
LNMB Lunteren Conference, 2016

A Framework for Applying First-Order Methods
to General Convex Conic Optimization Problems

Jim Renegar

School of Operations Research
Cornell University

x

graph of f

the gradient of f at x

graph of the function y 7! f(x) + hrf(x), y � xi

convex function (assume lower semicontinuous)

min f(x)
s.t. x 2 Q

closed, convex set

x

graph of f

graph of the function y 7! f(x) + hg0
, y � xi

a subgradient of f at x

convex function (assume lower semicontinuous)

min f(x)
s.t. x 2 Q

closed, convex set

x

graph of f

a subgradient of f at x

graph of the function y 7! f(x) + hg00
, y � xi

The set of all subgradients at x is denoted @f(x) – the “subdi↵erential” at x

convex function (assume lower semicontinuous)

min f(x)
s.t. x 2 Q

closed, convex set

For a concave function, supgradients play the analogous role.

convex function (assume lower semicontinuous)

min f(x)
s.t. x 2 Q

closed, convex set

|f(x)� f(y)| M kx� yk

Lipschitz constant

Assume f is Lipschitz-continuous on an open neighborhood of Q:

optimal value

A typical subgradient method:

Initialize: x0 2 Q

Iterate: Compute gk 2 @f(xk), and let xk+1 = PQ(xk � ✏
kgkk2 gk)

where PQ is projection onto Q

A typical theorem:

` �
✓

Mkx0 � x

⇤k
✏

◆2

) min
k`

f(xk) f

⇤ + ✏

Goal: Compute x 2 Q satisfying f(x) f

⇤
+ ✏

an optimal solution

` �
✓
kck kx0 � x

⇤k
✏

◆2

) min
k`

c

T
xk z

⇤ + ✏

Goal: Compute x satisfying Ax � b and c

T
x z

⇤
+ ✏

|cT
x� c

T
y| kck kx� yk

Then, of course, the objective function is Lipschitz continuous:

Lipschitz constant

optimal value

A typical theorem:

an optimal solution

min c

T
x

s.t. Ax � b

so Q = {x : Ax � b}

A typical subgradient method:

Initialize: x0 2 Q

Iterate: Let xk+1 = PQ(xk � ✏
kck2 c)

where PQ is projection onto Q

In the special case of linear programming this becomes . . .

But in general, projecting onto Q = {x : Ax � b}
is no easier than solving linear programs!!!

A typical subgradient method:

Initialize: x0 2 Q

Iterate: Let xk+1 = PQ(xk � ✏
kck2 c)

where PQ is projection onto Q

For example, here is a way to “approximate” an LP

by an unconstrained convex optimization problem:

However, the optimal solution for the problem on the right
will not necessarily be feasible for LP.

But in general, projecting onto Q = {x : Ax � b}
is no easier than solving linear programs!!!

In the literature, in fact, the only subgradient methods

producing feasible iterates require the feasible region to be “simple.”

“Why is this?”

user-chosen

postive constant

min c

T
x

s.t. Ax � b

⇡ min c

T
x + � max{0, bi � ↵

T
i x : i = 1, . . . ,m}

There are ways, however, to use a subgradient method to “solve” an LP.

Think of this 2-dimensional plane

as being the slice of Rn

cut out by {x : Ax = b} .

min c

T
x

s.t. Ax = b

x � 0

min c

T
x

s.t. Ax = b

x � 0

Assume the objective function x 7! c

T
x is constant on horizontal slices.

⇡⇤
optimal solution

min c

T
x

s.t. Ax = b

x � 0

1

To begin with simplicity, assume the vector of all one’s is feasible.

x

min c

T
x

s.t. Ax = b

x � 0

1
:=

A�nez

{x : Ax = b

and
c

T
x = z}

⇡(x)

“radial projection”

min c

T
x

s.t. Ax = b

x � 0

1
:=

A�nez

{x : Ax = b

and
c

T
x = z}

x

⇤
z

⇡

⇤ = ⇡(x⇤z)

min c

T
x

s.t. Ax = b

x � 0

1
:=

A�nez

{x : Ax = b

and
c

T
x = z}

1

x

1 + 1
1�minj xj

(x� 1)

=

:=

A�nez

{x : Ax = b

and
c

T
x = z}

⇡(x)

min c

T
x

s.t. Ax = b

x � 0

c

T

⇡(x) = c

T 1 + 1
1�minj xj

(cT

x� c

T 1)

= c

T 1 + 1
1�minj xj

(z � c

T 1)| {z }

Thus, for x, y 2 A�nez , c

T
⇡(x) < c

T
⇡(y) , minj xj > minj yj

x 7! ⇡(x) := 1 + 1
1�minj xj

(x� 1) 1

min c

T
x

s.t. Ax = b

x � 0

9
=

; LP

z

⇤
optimal value, assumed finite

z a fixed value satisfying z < c

T 1

A�nez {x : Ax = b and c

T
x = z}

a negative constant

Theorem: LP is equivalent to

max

x

min

j

x

j

s.t. Ax = b

c

T

x = z

The only constraints in the equivalent problem are linear equations.

It’s thus easy to project onto the feasible region for the equivalent problem.

min c

T
x

s.t. Ax = b

x � 0

9
=

; LP

x 7! minj xj is the exemplary nonsmooth concave function

P̄ := I � ĀT (Ā ĀT)�1Ā where Ā =
⇥

A
cT

⇤

max

x

min

j

x

j

s.t. Ax = b

c

T

x = z

⌘

• Supgradients at x are the convex combinations

of the standard basis vectors e(k) for which xk = minj xj

Thus, projected supgradients at x are the convex combinations

of the corresponding columns of the projection matrix

x+ = x +
✏

kP̄kk2
P̄k

Hence, in implementing a supgradient method,
one option in choosing a supgradient at x

is simply to compute any column P̄k for which xk = minj xj

For large n, compute columns of

¯P as needed

With a modest amount of preprocessing work,

the cost of each iteration

is proportional to the number of nonzero entries in A.

do not (cannot)

compute (store in memory)

all of

¯P

• Lipschitz continuous with constant M = 1

I

min hC, Xi
s.t. A(X) = b

X ⌫ 0

Now consider a semidefinite program,

and for simplicity, assume the identity matrix is feasible.

I

min hC, Xi
s.t. A(X) = b

X ⌫ 0

=
I + 1

1��min(X) (X � I)

X

:=

A�nez

{X : A(X) = b
and

hC, Xi = z}

⇡(X)

minimum eigenvalue of X

I

min hC, Xi
s.t. A(X) = b

X ⌫ 0

=
I + 1

1��min(X) (X � I)

X

:=

A�nez

{X : A(X) = b
and

hC, Xi = z}

⇡(X)

max �min(X)

s.t. A(X) = b
hC, Xi = z

equivalent problem

I

min hC, Xi
s.t. A(X) = b

X ⌫ 0

X

Goal: Compute X satisfying

⇡(X)

:=

A�nez

{X : A(X) = b
and

hC, Xi = z}

hC,⇡(X)i � z⇤

hC, Ii � z⇤
 ✏

max �min(X)

s.t. A(X) = b
hC, Xi = z

⇡(X⇤
z)

X⇤
z

– so z⇤ = hC,⇡(X⇤
z)i

To accomplish this, how accurately does �min(X) need to approximate �min(X⇤
z)?

I
{

} �2

�1

hC, Ii � z

hC, Ii � z⇤
=

�1

�2

:=

A�nez

{X : A(X) = b
and

hC, Xi = z}

min hC, Xi
s.t. A(X) = b

X ⌫ 0

9
=

; SDP

hC,⇡(X)i � z⇤

hC, Ii � z⇤
 ✏

max �min(X)

s.t. A(X) = b
hC, Xi = z

�min(X⇤
z)� �min(X) ✏

1� ✏

hC, Ii � z

hC, Ii � z⇤

To get around the high accuracy required if the ratio is small,

and to get around having to know the ratio

(that is, having to know the optimal value z⇤),
we apply a supgradient method to multiple layers

(details of which can be found in the arXiv posting) . . .

,

I

initial user-supplied

SDP-feasible matrix

X0

A�nez

max �min(X)

s.t. A(X) = b
hC, Xi = z

I

A�nez

X1

max �min(X)

s.t. A(X) = b
hC, Xi = z

I

A�nez

X2

max �min(X)

s.t. A(X) = b
hC, Xi = z

I

A�nez

X3

max �min(X)

s.t. A(X) = b
hC, Xi = z

I

A�nez

X3

max �min(X)

s.t. A(X) = b
hC, Xi = z

I

A�nez

X3

max �min(X)

s.t. A(X) = b
hC, Xi = z

I

X4

A�nez

max �min(X)

s.t. A(X) = b
hC, Xi = z

I

X5

A�nez

max �min(X)

s.t. A(X) = b
hC, Xi = z

I

X5
A�nez

max �min(X)

s.t. A(X) = b
hC, Xi = z

I

= level set for SDP

initial user-supplied

SDP-feasible matrix

X0

Diam := supremum of diameters of level sets for objective values hC, X0i

�min(X⇤
z)� �min(X) ✏

1� ✏

hC, Ii � z

hC, Ii � z⇤

min hC, Xi
s.t. A(X) = b

X ⌫ 0

9
=

; SDP

hC,⇡(X)i � z⇤

hC, Ii � z⇤
 ✏

max �min(X)

s.t. A(X) = b
hC, Xi = z

Thm:

) min
k`

hC,⇡(Xk)i � z⇤

hC, Ii � z⇤
 ✏

` � 8 Diam

2 ·
✓

1

✏2
+

1

✏
log4/3

✓
hC, Ii � z⇤

hC, Ii � hC, X0i

◆
+ 1

◆

Now consider a general convex conic optimization problem,

and fix a strictly feasible point e.

min c · x
s.t. Ax = b

x 2 K closed, convex cone

with nonempty interior

e

Prop: The map x 7! �min(x) is concave and Lipschitz continuous.

=

x

e + 1
1��min(x) (x� e)

:=

A�nez

⇡(x)

{x : Ax = b

and c · x = z}

min c · x
s.t. Ax = b

x 2 K

. . . where �min(x) is the scalar � satisfying x� � e 2 boundary(K)

e
closed, convex cone

with nonempty interior

max �min(x)

s.t. Ax = b

c · x = z

min c · x
s.t. Ax = b

x 2 K
c · ⇡(x)� z

⇤

c · e� z

⇤ ✏

�min(x⇤z)� �min(x) ✏

1� ✏

c · e� z

c · e� z

⇤,

Whereas for linear programming we relied on the dot product,

and for SDP we relied on the trace product,

in this general setting

we allow computations to be done with respect to any inner product.

However, the extent to which the inner product
reflects the geometry of the cone K a↵ects the Lipschitz constant . . .

even in this general setting

we have “if and only if”

Prop: |�min(x)� �min(y)| 1
re
kx� yk for all x, y 2 A�nez

and for every z

A�nec·e

e

{x : kx� ek re and Ax = b}

(see arXiv posting for full explanation)

x0

initial user-supplied

feasible point

= level sets

Diam := supremum of diameters of level sets for objective values c · x0

e

Lipschitz constant 1/re
Thm:

) min
k`

c · ⇡(xk)� z

⇤

c · e� z

⇤ ✏

` � 8 (M Diam)

2 ·
✓

1

✏

2
+

1

✏

log4/3

✓
c · e� z

⇤

c · e� c · x0

◆
+ 1

◆

Applying a supgradient method results in a sequence x0, x1, . . . for which . . .

max �min(x)

s.t. Ax = b

c · x = z

min c · x
s.t. Ax = b

x 2 K
c · ⇡(x)� z

⇤

c · e� z

⇤ ✏

�min(x⇤z)� �min(x) ✏

1� ✏

c · e� z

c · e� z

⇤

The main takeaway from the talk is the use of radial projection

to replace a general conic optimization problem

with an equivalent problem whose only constraints are linear equations.

This simple and natural approach

has not previously appeared in the literature, a blind spot.

=

min c

T
x

s.t. Ax = b

x 2 K

e

x

e + 1
1��min(x) (x� e)

:=

A�nez

{x : Ax = b

and c

T
x = z}

⇡(x)

. . . where �min(x) is the scalar � satisfying x� � e 2 boundary(K)

⌘min c · x
s.t. Ax = b

x 2 K

max �min(x)

s.t. Ax = b

c · x = z

Thanks

for

listening!

