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• I0 = Ø (all healthy) is an absorbing state

– extinction guaranteed

– may take time exponential in n
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– total curing rate > total infection rate
X
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⇢i(t) > cut(It)

– It has downward (expected) drift

– time to extinction is linear in n, or less
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• Corollary: If W is sublinear in n [e.g., mesh],
can get “fast extinction” (sublinear time), with sublinear budget.
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• Not enough. Must show upward drift for substantial amount of time
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