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• A subset S of a given (finite) set P of n points in Rd

is convex (relative to P) iff S = P ∩ conv(S) 
equivalently: P ∩ conv(S) ⊆ S  (since P ∩ conv(S) ⊇ S)
 i.e., if we select a subset S of points in P then we must 

also select all points of P that are in their convex hull 
 definition also applies to more general 

closure spaces or convexity spaces
• We are interested in formulating the 

restriction “the selected set of points 
must be convex” in Integer Programming models
 as hard or soft constraints

Recall: Convex Subsets of a Given Point Set

set P
set S

must also 
be in S

conv(S)
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Recall: Why Convex Subsets?

• Many (discrete) optimization models seek one 
or several subsets (of a given set of points, or 
of elementary regions, a.k.a., “cells”) that 
should satisfy some “shape constraint”
 often vaguely expressed: the set should “look 

compact”, its shape should no be “too odd”, etc.
• Convexity is one way of precisely formulating 

such shape constraints, which is appropriate 
(or approximately so) in some applications…
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Recall: Our Research Agenda

We seek to define notions of (“convex”) shapes
that are
• relevant to applications, and
• computationally tractable:
 the Optimization Problem is efficiently solvable 

(or approximable)
 the shape requirements can be enforced 

(or approximated) by a concise system of linear 
inequalities in natural and/or extended variables
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Lectures Overview
Part 1: Computational complexity and algorithms
1. The Maximum Weight Convex Subset problem
2. Dimension 3 and higher: hardness results
3. One-dimension: a well understood case
Part 2: Modeling 2D and related convexities
1. 2D (points in the plane): DP algorithm for the 

optimization problem
2. 2D convex-shape constraints: IP modeling
3. Other notions of convexity

a) Poset convexity
b) Geodesic convexities and related notions
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Optimization problem solved by Dynamic Programming
 Basic idea in Eppstein et al. (1992): consider all possible 

choices of bottom-most selected point b∈P
 Vertex version: vertices as DP states

F(b) = maxb∈P { {wb} ∪ {w(conv{b,c}) : c not below b}
∪ { f (b,c,d) : b is bottom-most point, c and d are

the cw-next two vertices of a convex polytope} }
where f (b,c,d) is the maximum weight of such a polytope:

f (b,c,d) = w(conv{b,c,d}) 
+ max{ 0, maxe { f (b,d,e) − w(conv{b,d}) :

e on same side of cd as b and 
on other side of bd than c } }

 O(n3) time and O(n2) space for each b
⇒ O(n4) time and O(n2) space altogether

1. Points in the Plane

b

c

d

?

e
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e

 Edge version: edges as DP states
 Find a maximum-profit directed cycle beginning and ending at b

and such that each pair of successive arcs cd and de are 
“compatible”, i.e., can be edges of a polytope with vertex b:

• c, d and e not colinear, in clockwise order seen from b, and
• b in the convex cone they define with apex d

Edge profit  u (cd )  = w(conv{b,c,d }) − w(conv{b,d}) 

 A special case of longest path with turn restrictions
 O(n2) time and O(n2) space for each b
⇒ O(n3) time and O(n2) space altogether
• [Bautista-Santiago et al., 2011, 

based on Eppstein et al., 1992] 

 Generalizes to any edge-decomposable
objective, satisfying a monotonicity condition

1. Points in the Plane: DP Algorithm (2)

b

c

d
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2. 2D convex-shapes : IP modeling

We can formulate 1D-convexity (contiguity) 
constraints along each coordinate direction, and 
other directions
 hopefully to obtain approximately convex subsets

but 
 the resulting (extended) 

formulations are not integral
 the solution might not even 

be “connected”
• even if we include all directions

set P subset S
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2. 2D convex-shapes : IP modeling (2)

Carathéodory’s Theorem:  
p∈conv S   iff

p∈conv T for some T ⊆ S with |T | < d+1
→ in R2 :  O(n4) constraints

[ ph ,pj ,pk ∈S and pi∈conv{ph ,pj ,pk} ] ⇒ pi∈S
• e.g.,   yi > yh + yj + yk − 2  for all such h, i, j, k

suffice (in binary variables)
 some of these constraints are redundant

• Recall: in one dimension, we reduced from O(n3) to O(n2) 
constraints, so:

• Formulation Question: to find a sufficient set of fewer,  
say, O(n3), constraints (in the natural binary variables)

Constantin Carathéodory
(1873-1950) 
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2. 2D convex-shapes : IP modeling (3)
• Recall: in 1D we had a complete characterization of 

the convex hull of characteristic vectors of all convex 
(i.e., contiguous) subsets, using “alternating 
constraints”,  and a linear-time separation algorithm

• Polyhedral Question: to find a system of linear 
inequalities defining the convex hull of characteristic 
vectors of all convex subsets of a given set P ⊆ R2

 some progress on restricted problem with given bottom-
most point b∈S

• Algorithmic Question: to find a combinatorial 
algorithm for the Separation Problem for this convex 
hull
 polytime solvable by the Ellipsoid method
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Back to extended formulations. Recall: 
• in one dimension, we had an ideal extended formulation with 2n

variables and 2n constraints
From the DP algorithm we can derive an extended formulation 

with O(n3) variables and constraints 
 current joint work with Laurence Wolsey (CORE)

• Based on an inclusion condition: given bottom-most point b,
 Label points b = 0, 1,…, n, n+1 = b

in clockwise order as seen from b
 At each q∈P , the “before” nodes 

Bq are labeled i(0),…, i(q−1) 
in cw order as seen from q

 and similarly for the “after” nodes Aq

 If edges i(h) q and q j(k) compatible, then
so are i(h′) q and q j(k′) for h′ < h and k < k′

2. 2D convex-shapes : IP modeling (4)

b

i(q−2)

i(1)

q

j(q+1)

j(q+2)

j(n)

i(0) = = j(n+1)

i(q−1)
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2. 2D convex-shapes : IP modeling (5)
Ideal extended formulation:
• bottom-most indicator variables zb
• edge variables ebpq = 1 iff b is  b-most point and pq an 

edge of the convex hull of selected points
Σb zb < 1
ybq + Σ {ebpr : edge pr cuts edge bq} = zb ∀b, q
Σs eb,s,(n+1) = zb ∀b

Σ {ebpq : p ∈ Bbqk} + sb,q,(k−1)
= eb,q,j(k) + sb,q,k ∀b, q, k

where sb,q,k is a “slack” variable

• O(n3) variables and constraints
b

i(q−2)

i(1)

q

j(q+1)

j(q+2)

j(n)

i(0) = = j(n+1)

i(q−1)

Bbqk
j(k)

p

r

s
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2. 2D convex-shapes : IP modeling (6)

More Formulation Questions: 
• to find a more concise extended formulation
 e.g., with O(n) variables and O(n2) constraints?

• …and that is ideal?
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3. Other Notions of Convexity
A closure system (or Moore family) is a set system (X, F )
(1) containing the empty and full sets (∅∈F and X∈F ), and 
(2) stable for (arbitrary) intersection (i.e.,  ∩G∈F for all G ⊆ F )
In a closure system every subset S ⊆ X has a closure clF S
• the smallest set in F that contains S:  clF S  = ∩{ F∈F : S ⊆ F }

A convex structure (or aligned space) is a closure system (X, F ) also
(3) stable for nested unions (i.e., if G ⊆ F is totally ordered by 

inclusion then  ∪G∈F )
In a convex structure the closure clF S is called the convex hull coF S
•(3) implies (using the Axiom of Choice and transfinite induction) that 

a point in the convex hull of any set S ⊆ X is in a convex hull of 
some finite subset of S (the closure operator of F is domain finite)

>
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3a. Other Notions of Convexity : Poset Convexity

Joint work with Laurence Wolsey (CORE)
A subset C ⊆ P of a poset (partially ordered set) (P, < ) is 

convex (aka, an interval) iff
[t∈C and t < u < v∈C ] ⇒ u∈C

(P, < )

convex convex not convex not convex

t tu uv

v
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3a.Convex Subsets in a Poset (2)

A subset C ⊆ P of a poset (partially ordered set) (P, < ) is 
convex (aka, an interval) iff

[t∈C and t < u < v∈C ] ⇒ u∈C
Examples:
• Subset of tasks assigned to a contractor in Project Planning 

(subcontractor work package)
• Subset of tasks assigned to a station in Assembly Line Balancing 

 [Frédéric Meunier & Mustapha El Lemdani, 2012]  

• Set of blocks (or jobs) processed in a given year (period) in Open 
Pit Mine (or Project) Scheduling

• One-dimensional special case:
 Consecutive periods in unit commitment [e.g., Jon Lee et al., 2004]
 Contiguous drawpoints in an underground mine tunnel 

[Anita Parkinson 2012]
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3a. Convex Subsets in a Poset : Four Questions

A. Polyhedral Description:
• Given a finite poset P = (V, < ), determine an explicit, finite system 

of linear inequalities describing the convex hull CP ⊆ ℜV of the 
characteristic vectors of all (poset) convex subsets in P

B. Separation Problem:
• Given poset P and a vector x0∈ℜV, decide whether x0∈CP and, if 

not, produce a linear inequality that is satisfied by the characteristic 
vectors of all convex subsets in P and is violated by x0

C. Optimization Problem:
• Given poset P and a weight vector w∈ℜV, find a convex subset 

S*⊆V with maximum total weight w(S*) = Σ u∈S* w(u) 
D. Extended Formulation:
• Given poset P, determine a compact (i.e., polynomial-size) 

extended formulation of that convex hull CP
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Closures in a poset
• A subset T ⊆V in a poset P = (V, < ) is a closure (aka, 

terminal subset, upper ideal, filter) iff
[t∈T and t < u] ⇒ u∈T

• A characterization of poset convex subsets:
Lemma: A subset S in a poset P is convex iff

S = T \ T′ for some closures T and T′ in P
Maximum Weight Closure problem:
• Given poset P and a weight vector w∈ℜV, find a closure 

T*⊆V with maximum total weight w(T*)
• Solved in strongly polytime as a minimum s-t-cut problem 

in a related network 
 Rhys (1970); also Balinski (1970) and Picard (1976)

3a. Solving the Optimization Problem
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Solving the Maximum Weight Poset Convex Subset problem:
• Define poset (P′ ∪P″,  <∪ ) where 
 (P′ , <′ ) and (P″ , <″ ) are two  copies of (P, < )
 <∪ is induced by <′ , <″, and v′ <∪ v″ for all v∈P

3a. Solving the Optimization Problem (2)

(P, < ) − w

w
w

• Let weights w(v′ ) = −w(v) and w(v″ ) = w(v) for all v∈P
Proposition: T* is a maximum-weight terminal subset in            

(P′ ∪P″, <∪ )  iff S* := {v∈P : v′∉T and v″∈T } is a maximum
weight convex subset in (P, < )

T*S*

(P′ , < ′ )

(P″, < ″ )
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3a. Extended Formulation
• Poset closures have a well-known compact ideal 

formulation [Rhys, 1970]:
{y∈ℜV : 0 < y < 1, and  yu < yv for all u→v }

• The reduction between the optimization problems 
implies:

Theorem: Given a poset P, let V′ and V′′ be two copies 
of V.  Then

EP = {(x, y′ , y′′ )∈ℜV ×V′ ×V′′ :  x = y′′ − y′
0 < y′ < y′′ < 1
y′u < y′v and  y′′u < y′′v for all u→v }

is a compact ideal extended formulation of poset convex 
subsets of P
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3a. Proof Overview

Optimization Problem
solved as a mincut problem

Linear-sized, ideal
Extended Formulation



Maurice Queyranne Modeling Convex Subsets of Points 21

3a. Alternating Inequalities and their Separation
• A sequence c = (c1, …, cl(c) ) of elements of poset P is a chain (a 

totally ordered subset) iff c1 < c2 < …< cl(c) 

• Its alternating vector a c∈ℜV has components
+1 if  u = ci for some odd i

au
c = −1 if  u = ci for some even i

0 otherwise
• Chain c is odd if its length l(c) is odd
• Odd(P) = set of all odd chains in P
Lemma (Validity of poset alternating inequalities):
The characteristic vector x of every convex subset in a poset P satisfies 
the alternating inequalities

a c x < 1  for all c∈Odd(P)
• i.e.,    xc1

− xc2
+ xc3

− … + xc l(c)
< 1
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3a. Separation Problem for Alternating Inequalities 

• Given poset P and a vector x0∈ℜV, decide whether x0 satisfies 
all alternating inequalities and, if not, produce a violated 
inequality, i.e., a chain c∈Odd(P) such that a c x0 > 1

Dynamic Programming:
• Pred(v) = {u∈V : u < v} set of all (strict) predecessor of v∈V
• Pred*(v) = Pred(v) \ ∪u∈Pred(v) Pred(u) that of its immediate

predecessors
• Odd(v) [resp., Even(v)] the set of all odd [resp., even] chains 

in P that end at or before v
 the empty chain  ∅∈Even(v)  for all v

• DP value functionals F and G : V →ℜ
F(v) = max{a c x0 : c∈Odd(v)} 
G(v) = max{a c x0 : c∈Even(v)} 
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3a. Separation for Alternating Inequalities (2)

• DP value functionals F and G∈ℜV

F(v) = max{a c x0 : c∈Odd(v)} 
G(v) = max{a c x0 : c∈Even(v)} 

• DP recursions:
F(v) = x0

v if Pred*(v) = ∅
max u∈Pred*(v) {max{F(u), G(u) + x0

v}} o/w

G(v) = 0 if Pred*(v) = ∅
max u∈Pred*(v) {max{G(u), F(u) − x0

v}} o/w

Lemma: Using these DP recursions solves the separation 
problem for the alternating inequalities in linear time
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3a. Proof Overview (2)

Optimization Problem
solved as a mincut problem

Linear-sized, ideal
Extended Formulation

Validity of the
Alternating Inequalities

Linear-time DP algorithm
for their Separation Problem 

>
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3a. DP Functionals: Properties
• DP recursions:
F(v) = x0

v if Pred*(v) = ∅
max u∈Pred*(v) {max{F(u), G(u) + x0

v}} o/w

G(v) = 0 if Pred*(v) = ∅
max u∈Pred*(v) {max{G(u), F(u) − x0

v}} o/w

(1) F and G are nondecreasing w.r.t. poset order <
 i.e., u < v implies  F(u) < F(v)  and G(u) < G(v) 

(2) F(v) – G(v) = x0
v

 If Pred*(v) ≠ ∅ then 
G(v) + x0

v = max u∈Pred*(v) {max{G(u) + x0
v , F(u)}} = F(v)
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3a. DP Functionals and the Extended Formulation
Lemma (Properties of the DP functionals):
(1) F and G are nondecreasing w.r.t. poset order <
(2)  x0 =  F – G

Recall the Extended Formulation:
EP = {(x, y′ , y′′ )∈ℜV ×V′ ×V′′ :  x = y′′ − y′

0 < y′ < y′′ < 1
y′u < y′v and  y′′u < y′′v for all u→v }

Proposition: If  x0 > 0 and  all F(v) < 1  then 
(x0, y′ , y′′ )∈Ep where y′v = G(v) and y′′v = F(v) for all v∈V

Corollary: x0∈CP iff x0 > 0  and satisfies all the alternating  
inequalities.

• This solves the Polyhedral Description question!
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3a. In Summary

Theorem: Let P be a given finite poset.
(i) The optimization problem for convex subsets 

of P is solvable in strongly polynomial time as 
an s-t-cut problem

(ii) The alternating inequalities plus the non-
negativity constraints x > 0 form the minimal 
linear inequality system defining the convex 
hull of the characteristic vectors of all convex 
subsets in P.

(iii) The separation problem for this convex hull is 
solvable in linear time.
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3a. In Summary (2): Proof Method

Optimization Problem
solved as a mincut problem

Linear-sized, ideal
Extended Formulation

Validity of the
Alternating Inequalities

Linear-time DP algorithm
for their Separation Problem 

DP functionals give a feasible solution 
to the Extended Formulation

Polyhedral Description
Alternating inequalities and x > 0 suffice
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3b. Other Notions of Convexity : 
Geodesic Convexity and Related Notions

A subset C ⊆ X of a metric space is (geodesic) convex iff
C contains all shortest s-t paths (in X ) for all s,t∈C

• Geodesic convex subsets form a convex structure
 a generalization of standard convexity in Rd

Examples: 
• In Rd (or Zd ) with the L1 metric, this gives the box 

convexity
 convex sets are boxes (rectangles)
 the optimization problem is easy

• Geodesic convexity in graphs, with (nonnegative) edge 
lengths…
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3b. Geodesic Convexity (2)
Theorem: The Maximum Weight Geodesic Convex Subset 

problem in a graph with unit edge lengths cannot be 
approximated in polytime to any factor n1−ε with ε > 0, 
unless P = NP

Proof: similar to previous proof, also using the Maximum 
Independent Set (MIS) problem: given instance G = (V, E) of 
MIS, define a unit-edge-length graph G′ = (V′, E′ ) as follows:
 split each edge uv of the complete 

graph K(V ) with a node p(u,v) 
• so u-p(u,v)-v is the unique 

shortest u-v path in G′
 Let all edge lengths = 1, and

node weights wu = 1 
wp(u,v) = − M < −|V | if uv∈E

0 otherwise

graph G

graph G′

1−M

01
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3b. Geodesic Convexity and Related Notions (3)
How about subsets C ⊆ X that contain some shortest s-t paths (in X) for 

every pair s,t∈C ?
 Such weakly geodesic subsets do not form 

a convex structure
• not stable under intersection

Examples: 
• The police officer assigned to a quadrant should be able to remain in 

his/her quadrant while going as quickly as possible from any quadrant 
point to any other quadrant point

• In (connected) graphs with zero edge lengths this defines connected
subsets
 The Optimization problem for connected subsets is NP-hard to 

approximate within any constant factor 
[E. Alvarez-Miranda, I. Ljubic, P. Mutzel (2013)]

Theorem: The Maximum Weight Weakly Geodesic Convex Subset 
problem in a graph with unit edge lengths cannot be approximated in 
polytime to any factor n1−ε with ε > 0, unless P = NP
 The same proof applies



Maurice Queyranne Modeling Convex Subsets of Points 32

Thank you for
your attention

Questions?
Comments?
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