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e Develop dynamic strategies

— use information about current state

Borgs et al., 2010 (exact)
Khanafer and Basar, 2014 (mean field approximation)
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The SIS (“susceptible — infected — susceptible’” ) model
e Undirected graph: node set V; n nodes; max-degree A

e State [;: set of infected nodes at time ¢; Ip: given

e Node dynamics:

# of infected neighbors /<\< R
~— T~ (&% ®
o0

Healthy Infected

\)/c

uring resources = Budget= B = pn

e J[otal rate at time ¢:
— curing: p - |14
— infection: # of arcs joining healthy to infected nodes

CUt([t)
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e Dynamic:
# of infected neighbors
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Slow versus fast extinction

o Iop = (all healthy) is an absorbing state
— extinction guaranteed

— may take time exponential in n

e But with enough curing resources:

— total curing rate > total infection rate > pi(t) > cut(ly)
1€y

— |I¢| has downward (expected) drift

— time to extinction is linear in n, or less
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e Static:

— fast extinction needs p; > 1, for most 1 = Budget = Q(n)

pi(t) =2

l
— 0 CO—0@—70
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e A dynamic policy

— expected extinction in time O(n)

— constant budget suffices (and needed)
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Example: /n x i/n mesh
e Static:
— fast extinction needs p; > 1, for most ¢ = Budget= Q(n)

(p; > 5 suffices)
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e A dynamic policy

O—0O—0
O—0O—0

— allocate p;(t) =5 on “boundary”

)
7

— O(+/n) budget suffices

— at times where about n/2 infected nodes:

cut(ly) = Q(v/n)

— to make progress: 2(y/n) budget necessary



Cut Widths
e Budget should be large enough to counter large cut(l;)

— [not at all times, but when it matters]



Cut Widths
e Budget should be large enough to counter large cut(l;)

— [not at all times, but when it matters]



Cut Widths
e Budget should be large enough to counter large cut(l;)

— [not at all times, but when it matters]

e Monotone crusade: Remove one node at a time

Ip=V



Cut Widths
e Budget should be large enough to counter large cut(l;)

— [not at all times, but when it matters]

e Monotone crusade: Remove one node at a time
IO =V Il

(2



Cut Widths
e Budget should be large enough to counter large cut(l;)

— [not at all times, but when it matters]

e Monotone crusade: Remove one node at a time

I():V 11 12

LN Koo



Cut Widths
e Budget should be large enough to counter large cut(l;)

[not at all times, but when it matters]

e Monotone crusade: Remove one node at a time

O G

v



Cut Widths
e Budget should be large enough to counter large cut(l;)

[not at all times, but when it matters]

e Monotone crusade: Remove one node at a time

O & ¢




Cut Widths
e Budget should be large enough to counter large cut(l;)

[not at all times, but when it matters]

e Monotone crusade: Remove one node at a time

O & ¢

mkax cut(l:)



Cut Widths
e Budget should be large enough to counter large cut(l;)

[not at all times, but when it matters]

e Monotone crusade: Remove one node at a time

O & ¢

min [max cut(Ik,)]
crusades L k




Cut Widths
e Budget should be large enough to counter large cut(l;)

[not at all times, but when it matters]

e Monotone crusade: Remove one node at a time

O & ¢

W = CutWidth = min [maxcut(lk)]
crusades L k
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Upper bound

Thm: If B >4V, [and B> Alogsn]

there is a policy for which: E[time to extinction] < 26 %

e Note: No policy can do better than n/B

e Corollary: If W is sublinear in n [e.g., mesh],
can get “fast extinction” (sublinear time), with sublinear budget.
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For more general initial (or current) sets

e Lemma: Starting from subset A,
there exists monotone crusade with:
(largest cut encountered) < cut(A) + W

e Proof: Take "“optimal” monotone crusade: V =1g,..., I, = O

Consider crusade A= ANy, I1NA,..I,NA=0

cut(ly) <WwW




The policy (B>4W, W < B/4)



The policy (B >4W, W < B/4)

e Suppose we start with cut(lp) < B/8; e.g., Ipg=V



The policy (B>4W, W < B/4)

e Suppose we start with cut(lp) < B/8; e.g., Ipg=V

e Target path Ip,I1,...,Im = @ (monotone)

B B 3B
cut(/ <c(/] W < ' —_—
(k)_C(O)'l' _8|4 3




The policy (B >4W, W < B/4)

e Suppose we start with cut(lp) < B/8; e.g., Ipg=V

e Target path Ip,I1,...,Im = @ (monotone)

B B 3B
cut(/ <c(/] W < ' —_—
(k)_C(O)'l' _8|4 3




The policy (B >4W, W < B/4)

e Suppose we start with cut(lp) < B/8; e.g., Ipg=V

e Target path Ip,I1,...,Im = @ (monotone)

B B 3B
cut(/ <c(/] W < ' —_—
(k)_C(O)'l' _8|4 3

O O o
O O o
Iy,
\
T4 1




The policy (B >4W, W < B/4)

e Suppose we start with cut(lp) < B/8; e.g., Ipg=V

e Target path Ip,I1,...,Im = @ (monotone)

B B 3B
cut(/ <c(/] W < ' —_—
(k)_C(O)'l' _8|4 3

e Once we reach I,

O O o allocate budget to nodes not in Iy 4
O O o
I},
T
Ipt1




The policy (B >4W, W < B/4)

e Suppose we start with cut(lp) < B/8; e.g., Ipg=V

e Target path Ip,I1,...,Im = @ (monotone)

B B 3B
cut(/ <c(/] W < ' —_—
(k)_C(O)'l' _8|4 3

e Once we reach I,

O O ® allocate budget to nodes not in Iy 4
O O ®
I},
T
Ipt1




The policy (B >4W, W < B/4)

e Suppose we start with cut(lp) < B/8; e.g., Ipg=V

e Target path Ip,I1,...,Im = @ (monotone)

B B 3B
cut(/ <c(/] W < ' —_—
(k)_C(O)'l' _8|4 3

e Once we reach I,

O O ® allocate budget to nodes not in Iy 4
° © ® B/8A  failure
7 e F# of extra nodes ——
5 0  Ijiq
Ipt1




The policy (B >4W, W < B/4)

e Suppose we start with cut(lp) < B/8; e.g., Ipg=V

e Target path Ip,I1,...,Im = @ (monotone)

B B 3B
cut(/ <c(/] W < ' —_—
(k)_C(O)'l' _8|4 3

e Once we reach I,

O O ® allocate budget to nodes not in Iy 4
° © ® B/8A  failure
7 e F# of extra nodes ——
K 0  Ijiq

— rate down: B




The policy (B >4W, W < B/4)

e Suppose we start with cut(lp) < B/8; e.g., Ipg=V

e Target path Ip,I1,...,Im = @ (monotone)

B B 3B
cut(/ <c(/] W < ' —_—
(k)_C(O)'l' _8|4 3

e Once we reach I,

O O ® allocate budget to nodes not in Iy 4
° © ® B/8A  failure
I e F# of extra nodes ——
— 0 Ip41
/ — rate down: B
bt 3B B B
T~ — rate up: < | A= —
3 S8A 2




The policy (B >4W, W < B/4)

e Suppose we start with cut(lp) < B/8; e.g., Ipg=V

e Target path Ip,I1,...,Im = @ (monotone)

cut(ly) <c(lp) + W <

O O @)
O O ®
I},
T —
l1q
\+

B, B 3B

3 4 3

e Once we reach I,
allocate budget to nodes not in Iy 4

B/8A failure
e # of extra nodes —

0 Ip41

— rate down: B
3B B B
— rate up: < i A\ = —
8 SA 2

e Prob(failure):. exponentially small



The policy (B >4W, W < B/4)

e Suppose we start with cut(lp) < B/8; e.g., Ipg=V

e Target path Ip,I1,...,Im = @ (monotone)

cut(ly) <c(lp) + W <

O O @)
O O ®
I},
T —
l1q
\+

B, B 3B

3 4 3

e Once we reach I,
allocate budget to nodes not in Iy 4

B/8A failure
e # of extra nodes —

0 Ip41

— rate down: B
3B B B
— rate up: < i A\ = —
8 SA 2

e Prob(failure):. exponentially small

e If failure: let infections happen
till cut(ly) < B/8 and restart



Simulations, on a star graph




Simulations, on a star graph

extinction
time

|

|
H
W ““‘“u
s
0 ASVA S S

- —

20 40 budget



Simulations, on a star graph O

extinction O
time

w pi = R/n
L deg(i)
i Rz,evdeg< )
pi = , Xi (t) =1
R deg() (+) —
H Pi = Z Xi(t)= 1deg(J)’ X(t) =1
i ZJNIX(t) o
pi = Ry ooy o Kilt) =1

— CW-optimal

.z"

A= — - — A

20 40 budget




Can we do better? Lower bounds on expected extinction time
e T heorem: Assume: W > cyn B<cgn<W
If ¢, small enough  [¢ < f(cw, D)],

then E[extinction time] > ce® [c = f(cw, A) > 0]



Can we do better? Lower bounds on expected extinction time

e Theorem: Assume: W > cyn B<cgn<W
If ¢, small enough  [¢ < f(cw, D)],
then E[extinction time] > ce  [c = f(cw, D) > 0]
e Idea: The actual (stochastic) trajectory I;
will encounter a cut of size > W

CUt(It)

1
. /‘\|t|T

>




Can we do better? Lower bounds on expected extinction time

e Theorem: Assume: W > cyn B<cgn<W
If ¢, small enough  [¢ < f(cw, D)],
then E[extinction time] > ce  [c = f(cw, D) > 0]
e Idea: The actual (stochastic) trajectory I;
will encounter a cut of size > W

CUt(It)

1
. /‘\|t|T

>

> 1

I =V I =@

e NoOt enough. Must show upward drift for substantial amount of time
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e Difficulty, starting from I

—0—0@& 0000 y(V)=W =1

O—O0—e—e0—0—=0——0 (=1

add/infect nodes

remove one node at a time, or add nodes

I) = min [maxcut] ]
V() such crusades L k>1 (k) o ACB = 7(4) <~(B)

o Y(Ip41) <~vUg) = cut(lx41) = ~vUg)
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WA
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Lower bound proof sketch ACB = ~(A) <~(B)

Wzcwn B<gn Y(Tg41) <~vTx) = cut(lxyq1) = v(Ig)
WA

(1) V(1)

v(Ir) = W/2 = cut(ir)

W2

W/4

| g = \ ™.

cUt(Iy) T cut(r) T ;

e Claim: During [T’,T] have many recoveries (w.h.p.)

e Auxiliary (coupled) process I;: only recoveries

e cut(l]) increases by W/4 = at least W/4A recoveries
— needs constant time (w.h.p.)

= > 2n infections (w.h.p.): contradiction
e Probability of such a scenario: exponentially small



Lower bound proof sketch ACB = ~(A) <~(B)
Wzcwn Bsan Y(Tpg1) <R = cut(lpg1) = (1)
WA

(1) V(1)

v(Ir) = W/2 = cut(ir)

W2

W/4

| g = \ ™.

cUt(Iy) T cut(r) T ;

e Claim: During [T’,T] have many recoveries (w.h.p.)

e Auxiliary (coupled) process I;: only recoveries

e cut(l]) increases by W/4 = at least W/4A recoveries
— needs constant time (w.h.p.)

= > 2n infections (w.h.p.): contradiction
e Probability of such a scenario: exponentially small
e Need exponential time for such a scenario to materialize



Extensions, open problems

o W~cyn, Ip=V

B = 4c¢,yn suffices

B > cn needed




Extensions, open problems

o W~cyn, Ip=V

B = 4c¢,yn suffices

B > cn needed

e Any W, Ig=V




Extensions, open problems

o W~cyn, Ip=V

B = 4c¢,yn suffices

B > cn needed

e Any W, Ig=V

B = 4W suffices




Extensions, open problems

o W~cyn, Ip=V

B = 4c¢,yn suffices

B > cn needed

e Any W, Ig=V

B = 4W suffices

B > c¢W needed?




Extensions, open problems

o W~cyn, Ip=V

B = 4c¢,yn suffices

B > cn needed

e Any W, Ig=V

B = 4W suffices

B > c¢W needed?

e General I




Extensions, open problems

o W~cyn, Ip=V

B = 4c¢,yn suffices

B > cn needed

e Any W, Ig=V

B = 4W suffices

B > c¢W needed?

e General I

B > cy(Ip)

suffices (w.h.p.)




Extensions, open problems

o W~cyn, Ip=V

B = 4c¢,yn suffices

B > cn needed

e Any W, Ig=V

B = 4W suffices

B > c¢W needed?

e General I

B > cy(Ip)

suffices (w.h.p.)

B > ¢vy(Ip) needed?




Extensions, open problems

o W~cyn, Ip=V

B = 4c¢,yn suffices

B > cn needed

e Any W, Ig=V

B = 4W suffices

B > c¢W needed?

e General I

B > cy(Ip)

suffices (w.h.p.)

B > ¢vy(Ip) needed?

e SIR models (cured cannot get reinfected)




Extensions, open problems

o W~cyn, Ip=V

B = 4c¢,yn suffices

B > cn needed

e Any W, Ig=V

B = 4W suffices

B > c¢W needed?

e General I

B > cy(Ip)

suffices (w.h.p.)

B > ¢vy(Ip) needed?

e SIR models (cured cannot get reinfected)

e Imperfect information, etc.




