A Framework for Applying First-Order Methods to General Convex Conic Optimization Problems

Jim Renegar
School of Operations Research
Cornell University

LNMB Lunteren Conference, 2016

$$
\begin{array}{cl}
& \stackrel{\swarrow}{\text { convex function (assume lower semicontinuous) }} \text { (} \\
\text { min } & f(x) \\
\text { s.t. } & x \in Q^{\text {closed, convex set }}
\end{array}
$$

$$
\begin{array}{cl}
& \stackrel{\swarrow}{\text { convex function (assume lower semicontinuous) }} \\
\text { min } & f^{(x)} \text { closed, convex set } \\
\text { s.t. } & x \in Q^{\swarrow}
\end{array}
$$

$$
\begin{array}{cl}
& \stackrel{\swarrow}{\text { convex function (assume lower semicontinuous) }} \text { (} \\
\text { min } & f(x) \\
\text { s.t. } & x \in Q^{\text {closed, convex set }}
\end{array}
$$

a subgradient of f at x

The set of all subgradients at x is denoted $\partial f(x)$ - the "subdifferential" at x

For a concave function, supgradients play the analogous role.

\[

\]

Assume f is Lipschitz-continuous on an open neighborhood of Q :

$$
|f(x)-f(y)| \leq M\|x-y\|
$$

Goal: Compute $x \in Q$ satisfying $f(x) \leq f^{*}+\epsilon$ optimal value

A typical subgradient method:
Initialize: $x_{0} \in Q$
Iterate: Compute $g_{k} \in \partial f\left(x_{k}\right)$, and let $x_{k+1}=P_{Q}\left(x_{k}-\frac{\epsilon}{\left\|g_{k}\right\|^{2}} g_{k}\right)$
where P_{Q} is projection onto Q
A typical theorem:

$$
\ell \geq\left(\frac{M\left\|x_{0}-\mathscr{x}^{*}\right\|}{\epsilon}\right)^{2} \Rightarrow \min _{k \leq \ell} f\left(x_{k}\right) \leq f^{*}+\epsilon
$$

In the special case of linear programming this becomes ...

$$
\begin{aligned}
\min & c^{T} x \\
\text { s.t. } & A x \geq b \quad \text { so } Q=\{x: A x \geq b\}
\end{aligned}
$$

Then, of course, the objective function is Lipschitz continuous:

$$
\left|c^{T} x-c^{T} y\right| \leq\|c\|\|x-y\|
$$

Goal: Compute x satisfying $A x \geq b$ and $c^{T} x \leq z^{*}+\epsilon$ optimal value

A typical subgradient method:
Initialize: $x_{0} \in Q$
Iterate: Let $x_{k+1}=P_{Q}\left(x_{k}-\frac{\epsilon}{\|c\|^{2}} c\right)$
where P_{Q} is projection onto Q
A typical theorem:

$$
\ell \geq\left(\frac{\|c\|\left\|x_{0}-x^{*}\right\|}{\epsilon}\right)^{2} \Rightarrow \min _{k \leq \ell} c^{T} x_{k} \leq z^{*}+\epsilon
$$

> But in general, projecting onto $Q=\{x: A x \geq b\}$ is no easier than solving linear programs!!!

A typical subgradient method:
Initialize: $x_{0} \in Q$
Iterate: Let $x_{k+1}=P_{Q}\left(x_{k}-\frac{\epsilon}{\|c\|^{2}} c\right)$
where P_{Q} is projection onto Q

> But in general, projecting onto $Q=\{x: A x \geq b\}$ is no easier than solving linear programs!!!

There are ways, however, to use a subgradient method to "solve" an LP.
For example, here is a way to "approximate" an LP
by an unconstrained convex optimization problem:

$$
\begin{array}{cl}
\min & c^{T} x \\
\text { s.t. } & A x \geq b \approx \min c^{T} x+\underset{\substack{\text { user-chosen } \\
\text { postive constant }}}{\gamma \max }\left\{0, b_{i}-\alpha_{i}^{T} x: i=1, \ldots, m\right\}
\end{array}
$$

However, the optimal solution for the problem on the right will not necessarily be feasible for LP.

In the literature, in fact, the only subgradient methods producing feasible iterates require the feasible region to be "simple."

$$
\begin{aligned}
\min & c^{T} x \\
\mathrm{s.t.} & A x=b \\
& x \geq 0
\end{aligned}
$$

Think of this 2-dimensional plane as being the slice of \mathbb{R}^{n} cut out by $\{x: A x=b\}$.

$$
\begin{array}{cl}
\min & c^{T} x \\
\mathrm{s.t.} & A x=b \\
& x \geq 0
\end{array}
$$

π^{*} optimal solution

Assume the objective function $x \mapsto c^{T} x$ is constant on horizontal slices.

$$
\begin{array}{rrl}
\mathbf{1}_{0} & \min & c^{T} x \\
\text { s.t. } & A x=b \\
& x \geq 0
\end{array}
$$

$$
\text { (} \begin{aligned}
\min \begin{array}{l}
c^{T} x \\
\text { s.t. } \\
A x=b \\
x \geq 0
\end{array} \\
\pi
\end{aligned}
$$

$\left.\begin{array}{rl}\min & c^{T} x \\ \text { s.t. } & A x=b \\ & x \geq 0\end{array}\right\}$ LP

optimal value, assumed finite a fixed value satisfying $z<c^{T} \mathbf{1}$

Affine $_{z} \quad\left\{x: A x=b\right.$ and $\left.c^{T} x=z\right\}$

$$
x \mapsto \pi(x):=\mathbf{1}+\frac{1}{1-\min _{j} x_{j}}(x-\mathbf{1})
$$

$$
c^{T} \pi(x)=c^{T} \mathbf{1}+\frac{1}{1-\min _{j} x_{j}}\left(c^{T} x-c^{T} \mathbf{1}\right)
$$

$$
=c^{T} \mathbf{1}+\frac{1}{1-\min _{j} x_{j}} \underbrace{\left(z-c^{T} \mathbf{1}\right)}_{\text {a negative constant }}
$$

Thus, for $\quad x, y \in$ Affine $_{z}, \quad c^{T} \pi(x)<c^{T} \pi(y) \quad \Leftrightarrow \quad \min _{j} x_{j}>\min _{j} y_{j}$

$$
\text { Theorem: } \quad \text { LP is equivalent to } \begin{array}{rll}
\max _{x} & \min _{j} x_{j} \\
& \text { s.t. } & A x=b \\
& & c^{T} x=z
\end{array}
$$

The only constraints in the equivalent problem are linear equations.
It's thus easy to project onto the feasible region for the equivalent problem.
\(\left.\begin{array}{cl}\min \& c^{T} x

s.t. \& A x=b

\& x \geq 0\end{array}\right\}\) LP $\quad \bar{\equiv} \quad$| $\max _{x}$ | $\min _{j} x_{j}$ |
| ---: | :--- |
| s.t. | $A x=b$ |
| | $c^{T} x=z$ |

$x \mapsto \min _{j} x_{j} \quad$ is the exemplary nonsmooth concave function

- Lipschitz continuous with constant $M=1$
- Supgradients at x are the convex combinations
of the standard basis vectors $e(k)$ for which $x_{k}=\min _{j} x_{j}$
Thus, projected supgradients at x are the convex combinations of the corresponding columns of the projection matrix

$$
\bar{P}:=I-\bar{A}^{T}\left(\bar{A} \bar{A}^{T}\right)^{-1} \bar{A} \quad \text { where } \bar{A}=\left[\begin{array}{c}
A \\
c^{T}
\end{array}\right]
$$

Hence, in implementing a supgradient method, one option in choosing a supgradient at x is simply to compute any column \bar{P}_{k} for which $x_{k}=\min _{j} x_{j}$

$$
x_{+}=x+\frac{\epsilon}{\left\|\bar{P}_{k}\right\|^{2}} \bar{P}_{k}
$$

For large n, compute columns of \bar{P} as needed With a modest amount of preprocessing work,
do not (cannot) compute (store in memory) all of \bar{P} the cost of each iteration
is proportional to the number of nonzero entries in A.

Now consider a semidefinite program, and for simplicity, assume the identity matrix is feasible.

To accomplish this, how accurately does $\lambda_{\min }(X)$ need to approximate $\lambda_{\min }\left(X_{z}^{*}\right)$?

To get around the high accuracy required if the ratio is small, and to get around having to know the ratio
(that is, having to know the optimal value z^{*}), we apply a supgradient method to multiple layers
(details of which can be found in the arXiv posting) ...

$工=$ level set for SDP

Diam $:=$ supremum of diameters of level sets for objective values $\leq\left\langle C, X_{0}\right\rangle$

$\left.\begin{array}{cl}\min & \langle C, X\rangle \\ \text { s.t. } & \mathcal{A}(X)=b \\ & X \succeq 0\end{array}\right\} \mathrm{SDP}$	\max $\lambda_{\min }(X)$ s.t. $\mathcal{A}(X)=b$ $\langle C, X\rangle=z$			
	$\frac{\langle C, \pi(X)\rangle-z^{*}}{\langle C, I\rangle-z^{*}} \leq \epsilon$	\quad		
:---	:---			
	$\lambda_{\min }\left(X_{z}^{*}\right)-\lambda_{\min }(X) \leq \frac{\epsilon}{1-\epsilon} \frac{\langle C, I\rangle-z}{\langle C, I\rangle-z^{*}}$			

Thm:

$$
\begin{aligned}
& \ell \geq 8 \operatorname{Diam}^{2} \cdot\left(\frac{1}{\epsilon^{2}}+\frac{1}{\epsilon} \log _{4 / 3}\left(\frac{\langle C, I\rangle-z^{*}}{\langle C, I\rangle-\left\langle C, X_{0}\right\rangle}\right)+1\right) \\
& \quad \Rightarrow \min _{k \leq \ell} \frac{\left\langle C, \pi\left(X_{k}\right)\right\rangle-z^{*}}{\langle C, I\rangle-z^{*}} \leq \epsilon
\end{aligned}
$$

Now consider a general convex conic optimization problem, and fix a strictly feasible point e.

\ldots where $\lambda_{\text {min }}(x)$ is the scalar λ satisfying $x-\lambda e \in \operatorname{boundary}(\mathcal{K})$

Prop: The map $x \mapsto \lambda_{\min }(x)$ is concave and Lipschitz continuous.

$\begin{aligned} \min & c \cdot x \\ \text { s.t. } & A x=b \\ & x \in \mathcal{K} \end{aligned}$	$\begin{aligned} \max & \lambda_{\min }(x) \\ \text { s.t. } & A x=b \\ & c \cdot x=z \end{aligned}$
$\frac{c \cdot \pi(x)-z^{*}}{c \cdot e-z^{*}} \leq \epsilon \quad \Leftrightarrow$	$\lambda_{\text {min }}\left(x_{z}^{*}\right)-\lambda_{\text {min }}(x) \leq \frac{\epsilon}{1-\epsilon} \frac{c \cdot e-z}{c \cdot e-z^{*}}$

even in this general setting we have "if and only if"

Whereas for linear programming we relied on the dot product, and for SDP we relied on the trace product, in this general setting
we allow computations to be done with respect to any inner product.
However, the extent to which the inner product
reflects the geometry of the cone \mathcal{K} affects the Lipschitz constant

$$
\left\{x:\|x-e\| \leq r_{e} \text { and } A x=b\right\}
$$

Prop: $\quad\left|\lambda_{\min }(x)-\lambda_{\min }(y)\right| \leq \frac{1}{r_{e}}\|x-y\| \quad$ for all $x, y \in$ Affine $_{z}, ~ a n d$ for every z
(see arXiv posting for full explanation)

$\underline{=}=$ level sets

Diam $:=$ supremum of diameters of level sets for objective values $\leq c \cdot x_{0}$

| min$c \cdot x$
 s.t. $A x=b$
 $x \in \mathcal{K}$ | \max $\lambda_{\min }(x)$
 s.t. $A x=b$
 $c \cdot x=z$ |
| :---: | ---: | :--- |
| $\frac{c \cdot \pi(x)-z^{*}}{c \cdot e-z^{*}} \leq \epsilon$ | $\lambda_{\min }\left(x_{z}^{*}\right)-\lambda_{\min }(x) \leq \frac{\epsilon}{1-\epsilon} \frac{c \cdot e-z}{c \cdot e-z^{*}}$ |

Applying a supgradient method results in a sequence x_{0}, x_{1}, \ldots for which \ldots

Thm:
Lipschitz constant $\leq 1 / r_{e}$
$\ell \geq 8(M \mathrm{Diam})^{2} \cdot\left(\frac{1}{\epsilon^{2}}+\frac{1}{\epsilon} \log _{4 / 3}\left(\frac{c \cdot e-z^{*}}{c \cdot e-c \cdot x_{0}}\right)+1\right)$
$\Rightarrow \quad \min _{k \leq \ell} \frac{c \cdot \pi\left(x_{k}\right)-z^{*}}{c \cdot e-z^{*}} \leq \epsilon$

The main takeaway from the talk is the use of radial projection to replace a general conic optimization problem with an equivalent problem whose only constraints are linear equations. This simple and natural approach
has not previously appeared in the literature, a blind spot.

\ldots where $\lambda_{\min }(x)$ is the scalar λ satisfying $x-\lambda e \in \operatorname{boundary}(K)$

$$
\begin{aligned}
\min & c \cdot x \\
\mathrm{s.t.} & A x=b \quad \equiv \\
& x \in \mathcal{K}
\end{aligned} \quad=\quad \begin{array}{rll}
\max & \lambda_{\min }(x) \\
\text { s.t. } & A x=b \\
& c \cdot x=z
\end{array}
$$

Thanks
for
listening!

