
Part 2

A Framework for Applying First-Order Methods
to General Convex Conic Optimization Problems

Jim Renegar

School of Operations Research
Cornell University

LNMB Lunteren Conference, 2016

=

min c

T
x

s.t. Ax = b

x 2 K

e

x

e + 1
1��min(x) (x� e)

:=

A�nez

{x : Ax = b

and c

T
x = z}

⇡(x)

. . . where �min(x) is the scalar � satisfying x� � e 2 boundary(K)

⌘min c · x
s.t. Ax = b

x 2 K

max �min(x)

s.t. Ax = b

c · x = z

Recall key ideas

from the first talk.

A�nez

e

max �min(x)

s.t. Ax = b

c · x = z

x0

initial user-supplied

feasible point

A�nez

e

max �min(x)

s.t. Ax = b

c · x = z

x0

A�nez

e

max �min(x)

s.t. Ax = b

c · x = z

x1

A�nez

e

max �min(x)

s.t. Ax = b

c · x = z

x2

A�nez

e

max �min(x)

s.t. Ax = b

c · x = z

x3

A�nez

e

max �min(x)

s.t. Ax = b

c · x = z

x3

A�nez

e

max �min(x)

s.t. Ax = b

c · x = z

x3

A�nez

e

max �min(x)

s.t. Ax = b

c · x = z

x4

A�nez

e

max �min(x)

s.t. Ax = b

c · x = z

x5

A�nez

e

max �min(x)

s.t. Ax = b

c · x = z

x5

Lipschitz constant 1/re
Thm:

) min
k`

c · ⇡(xk)� z

⇤

c · e� z

⇤ ✏

` � 8 (M Diam)

2 ·
✓

1

✏

2
+

1

✏

log4/3

✓
c · e� z

⇤

c · e� c · x0

◆
+ 1

◆

Applying a supgradient method results in a sequence x0, x1, . . . for which . . .

Let’s see what results by applying the framework

to general convex optimization problems

by putting those problems into conic form.

First we consider minimizing a convex function subject to no constraints,

but we make some assumptions on the function

so that we can clarify how the new approach

di↵ers from applying subgradient methods directly . . .

• f is lower semicontinuous and has a minimizer

min f(x)

Assume:

min f(x)
min

x,t

t

s.t. (x, t) 2 epi(f) := {(x, t) : f(x) t}⌘

closed convex set

min
x,t,t

0
t

s.t. t

0 = 1
(x, t, t

0) 2 K

min
x,t

t

s.t. (x, t) 2 epi(f) := {(x, t) : f(x) t}⌘

(x, t, 1) 2 K , (x, t) 2 epi(f)
where K is the closed cone for which

closed convex set

The problem on the left is the conic formulation to which we apply our approach.

graph of such a function f

asymptote

min f(x) • {x : f(x) <1} is open

Assume:

• kxk < 1) f(x) < 0

• f is lower semicontinuous and has a minimizer

min f(x) • {x : f(x) <1} is open

Assume:

• kxk < 1) f(x) < 0

• f is lower semicontinuous and has a minimizer

↵

graph of

↵ 7! ↵z

graph of

↵ 7! f(↵xk)

(1) Compute the positive scalar ↵k satisfying f(↵kxk) = ↵kz .

(2) Let yk := ↵kxk .

Iterate:

↵k

Initialize: x0 = ~0, z = f(~0)

Rn

z < 0 – an upper bound on the optimal value of min f(x)

(the value z is occasionally updated)

Determine the positive scalar ↵k for which f(↵kxk) = ↵kz ,

and then define yk = ↵kxk .

~0~0
xk

yk := 1
2xk

Rn

z < 0 – an upper bound on the optimal value of min f(x)

(the value z is occasionally updated)

~0~0
xk

yk := 1
2xk

If ↵k < 4/3, then let xk+1 = xk + ✏
2kgk2 g

where g = 1
f(yk)+hrf(yk),~0�yki

rf(yk)

subgradient at yk

Rn

z < 0 – an upper bound on the optimal value of min f(x)

(the value z is occasionally updated)

~0~0
xk

yk := 1
2xk

xk+1

The subgradient is for yk but the step is taken from xk!

If ↵k < 4/3, then let xk+1 = xk + ✏
2kgk2 g

where g = 1
f(yk)+hrf(yk),~0�yki

rf(yk)

subgradient at yk

Determine the positive scalar ↵k+1 for which f(↵k+1xk+1) = ↵k+1z ,

and then define yk+1 = ↵k+1xk+1 .

Rn

z < 0 – an upper bound on the optimal value of min f(x)

(the value z is occasionally updated)

~0

xk+1

yk+1 := 3
2xk+1

Rn

z < 0 – an upper bound on the optimal value of min f(x)

(the value z is occasionally updated)

~0

xk+1

yk+1 := 3
2xk+1

If ↵k+1 � 4/3, define xk+2 = yk+1 and update z: z f(xk+2)

Rn

z < 0 – an upper bound on the optimal value of min f(x)

(the value z is occasionally updated)

~0

xk+2 := yk+1

If ↵k+1 � 4/3, define xk+2 = yk+1 and update z: z f(xk+2)

min f(x) • {x : f(x) <1} is open

Assume:

• kxk < 1) f(x) < 0

• f is lower semicontinuous and has a minimizer

(3) If ↵k � 4/3, let xk+1 = yk and z f(yk).

↵

graph of

↵ 7! ↵z

graph of

↵ 7! f(↵xk)

(1) Compute the positive scalar ↵k satisfying f(↵kxk) = ↵kz .

(2) Let yk := ↵kxk .

Iterate:

↵k

 f(~0) < 0

Initialize: x0 = ~0, z = f(~0)

Else let xk+1 = xk +
✏

2kgkk2
gk

where gk =
1

rf(yk) + hrf(yk),~0� yki| {z }
rf(yk) .

subgradient at yk

optimal value < 0

The algorithm computes yk satisfying

f(yk)� f⇤

0� f⇤ ✏

k 8 D2

✓
1

✏2
+

1

✏
log4/3

�
(D + 1) (1� ✏)

�
+ 1

◆
where

defining
D = diameter

�
{x : f(x) f(~0)}

�
.

min f(x) • {x : f(x) <1} is open

Assume:

• kxk < 1) f(x) < 0

• f is lower semicontinuous and has a minimizer

Cor:

Di↵ers from traditional subgradient literature

in that f is not required to be Lipschitz continuous!!!

min f(x)
s.t. x 2 Feas

extended valued, convex, lower semicontinuous

{x 2 S : Ax = b}
= closed and convex

• x̄ satisfies Ax̄ = b and x̄ 2 interior

�
S \ e↵ective domain(f)

�

• Euclidean norm satisfies {x 2 B(x̄, 1) : Ax = b}| {z } ✓ S\e↵ective domain(f)

Assume:

• D = diameter
�
{x 2 Feas : f(x) f(x̄)}

�

Then can compute feasible x satisfying

f(x)� f

⇤

b
f � f

⇤
 ✏

optimal value

within
iterations.

O
✓

D2 ·
✓

1

✏2
+

1

✏
log D

◆ ◆

let

b
f be a scalar upper bound

on f(x) for all x in this set

More generally . . .

(see arXiv posting for details)

. . .
Now we turn to a second topic,

the “smoothing” of a convex conic optimization problem,

thus allowing accelerated gradient methods to be applied,

resulting in better complexity bounds.

In order to provide an explicit smoothing,

we need the optimization problem to have algebraic structure,

and thus we restrict attention to “hyperbolic programs”,

still a very general class of conic optimization problems.

Our motivation was to develop an approach similar to the one of Nesterov,
but which applies to optimization problems with complicated feasible regions

rather than just “simple” ones.

We depend heavily on various works of Nesterov,

as well as results from the literature on “hyperbolic polynomials.”

(Our most recent arXiv posting has all of the details.)

rfµ(X) = 1P
j exp(��j(X)/µ)

Q

"
exp(��1(X)/µ)

. . .
exp(��n(X)/µ)

#
QT

Smoothing

Following Nesterov, rely on the smooth concave function

Not so obvious, but which Nesterov showed:

where X = Q

"
�1(X)

.

.

.

�n(X)

#
QT

is an eigendecomposition of X

Easy to see: �min(X)� µ lnn fµ(X) �min(X)

d’Aspremont, “Smooth optimization with approximate gradient”

SIAM J Opt (2008)

A relevant line of work thus begins with . . .

expensive!

(for fixed µ > 0)

fµ(X) := �µ ln

X

j

exp(��j(X)/µ)

krfµ(X)�rfµ(Y)k⇤1 1
µ kX � Y k1

that is, X 7! rfµ(X) has Lipschitz constant L = 1/µ

Smoothing

Following Nesterov, rely on the smooth concave function

Not so obvious, but which Nesterov showed:

where X = Q

"
�1(X)

.

.

.

�n(X)

#
QT

is an eigendecomposition of X

For linear programming:

Easy to see: �min(X)� µ lnn fµ(X) �min(X)

rfµ(X) = 1P
j exp(��j(X)/µ)

Q

"
exp(��1(X)/µ)

. . .
exp(��n(X)/µ)

#
QT

rf

µ

(x) = 1P
j exp(�xj/µ)

2

4
exp(�x1/µ)

...
exp(�xn/µ)

3

5

krfµ(X)�rfµ(Y)k⇤1 1
µ kX � Y k1

(for fixed µ > 0)

fµ(X) := �µ ln

X

j

exp(��j(X)/µ)

that is, X 7! rfµ(X) has Lipschitz constant L = 1/µ

min hC, Xi
s.t. A(X) = b

X ⌫ 0
⌘ ⇡

max �min(X)

s.t. A(X) = b
hC, Xi = z

max fµ(X)

s.t. A(X) = b
hC, Xi = z

Same goal as before: Compute feasible X satisfying

hC, Xi � z⇤

hC, Ii � z⇤
 ✏

Choosing µ = ✏/(6 lnn)

and relying on Nesterov’s original accelerated gradient method . . .

Lu, Nemirovski and Monteiro, “Large-scale semidefinite programming via

a saddle point Mirror-Prox algorithm” Math Prog (2007)

Especially-notable earlier work with similar iteration bounds:

Lan, Lu and Monteiro, “Primal-dual first-order methods

with O(1/✏) iteration-complexity for cone programming” Math Prog (2011)

Thm:

) hC,⇡(Xk)i � z⇤

hC, Ii � z⇤
 ✏

k � ·
✓p

lnn · Diam ·
✓

1

✏
+ log

hC, Ii � z⇤

hC, Ii � hC, X0i

◆ ◆a universal constant

=

x

e + 1
1��min(x) (x� e)

:=

A�nez

⇡(x)

{x : Ax = b

and c · x = z}

min c · x
s.t. Ax = b

x 2 Ke

. . . where �min(x) is the scalar � satisfying x� � e 2 boundary(K)

• p(x) 6= 0 for all x 2 int(K)

• p(x) = 0 for all x 2 bdy(K)

• 9 e 2 int(K) such that for all x 2 E ,

the univariate polynomial � 7! p(x� �e) has only real roots.

Defn: K ✓ E is a “hyperbolicity cone”

if there is a homogeneous polynomial p satisfying:

Also: non-negative orthant, second-order cones, and many others.

Euclidean space

min c · x
s.t. Ax = b

x 2 K

Example: K = Sn⇥n
+ , p(X) = det(X), e = I, � 7! det(X � �I)

x

e

line consisting of points

x� �e for � 2 R

the point x� �min(x)e

the point x� �

max

(x)e

p(x1, x2, x3) = x

2
3 � x

2
1 � x

2
2

K = {(x1, x2, x3) : x3 �
p

x

2
1 + x

2
2 }

Let Ek : Rn ! R be the elementary symmetric polynomial of degree k,

that is, Ek(x) =
P

j1<j2<...<jk
xj1xj2 · · · xjk

Then for k = 1, . . . , n,

K(k)
:= {x : Ei(x) � 0 for all i = 1, . . . , k}

is a hyperbolicity cone with polynomial p(x) = Ek(x)

These cones are nested:

Rn
+ = K(n) ⇢ K(n�1) ⇢ . . . ⇢ K(2) ⇢ K(1)

Another example (this one not obvious):

Each hyperbolicity cone has such a nested set of “derivative cones”

which themselves are hyperbolicity cones.

If each of K1 and K2 is a hyperbolicity cone, then so is K1 ⇥K2 and

⇤ K1 \K2 .

Theorem (G̊arding, 1959): For every e 2 int(K) and all x 2 E ,

the univariate polynomial � 7! p(x� �e) has only real roots.

• p(x) 6= 0 for all x 2 int(K)

• p(x) = 0 for all x 2 bdy(K)

• 9 e 2 int(K) such that for all x 2 E ,

the univariate polynomial � 7! p(x� �e) has only real roots.

Defn: K ✓ E is a “hyperbolicity cone”

if there is a homogeneous polynomial p satisfying:

Also: non-negative orthant, second-order cones, and many others.

Euclidean space

If K0 ✓ E 0
is a hyperbolicity cone and T : E ! E 0

is a linear transformation,

then

⇤ K := {x : T (x) 2 K0} is a hyperbolicity cone.

min c · x
s.t. Ax = b

x 2 K

Example: K = Sn⇥n
+ , p(X) = det(X), e = I, � 7! det(X � �I)

min c · x
s.t. Ax = b

x 2 K
“hyperbolic program”

Güler, “Hyperbolic polynomials and interior point methods
for convex programming” Math of Oper Res (1997)

hyperbolicity cone

=

x

e + 1
1��min(x) (x� e)

:=

A�nez

⇡(x)

{x : Ax = b

and c · x = z}

min c · x
s.t. Ax = b

x 2 Ke

Now every x has n real “eigenvalues” �1(x), . . . ,�n(x),

the roots of � 7! p(x� �e)

degree of p

hyperbolicity cone

fµ(x) := �µ ln

X

j

exp(��j(x)/µ)

(for fixed µ > 0)

Easy to see: �min(x)� µ lnn fµ(x) �min(x)

Moreover, the gradients are readily computable,

especially if the underlying “hyperbolic polynomial”

can be factored as the product of polynomials of low degrees.

(Mostly a corollary to Nesterov’s result
and the Helton-Vinnikov Theorem.)

Moreover, krfµ(x)�rfµ(y)k⇤1 1
µ kx� yk1 for all x, y.

Prop:

fµ is concave and infinitely Fréchet di↵erentiable.

(see the arXiv posting for details)

Cor: kP rfµ(x)� P rfµ(y)k 1
r2

eµ kx� yk for all x, y 2 A�nez

and for every z

A�nec·e{x : kx� ek re and Ax = b}

e

where L is the Lipschitz constant for the gradient map

and where L0 > 0 is the input guess of L.

Same goal as before: Compute feasible x satisfying

⌘ ⇡
min c · x
s.t. Ax = b

x 2 K

max �min(x)

s.t. Ax = b

c · x = z

max fµ(x)

s.t. Ax = b

c · x = z

c · x� z

⇤

c · e� z

⇤ ✏

Choosing µ = ✏/(6 lnn)

and using a “uniformly optimal” (or “universal”)

accelerated gradient method (Lan (2010), Nesterov (2014)) . . .

Thm:

The algorithm produces xk satisfying

c · ⇡(xk)� z

⇤

c · e� z

⇤ ✏

and does so within computing a total number of gradients not exceeding

O
✓

Diam ·
p

L ·
✓

1p
✏

+ log

c · e� z

⇤

c · e� c · x0
+

���� log

L

L

0

����

◆ ◆

L 1
r2
e µ

=
6 lnn

r2
e ✏

Note:

Helton-Vinnikov Theorem

Fix e 2 int(K)

and let L be a 3-dimensional subspace containing e.

Assume K is a hyperbolicity cone with polynomial p of degree n.

p(x) = p(e) det(T (x))

Then there exists a linear transformation T : L! Sn

such that T (e) = I

and for all x 2 L,

“If you can prove something for the PSD cone
by relying only on subspaces which contain I and are of dimension 3,

then you likely can generalize the proof to all hyperbolicity cones
by making use of the H-V Theorem.”

But the most important takeaway from these talks

is entirely elementary . . .

=

min c

T
x

s.t. Ax = b

x 2 K

e

x

e + 1
1��min(x) (x� e)

:=

A�nez

{x : Ax = b

and c

T
x = z}

⇡(x)

. . . where �min(x) is the scalar � satisfying x� � e 2 boundary(K)

⌘min c · x
s.t. Ax = b

x 2 K

max �min(x)

s.t. Ax = b

c · x = z

Thanks

for

listening!

