W / 4 \Delta$ recoveries
\Rightarrow needs constant time (w.h.p.)

$$
\Rightarrow \geq 2 n \text { infections (w.h.p.): contradiction }
$$

- Probability of such a scenario: exponentially small

Lower bound proof sketch

$$
A \subset B \Rightarrow \gamma(A) \leq \gamma(B)
$$

$$
W \geq c_{w} n \quad B \leq c_{b} n \quad \gamma\left(I_{k+1}\right)<\gamma\left(I_{k}\right) \Rightarrow \operatorname{cut}\left(I_{k+1}\right)=\gamma\left(I_{k}\right)
$$

- Claim: During $\left[T^{\prime}, T\right]$ have many recoveries (w.h.p.)
- Auxiliary (coupled) process I_{t}^{\prime} : only recoveries
- cut $\left(I_{t}^{\prime}\right)$ increases by $W / 4 \Rightarrow$ at least $W / 4 \Delta$ recoveries
\Rightarrow needs constant time (w.h.p.)

$$
\Rightarrow \geq 2 n \text { infections (w.h.p.): contradiction }
$$

- Probability of such a scenario: exponentially small
- Need exponential time for such a scenario to materialize

Extensions, open problems

$\bullet W \sim c_{w} n, I_{0}=V$	$B=4 c_{w} n$ suffices	$B>c n$ needed

Extensions, open problems

- $W \sim c_{w} n, I_{0}=V$	$B=4 c_{w} n$ suffices	$B>c n$ needed
- Any $W, I_{0}=V$		

Extensions, open problems

- $W \sim c_{w} n, I_{0}=V$	$B=4 c_{w} n$ suffices	$B>c n$ needed
- Any $W, I_{0}=V$	$B=4 W$ suffices	

Extensions, open problems

$\bullet W \sim c_{w} n, \quad I_{0}=V$	$B=4 c_{w} n$ suffices	$B>c n$ needed
- Any $W, I_{0}=V$	$B=4 W$ suffices	$B \geq c W$ needed?

Extensions, open problems

- $W \sim c_{w} n, I_{0}=V$	$B=4 c_{w} n$ suffices	$B>c n$ needed
- Any $W, I_{0}=V$	$B=4 W$ suffices	$B \geq c W$ needed?
- General I_{0}		

Extensions, open problems

- $W \sim c_{w} n, I_{0}=V$	$B=4 c_{w} n$ suffices	$B>c n$ needed
- Any $W, I_{0}=V$	$B=4 W$ suffices	$B \geq c W$ needed?
- General I_{0}	$B \geq c \gamma\left(I_{0}\right)$ suffices (w.h.p.)	

Extensions, open problems

- $W \sim c_{w} n, I_{0}=V$	$B=4 c_{w} n$ suffices	$B>c n$ needed
- Any $W, I_{0}=V$	$B=4 W$ suffices	$B \geq c W$ needed?
- General I_{0}	$B \geq c \gamma\left(I_{0}\right)$ suffices (w.h.p.)	$B \geq c \gamma\left(I_{0}\right)$ needed?

Extensions, open problems

- $W \sim c_{w} n, I_{0}=V$	$B=4 c_{w} n$ suffices	$B>c n$ needed
- Any $W, I_{0}=V$	$B=4 W$ suffices	$B \geq c W$ needed?
- General I_{0}	$B \geq c \gamma\left(I_{0}\right)$ suffices (w.h.p.)	$B \geq c \gamma\left(I_{0}\right)$ needed?

- SIR models (cured cannot get reinfected)

Extensions, open problems

- $W \sim c_{w} n, I_{0}=V$	$B=4 c_{w} n$ suffices	$B>c n$ needed
- Any $W, I_{0}=V$	$B=4 W$ suffices	$B \geq c W$ needed?
- General I_{0}	$B \geq c \gamma\left(I_{0}\right)$ suffices (w.h.p.)	$B \geq c \gamma\left(I_{0}\right)$ needed?

- SIR models (cured cannot get reinfected)
- Imperfect information, etc.

