Closed-loop policies for curing epidemics on graphs

John N. Tsitsiklis

(with K. Drakopoulos and A. Ozdaglar)

January 2016

- Motivation
- The SIS contagion/epidemic model
- Static versus dynamic policies
 - line and mesh examples

- Motivation
- The SIS contagion/epidemic model
- Static versus dynamic policies
 - line and mesh examples
- The CutWidth of a graph (and a generalization)

- Motivation
- The SIS contagion/epidemic model
- Static versus dynamic policies
 - line and mesh examples
- The CutWidth of a graph (and a generalization)
- A curing policy
 - fast extinction if $budget \ge c \cdot CutWidth$
- A lower bound
 - slow extinction if $budget \leq c' \cdot CutWidth$

- Motivation
- The SIS contagion/epidemic model
- Static versus dynamic policies
 - line and mesh examples
- The CutWidth of a graph (and a generalization)
- A curing policy
 - fast extinction if $budget \ge c \cdot CutWidth$
- A lower bound
 - slow extinction if $budget \leq c' \cdot CutWidth$
- Extensions, open problems, future work

Motivation

- ... from all kinds of networks
 - internet viruses
 - propagation of opinions
 - infectious diseases

Motivation

- ... from all kinds of networks
 - internet viruses
 - propagation of opinions
 - infectious diseases
- Traditionally: static strategies
- ex ante targeting of "central" nodes
- includes heuristics, mean-field approximations, etc.
 Cohen et al., 2003; Van Mieghem et al., 2011; Schneider et al., 2011;
 Zargham and Preciado, 2014; Gourdin et al., 2011; Chung et al., 2011;
 Preciado et al., 2013, 2014

Motivation

- ... from all kinds of networks
 - internet viruses
 - propagation of opinions
 - infectious diseases
- Traditionally: static strategies
- ex ante targeting of "central" nodes
- includes heuristics, mean-field approximations, etc.
 Cohen et al., 2003; Van Mieghem et al., 2011; Schneider et al., 2011;
 Zargham and Preciado, 2014; Gourdin et al., 2011; Chung et al., 2011;
 Preciado et al., 2013, 2014
- Develop dynamic strategies
 - use information about current state

Borgs et al., 2010 (exact) Khanafer and Basar, 2014 (mean field approximation)

- Undirected graph: node set V; n nodes; max-degree Δ
- State I_t : set of infected nodes at time t; I_0 : given

- Undirected graph: node set V; n nodes; max-degree Δ
- State I_t : set of infected nodes at time t; I_0 : given
- Node dynamics:

- Undirected graph: node set V; n nodes; max-degree Δ
- State I_t : set of infected nodes at time t; I_0 : given
- Node dynamics:

- Undirected graph: node set V; n nodes; max-degree Δ
- State I_t : set of infected nodes at time t; I_0 : given
- Node dynamics:

- curing: $\rho \cdot |I_t|$

- Undirected graph: node set V; n nodes; max-degree Δ
- State I_t : set of infected nodes at time t; I_0 : given
- Node dynamics:

- curing: $\rho \cdot |I_t|$
- infection: # of arcs joining healthy to infected nodes

 $cut(I_t)$

only allocate resources to infected nodes

- $I_0 = \emptyset$ (all healthy) is an absorbing state
 - extinction guaranteed
 - may take time exponential in n

- $I_0 = \emptyset$ (all healthy) is an absorbing state
 - extinction guaranteed
 - may take time exponential in n
 - But with enough curing resources:
 - total curing rate > total infection rate

- $I_0 = \emptyset$ (all healthy) is an absorbing state
 - extinction guaranteed
 - may take time exponential in n
- But with enough curing resources:
 - total curing rate > total infection rate

- $|I_t|$ has downward (expected) drift
- time to extinction is linear in n, or less

- Static:
 - fast extinction needs $\rho_i > 1$, for most $i \Rightarrow \text{Budget} = \Omega(n)$

- Static:
 - fast extinction needs $\rho_i > 1$, for most $i \Rightarrow \text{Budget} = \Omega(n)$

• A dynamic policy

- Static:
 - fast extinction needs $\rho_i > 1$, for most $i \Rightarrow \text{Budget} = \Omega(n)$

- A dynamic policy
 - expected extinction in time O(n)
 - constant budget suffices

- Static:
 - fast extinction needs $\rho_i > 1$, for most $i \Rightarrow \text{Budget} = \Omega(n)$

- A dynamic policy
 - expected extinction in time O(n)
 - constant budget suffices (and needed)

- Static:
 - fast extinction needs $\rho_i > 1$, for most $i \Rightarrow \text{Budget} = \Omega(n)$

- Static:
 - fast extinction needs $\rho_i > 1$, for most $i \Rightarrow \text{Budget} = \Omega(n)$

- A dynamic policy
 - allocate $\rho_i(t) = 5$ on "boundary"

- Static:
 - fast extinction needs $\rho_i > 1$, for most $i \Rightarrow \text{Budget} = \Omega(n)$

- A dynamic policy
 - allocate $\rho_i(t) = 5$ on "boundary"

- Static:
 - fast extinction needs $\rho_i > 1$, for most $i \Rightarrow \text{Budget} = \Omega(n)$

- A dynamic policy
 - allocate $\rho_i(t) = 5$ on "boundary"
 - $O(\sqrt{n})$ budget suffices

- Static:
 - fast extinction needs $\rho_i > 1$, for most $i \Rightarrow \text{Budget} = \Omega(n)$

- A dynamic policy
 - allocate $\rho_i(t) = 5$ on "boundary"
 - $O(\sqrt{n})$ budget suffices
 - at times where about n/2 infected nodes: $\operatorname{cut}(I_t) = \Omega(\sqrt{n})$

- Static:
 - fast extinction needs $\rho_i > 1$, for most $i \Rightarrow \text{Budget} = \Omega(n)$

- A dynamic policy
 - allocate $\rho_i(t) = 5$ on "boundary"
 - $O(\sqrt{n})$ budget suffices
 - at times where about n/2 infected nodes: $\operatorname{cut}(I_t) = \Omega(\sqrt{n})$
 - to make progress: $\Omega(\sqrt{n})$ budget necessary

Cut Widths

- Budget should be large enough to counter large $cut(I_t)$
 - [not at all times, but when it matters]

Cut Widths

- Budget should be large enough to counter large $cut(I_t)$
 - [not at all times, but when it matters]

Cut Widths

- Budget should be large enough to counter large $cut(I_t)$
 - [not at all times, but when it matters]
- Monotone crusade: Remove one node at a time

 $I_0 = V$
- Budget should be large enough to counter large $cut(I_t)$
 - [not at all times, but when it matters]
- Monotone crusade: Remove one node at a time

$$I_0 = V \qquad I_1$$

- Budget should be large enough to counter large $cut(I_t)$
 - [not at all times, but when it matters]
- Monotone crusade: Remove one node at a time

- Budget should be large enough to counter large $cut(I_t)$
 - [not at all times, but when it matters]
- Monotone crusade: Remove one node at a time

- Budget should be large enough to counter large $cut(I_t)$
 - [not at all times, but when it matters]
- Monotone crusade: Remove one node at a time

- Budget should be large enough to counter large $cut(I_t)$
 - [not at all times, but when it matters]
- Monotone crusade: Remove one node at a time

$$\max_k \operatorname{cut}(I_k)$$

- Budget should be large enough to counter large $cut(I_t)$
 - [not at all times, but when it matters]
- Monotone crusade: Remove one node at a time

- Budget should be large enough to counter large $cut(I_t)$
 - [not at all times, but when it matters]
- Monotone crusade: Remove one node at a time

$$W = \operatorname{CutWidth}_{\operatorname{crusades}} \begin{bmatrix} \max_{k} \operatorname{cut}(I_k) \\ k \end{bmatrix}$$

Examples: line graph and mesh

Examples: line graph and mesh

mesh: $W \approx \sqrt{n}$

Upper bound

Thm: If $B \geq 4W$, [and $B \geq \Delta \log_2 n$]

there is a policy for which: **E**[time to extinction] $\leq 26 \cdot \frac{n}{B}$

Upper bound

Thm: If $B \ge 4W$, [and $B \ge \Delta \log_2 n$] there is a policy for which: **E**[time to extinction] $\le 26 \cdot \frac{n}{B}$

• Note: No policy can do better than n/B

Upper bound

Thm: If $B \ge 4W$, [and $B \ge \Delta \log_2 n$] there is a policy for which: **E**[time to extinction] $\le 26 \cdot \frac{n}{B}$

- Note: No policy can do better than n/B
- **Corollary:** If W is sublinear in n [e.g., mesh], can get "fast extinction" (sublinear time), with sublinear budget.

 Lemma: Starting from subset A, there exists monotone crusade with: (largest cut encountered) ≤ cut(A) + W

- Lemma: Starting from subset A, there exists monotone crusade with: (largest cut encountered) ≤ cut(A) + W
- **Proof:** Take "optimal" monotone crusade: $V = I_0, \ldots, I_n = \emptyset$

- Lemma: Starting from subset A, there exists monotone crusade with: (largest cut encountered) ≤ cut(A) + W
- **Proof:** Take "optimal" monotone crusade: $V = I_0, \ldots, I_n = \emptyset$

- Lemma: Starting from subset A, there exists monotone crusade with: (largest cut encountered) ≤ cut(A) + W
- **Proof:** Take "optimal" monotone crusade: $V = I_0, \ldots, I_n = \emptyset$

Consider crusade $A = A \cap I_0, I_1 \cap A, \dots I_n \cap A = \emptyset$

• Suppose we start with $cut(I_0) \le B/8$; e.g., $I_0 = V$

- Suppose we start with $cut(I_0) \le B/8$; e.g., $I_0 = V$
- Target path $I_0, I_1, \ldots, I_m = \emptyset$ (monotone)

$$\operatorname{cut}(I_k) \le c(I_0) + W \le \frac{B}{8} + \frac{B}{4} = \frac{3B}{8}$$

- Suppose we start with $cut(I_0) \le B/8$; e.g., $I_0 = V$
- Target path $I_0, I_1, \ldots, I_m = \emptyset$ (monotone)

$$\operatorname{cut}(I_k) \le c(I_0) + W \le \frac{B}{8} + \frac{B}{4} = \frac{3B}{8}$$

- Suppose we start with $cut(I_0) \le B/8$; e.g., $I_0 = V$
- Target path $I_0, I_1, \ldots, I_m = \emptyset$ (monotone)

$$\operatorname{cut}(I_k) \le c(I_0) + W \le \frac{B}{8} + \frac{B}{4} = \frac{3B}{8}$$

- Suppose we start with $cut(I_0) \le B/8$; e.g., $I_0 = V$
- Target path $I_0, I_1, \ldots, I_m = \emptyset$ (monotone)

$$\operatorname{cut}(I_k) \le c(I_0) + W \le \frac{B}{8} + \frac{B}{4} = \frac{3B}{8}$$

• Once we reach I_k , allocate budget to nodes not in I_{k+1}

- Suppose we start with $cut(I_0) \le B/8$; e.g., $I_0 = V$
- Target path $I_0, I_1, \ldots, I_m = \emptyset$ (monotone)

$$\operatorname{cut}(I_k) \le c(I_0) + W \le \frac{B}{8} + \frac{B}{4} = \frac{3B}{8}$$

• Once we reach I_k , allocate budget to nodes not in I_{k+1}

- Suppose we start with $cut(I_0) \le B/8$; e.g., $I_0 = V$
- Target path $I_0, I_1, \ldots, I_m = \emptyset$ (monotone)

$$\operatorname{cut}(I_k) \le c(I_0) + W \le \frac{B}{8} + \frac{B}{4} = \frac{3B}{8}$$

 Once we reach I_k, allocate budget to nodes not in I_{k+1}
B/8∆ failure
of extra nodes → 0 I_{k+1}

- Suppose we start with $cut(I_0) \le B/8$; e.g., $I_0 = V$
- Target path $I_0, I_1, \ldots, I_m = \emptyset$ (monotone)

$$\operatorname{cut}(I_k) \le c(I_0) + W \le \frac{B}{8} + \frac{B}{4} = \frac{3B}{8}$$

• Once we reach I_k , allocate budget to nodes not in I_{k+1} $B/8\Delta$ failure • # of extra nodes \longrightarrow_{0} I_{k+1} - rate down: B

- Suppose we start with $cut(I_0) \le B/8$; e.g., $I_0 = V$
- Target path $I_0, I_1, \ldots, I_m = \emptyset$ (monotone)

$$\operatorname{cut}(I_k) \le c(I_0) + W \le \frac{B}{8} + \frac{B}{4} = \frac{3B}{8}$$

• Once we reach
$$I_k$$
,
allocate budget to nodes not in I_{k+1}
• # of extra nodes $\xrightarrow{B/8\Delta}$ failure
• # of extra nodes $\xrightarrow{0}$ I_{k+1}
- rate down: B
- rate up: $\leq \frac{3B}{8} + \frac{B}{8\Delta} \cdot \Delta = \frac{B}{2}$

- Suppose we start with $cut(I_0) \le B/8$; e.g., $I_0 = V$
- Target path $I_0, I_1, \ldots, I_m = \emptyset$ (monotone)

$$\operatorname{cut}(I_k) \le c(I_0) + W \le \frac{B}{8} + \frac{B}{4} = \frac{3B}{8}$$

- Once we reach I_k , allocate budget to nodes not in I_{k+1} $B/8\Delta$ failure • # of extra nodes $\longrightarrow_{0}^{B/8\Delta} I_{k+1}$ - rate down: B- rate up: $\leq \frac{3B}{8} + \frac{B}{8\Delta} \cdot \Delta = \frac{B}{2}$
 - Prob(failure): exponentially small

- Suppose we start with $cut(I_0) \le B/8$; e.g., $I_0 = V$
- Target path $I_0, I_1, \ldots, I_m = \emptyset$ (monotone)

$$\operatorname{cut}(I_k) \le c(I_0) + W \le \frac{B}{8} + \frac{B}{4} = \frac{3B}{8}$$

- Once we reach I_k , allocate budget to nodes not in I_{k+1} • # of extra nodes $\xrightarrow{B/8\Delta}$ failure • # of extra nodes $\xrightarrow{0}$ I_{k+1} - rate down: B - rate down: B - rate up: $\leq \frac{3B}{8} + \frac{B}{8\Delta} \cdot \Delta = \frac{B}{2}$
 - Prob(failure): exponentially small
 - If failure: let infections happen till $\operatorname{cut}(I_t) \leq B/8$ and restart

Simulations, on a star graph

Simulations, on a star graph

Simulations, on a star graph

 ρ_i – CW-optimal

Can we do better? Lower bounds on expected extinction time

• Theorem: Assume: $W \ge c_w n$ $B \le c_b n \le W$ If c_b small enough $[c_b \le f(c_w, \Delta)]$, then E[extinction time] $\ge ce^{cn}$ $[c = f(c_w, \Delta) > 0]$ Can we do better? Lower bounds on expected extinction time

- Theorem: Assume: $W \ge c_w n$ $B \le c_b n \le W$ If c_b small enough $[c_b \le f(c_w, \Delta)]$, then E[extinction time] $\ge ce^{cn}$ $[c = f(c_w, \Delta) > 0]$
- Idea: The actual (stochastic) trajectory I_t will encounter a cut of size $\geq W$

Can we do better? Lower bounds on expected extinction time

- Theorem: Assume: $W \ge c_w n$ $B \le c_b n \le W$ If c_b small enough $[c_b \le f(c_w, \Delta)]$, then E[extinction time] $\ge ce^{cn}$ $[c = f(c_w, \Delta) > 0]$
- Idea: The actual (stochastic) trajectory I_t will encounter a cut of size $\geq W$

Not enough. Must show upward drift for substantial amount of time

Resistance $\gamma(I)$

• Difficulty, starting from I

Resistance $\gamma(I)$

• Difficulty, starting from I

• Difficulty, starting from *I*

• Difficulty, starting from *I*

• Difficulty, starting from *I*

• Difficulty, starting from *I*

• Difficulty, starting from *I*

• Difficulty, starting from *I*

• Difficulty, starting from *I*

• Difficulty, starting from *I*

• Difficulty, starting from I

add/infect nodes

• $\gamma(I_{k+1}) < \gamma(I_k) \Rightarrow \operatorname{cut}(I_{k+1}) = \gamma(I_k)$

 $W \ge c_w n \quad B \le c_b n$

 $W \ge c_w n \quad B \le c_b n$

 $W \ge c_w n \quad B \le c_b n$

 $W \ge c_w n \quad B \le c_b n$

 $W \ge c_w n \quad B \le c_b n$

 $A \subset B \Rightarrow \gamma(A) \leq \gamma(B)$ $\gamma(I_{k+1}) < \gamma(I_k) \Rightarrow \operatorname{cut}(I_{k+1}) = \gamma(I_k)$

• Claim: During [T', T] have many recoveries (w.h.p.)

 $W \ge c_w n \quad B \le c_b n$

- **Claim:** During [T', T] have many recoveries (w.h.p.)
- Auxiliary (coupled) process I'_t : only recoveries

 $W \ge c_w n \quad B \le c_b n$

- **Claim:** During [T', T] have many recoveries (w.h.p.)
- Auxiliary (coupled) process I'_t : only recoveries

 $W \ge c_w n \quad B \le c_b n$

- **Claim:** During [T', T] have many recoveries (w.h.p.)
- Auxiliary (coupled) process I'_t : only recoveries

 $W \ge c_w n \quad B \le c_b n$

- Claim: During [T', T] have many recoveries (w.h.p.)
- Auxiliary (coupled) process I'_t : only recoveries
- $\operatorname{cut}(I'_t)$ increases by W/4

 $W \ge c_w n \quad B \le c_b n$

- Claim: During [T', T] have many recoveries (w.h.p.)
- Auxiliary (coupled) process I'_t : only recoveries
- $\operatorname{cut}(I'_t)$ increases by $W/4 \Rightarrow$ at least $W/4\Delta$ recoveries

 $W \ge c_w n \quad B \le c_b n$

- Claim: During [T', T] have many recoveries (w.h.p.)
- Auxiliary (coupled) process I'_t : only recoveries
- $\operatorname{cut}(I'_t)$ increases by $W/4 \Rightarrow$ at least $W/4\Delta$ recoveries \Rightarrow needs constant time (w.h.p.)

 $W \ge c_w n \quad B \le c_b n$

 $A \subset B \Rightarrow \gamma(A) \leq \gamma(B)$ $\gamma(I_{k+1}) < \gamma(I_k) \Rightarrow \operatorname{cut}(I_{k+1}) = \gamma(I_k)$

- Claim: During [T', T] have many recoveries (w.h.p.)
- Auxiliary (coupled) process I'_t : only recoveries
- $\operatorname{cut}(I'_t)$ increases by $W/4 \Rightarrow$ at least $W/4\Delta$ recoveries \Rightarrow needs constant time (w.h.p.)

 $\Rightarrow \geq 2n$ infections (w.h.p.): contradiction

 $W \ge c_w n \quad B \le c_b n$

 $A \subset B \Rightarrow \gamma(A) \leq \gamma(B)$ $\gamma(I_{k+1}) < \gamma(I_k) \Rightarrow \operatorname{cut}(I_{k+1}) = \gamma(I_k)$

- Claim: During [T', T] have many recoveries (w.h.p.)
- Auxiliary (coupled) process I'_t : only recoveries
- $\operatorname{cut}(I'_t)$ increases by $W/4 \Rightarrow$ at least $W/4\Delta$ recoveries \Rightarrow needs constant time (w.h.p.)

 $\Rightarrow \geq 2n$ infections (w.h.p.): contradiction

• Probability of such a scenario: exponentially small

 $W \ge c_w n \quad B \le c_b n$

 $A \subset B \Rightarrow \gamma(A) \leq \gamma(B)$ $\gamma(I_{k+1}) < \gamma(I_k) \Rightarrow \operatorname{cut}(I_{k+1}) = \gamma(I_k)$

- Claim: During [T', T] have many recoveries (w.h.p.)
- Auxiliary (coupled) process I'_t : only recoveries
- $\operatorname{cut}(I'_t)$ increases by $W/4 \Rightarrow$ at least $W/4\Delta$ recoveries \Rightarrow needs constant time (w.h.p.)

 $\Rightarrow \geq 2n$ infections (w.h.p.): contradiction

- Probability of such a scenario: exponentially small
- Need exponential time for such a scenario to materialize

• $W \sim c_w n$, $I_0 = V$	$B = 4c_w n$ suffices	B > cn needed

• $W \sim c_w n$, $I_0 = V$	$B = 4c_w n$ suffices	B > cn needed
• Any W , $I_0 = V$		

• $W \sim c_w n$, $I_0 = V$	$B = 4c_w n$ suffices	B > cn needed
• Any W , $I_0 = V$	B = 4W suffices	

• $W \sim c_w n$, $I_0 = V$	$B = 4c_w n$ suffices	B > cn needed
• Any W , $I_0 = V$	B = 4W suffices	$B \ge cW$ needed?

• $W \sim c_w n$, $I_0 = V$	$B = 4c_w n$ suffices	B > cn needed
• Any W , $I_0 = V$	B = 4W suffices	$B \ge cW$ needed?
• General I ₀		

• $W \sim c_w n$, $I_0 = V$	$B = 4c_w n$ suffices	B > cn needed
• Any W , $I_0 = V$	B = 4W suffices	$B \ge cW$ needed?
• General I ₀	$B \ge c\gamma(I_0)$ suffices (w.h.p.)	

• $W \sim c_w n$, $I_0 = V$	$B = 4c_w n$ suffices	B > cn needed
• Any W , $I_0 = V$	B = 4W suffices	$B \ge cW$ needed?
• General I ₀	$B \ge c\gamma(I_0)$ suffices (w.h.p.)	$B \ge c\gamma(I_0)$ needed?

• $W \sim c_w n$, $I_0 = V$	$B = 4c_w n$ suffices	B > cn needed
• Any W , $I_0 = V$	B = 4W suffices	$B \ge cW$ needed?
• General I ₀	$B \ge c\gamma(I_0)$ suffices (w.h.p.)	$B \ge c\gamma(I_0)$ needed?

• SIR models (cured cannot get reinfected)

• $W \sim c_w n$, $I_0 = V$	$B = 4c_w n$ suffices	B > cn needed
• Any W , $I_0 = V$	B = 4W suffices	$B \ge cW$ needed?
• General I ₀	$B \ge c\gamma(I_0)$ suffices (w.h.p.)	$B \ge c\gamma(I_0)$ needed?

- SIR models (cured cannot get reinfected)
- Imperfect information, etc.