Modeling Convex Subsets of Points – Part 2

Maurice Queyranne

Sauder School of Business at UBC, and CORE, Université Catholique de Louvain

based on recent and current joint with several collaborators...

LNMB Conference, Lunteren January 12-13, 2016

Recall: Convex Subsets of a Given Point Set

- A subset *S* of a given (finite) set *P* of *n* points in \mathbb{R}^d is **convex** (relative to *P*) iff $S = P \cap \text{conv}(S)$ equivalently: $P \cap \text{conv}(S) \subseteq S$ (since $P \cap \text{conv}(S) \supseteq S$)
 - i.e., if we select a subset *S* of points in *P* then we must also select all points of *P* that are in their convex hull
 - definition also applies to more general closure spaces or convexity spaces
- We are interested in formulating the restriction "the selected set of points be in S must be convex" in Integer Programming models
 as hard or soft constraints

conv(S)

set P

Recall: Why Convex Subsets?

- Many (discrete) optimization models seek one or several subsets (of a given set of points, or of elementary regions, a.k.a., "cells") that should satisfy some "*shape constraint*"
 - often vaguely expressed: the set should "look compact", its shape should no be "too odd", etc.
- Convexity is one way of precisely formulating such shape constraints, which is appropriate (or approximately so) in some applications...

Recall: Our Research Agenda

We seek to define notions of ("convex") shapes that are

- relevant to applications, and
- computationally tractable:
 - the Optimization Problem is efficiently solvable (or approximable)
 - the shape requirements can be enforced (or approximated) by a concise system of linear inequalities in natural and/or extended variables

Lectures Overview

Part 1: Computational complexity and algorithms

- 1. The Maximum Weight Convex Subset problem
- 2. Dimension 3 and higher: hardness results
- 3. One-dimension: a well understood case

Part 2: Modeling 2D and related convexities

- 1. 2D (points in the plane): DP algorithm for the optimization problem
- 2. 2D convex-shape constraints: IP modeling
- 3. Other notions of convexity
 - a) Poset convexity
 - b) Geodesic convexities and related notions

1. Points in the Plane

Optimization problem solved by Dynamic Programming

- Basic idea in Eppstein et al. (1992): consider all possible choices of bottom-most selected point *b*∈*P*
- Vertex version: vertices as DP states

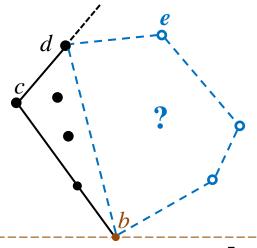
 $F(b) = \max_{b \in P} \{ \{w_b\} \cup \{w(\operatorname{conv}\{b,c\}) : c \text{ not below } b \}$ $\cup \{ f(b,c,d) : b \text{ is bottom-most point, } c \text{ and } d \text{ are}$ $\text{the cw-next two vertices of a convex polytope} \} \}$ where f(b,c,d) is the maximum weight of such a polytope: $f(b,c,d) = w(\operatorname{conv}\{b,c,d\})$

+ max{ 0, max_e { $f(\mathbf{b}, d, \mathbf{e}) - w(\operatorname{conv}\{\mathbf{b}, d\})$:

e on same side of <u>*cd*</u> as *b* and

on other side of <u>bd</u> than c } }

• $O(n^3)$ time and $O(n^2)$ space for each b $\Rightarrow O(n^4)$ time and $O(n^2)$ space altogether



1. Points in the Plane: DP Algorithm (2)

- Edge version: edges as DP states
- Find a maximum-profit directed cycle beginning and ending at *b* and such that each pair of successive arcs *cd* and *de* are "compatible", i.e., can be edges of a polytope with vertex *b*:
 - c, d and e not colinear, in clockwise order seen from b, and
 - *b* in the convex cone they define with apex *d* Edge profit *u(cd)* = *w*(conv{*b*,*c*,*d*}) *w*(conv{*b*,*d*})
- A special case of longest path with turn restrictions
- $O(n^2)$ time and $O(n^2)$ space for each *b* $\Rightarrow O(n^3)$ time and $O(n^2)$ space altogether
 - [Bautista-Santiago et al., 2011, based on Eppstein et al., 1992]
- Generalizes to any edge-decomposable objective, satisfying a monotonicity condition

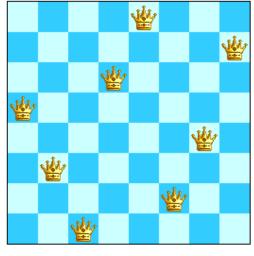
2. 2D convex-shapes : IP modeling

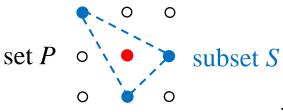
We can formulate 1D-convexity (contiguity) constraints along each coordinate direction, and other directions

hopefully to obtain approximately convex subsets

but

- the resulting (extended) formulations are not integral
- the solution might not even be "connected"
 - even if we include *all* directions





2. 2D convex-shapes : IP modeling (2)

Carathéodory's Theorem:

 $p \in \operatorname{conv} S \quad \text{iff}$ $p \in \operatorname{conv} T \text{ for some } T \subseteq S \text{ with } |T| \le d+1$

 \rightarrow in \mathbb{R}^2 : $O(n^4)$ constraints

Constantin Carathéodory (1873-1950)

 $[p_h, p_j, p_k \in S \text{ and } p_i \in \operatorname{conv}\{p_h, p_j, p_k\}] \Rightarrow p_i \in S$

• e.g., $y_i \ge y_h + y_j + y_k - 2$ for all such *h*, *i*, *j*, *k*

suffice (in binary variables)

- some of these constraints are redundant
 - Recall: in one dimension, we reduced from $O(n^3)$ to $O(n^2)$ constraints, so:
- Formulation Question: to find a sufficient set of fewer, say, $O(n^3)$, constraints (in the natural binary variables)

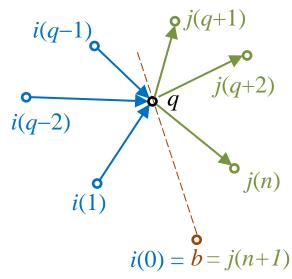
2. 2D convex-shapes : IP modeling (3)

- Recall: in 1D we had a complete characterization of the convex hull of characteristic vectors of all convex (i.e., contiguous) subsets, using "alternating constraints", and a linear-time separation algorithm
- **Polyhedral Question**: to find a system of linear inequalities defining the convex hull of characteristic vectors of all convex subsets of a given set $P \subseteq \mathbb{R}^2$
 - some progress on restricted problem with given bottommost point *b*∈*S*
- Algorithmic Question: to find a combinatorial algorithm for the Separation Problem for this convex hull
 - polytime solvable by the Ellipsoid method

2. 2D convex-shapes : IP modeling (4)

Back to **extended formulations**. Recall:

- in one dimension, we had an ideal extended formulation with 2n variables and 2n constraints
- From the DP algorithm we can derive an extended formulation with $O(n^3)$ variables and constraints
 - current joint work with Laurence Wolsey (CORE)
- Based on an inclusion condition: given bottom-most point *b*,
 - Label points b = 0, 1,..., n, n+1 = b in clockwise order as seen from b
 - At each $q \in P$, the "before" nodes B_q are labeled $i(0), \dots, i(q-1)$ in cw order as seen **from** q
 - and similarly for the "after" nodes A_q
 - If edges i(h) q and q j(k) compatible, then so are i(h') q and q j(k') for $h' \le h$ and $k \le k'$



Maurice Queyranne

2. 2D convex-shapes : IP modeling (5)

Ideal extended formulation:

- bottom-most indicator variables z_b
- edge variables $e_{bpq} = 1$ iff b is b-most point and pq an edge of the convex hull of selected points

$$\sum_{b} z_{b} \leq 1$$

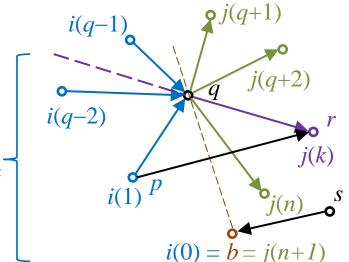
$$y_{bq} + \sum \{e_{bpr} : \text{edge } pr \text{ cuts edge } bq\} = z_{b} \forall b, q$$

$$\sum_{s} e_{b,s,(n+1)} = z_{b} \forall b$$

$$\sum \{e_{bpq} : p \in B_{bqk}\} + s_{b,q,(k-1)}$$

$$= e_{b,q,j(k)} + s_{b,q,k} \quad \forall b, q, k$$
where $s_{b,q,k}$ is a "slack" variable
$$B_{bqk} = \begin{bmatrix} i(q-1) \\ i(q-2) \\ i(q-2) \end{bmatrix}$$

• $O(n^3)$ variables and constraints



2. 2D convex-shapes : IP modeling (6)

More Formulation Questions:

- to find a more concise extended formulation
 - e.g., with O(n) variables and $O(n^2)$ constraints?
- ...and that is ideal?

3. Other Notions of Convexity

A *closure system* (or *Moore family*) is a set system (X, \mathcal{F}) (1) containing the empty and full sets ($\emptyset \in \mathcal{F}$ and $X \in \mathcal{F}$), and (2) stable for (arbitrary) intersection (i.e., $\cap G \in \mathcal{F}$ for all $G \subseteq \mathcal{F}$) In a closure system every subset $S \subseteq X$ has a *closure* $cl_{\mathcal{F}}S$

• the smallest set in \mathcal{F} that contains $S: \operatorname{cl}_{\mathcal{F}} S = \cap \{ F \in \mathcal{F} : S \subseteq F \}$

A *convex structure* (or *aligned space*) is a closure system (X, \mathcal{F}) also

(3) stable for nested unions (i.e., if $G \subseteq \mathcal{F}$ is totally ordered by inclusion then $\cup G \in \mathcal{F}$)

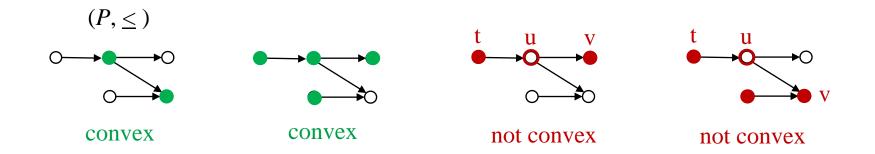
In a convex structure the closure $\operatorname{cl}_{\mathcal{F}} S$ is called the *convex hull* $\operatorname{co}_{\mathcal{F}} S$

•(3) implies (using the Axiom of Choice and transfinite induction) that a point in the convex hull of any set $S \subseteq X$ is in a convex hull of some *finite* subset of *S* (the closure operator of \mathcal{F} is *domain finite*)

3a. Other Notions of Convexity : Poset Convexity

Joint work with Laurence Wolsey (CORE) A subset $C \subseteq P$ of a poset (partially ordered set) (P, \leq) is **convex** (aka, an interval) iff

 $[t \in C \text{ and } t \leq u \leq v \in C] \Rightarrow u \in C$



3a.Convex Subsets in a Poset (2)

A subset $C \subseteq P$ of a poset (partially ordered set) (P, \leq) is **convex** (aka, an interval) iff

$$[t \in C \text{ and } t \leq u \leq v \in C] \Rightarrow u \in C$$

Examples:

- Subset of tasks assigned to a contractor in Project Planning (*subcontractor work package*)
- Subset of tasks assigned to a station in Assembly Line Balancing
 - [Frédéric Meunier & Mustapha El Lemdani, 2012]
- Set of blocks (or jobs) processed in a given year (period) in Open Pit Mine (or Project) Scheduling
- One-dimensional special case:
 - Consecutive periods in unit commitment [e.g., Jon Lee et al., 2004]
 - Contiguous drawpoints in an underground mine tunnel [Anita Parkinson 2012]

3a. Convex Subsets in a Poset : Four Questions

A. Polyhedral Description:

• Given a finite poset $P = (V, \leq)$, determine an explicit, finite system of linear inequalities describing the **convex hull** $C_P \subseteq \Re^V$ of the characteristic vectors of all (poset) convex subsets in P

B. Separation Problem:

• Given poset *P* and a vector $x^0 \in \Re^V$, decide whether $x^0 \in C_P$ and, if not, produce a linear inequality that is satisfied by the characteristic vectors of all convex subsets in *P* and is violated by x^0

C. Optimization Problem:

• Given poset *P* and a weight vector $w \in \Re^V$, find a convex subset $S^* \subseteq V$ with maximum total weight $w(S^*) = \sum_{u \in S^*} w(u)$

D. Extended Formulation:

• Given poset *P*, determine a **compact** (i.e., polynomial-size) extended formulation of that convex hull C_P

3a. Solving the Optimization Problem

Closures in a poset

• A subset $T \subseteq V$ in a poset $P = (V, \leq)$ is a **closure** (aka, terminal subset, upper ideal, filter) iff

 $[t \in T \text{ and } t \leq u] \Longrightarrow u \in T$

• A characterization of poset convex subsets:

Lemma: A subset S in a poset P is convex iff

 $S = T \setminus T'$ for some closures T and T' in P

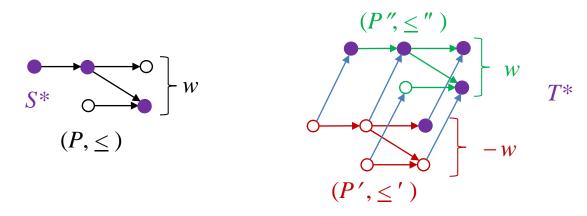
Maximum Weight Closure problem:

- Given poset *P* and a weight vector $w \in \Re^V$, find a closure $T^* \subseteq V$ with maximum total weight $w(T^*)$
- Solved in strongly polytime as a minimum *s*-*t*-cut problem in a related network
 - Rhys (1970); also Balinski (1970) and Picard (1976)

3a. Solving the Optimization Problem (2)

Solving the Maximum Weight Poset *Convex* Subset problem:

- Define poset $(P' \cup P'', \leq_{\cup})$ where
 - (P', \leq') and (P'', \leq'') are two copies of (P, \leq)
 - \leq_{\cup} is induced by \leq', \leq'' , and $v' \leq_{\cup} v''$ for all $v \in P$



• Let weights w(v') = -w(v) and w(v'') = w(v) for all $v \in P$

<u>Proposition</u>: T^* is a maximum-weight terminal subset in $(P' \cup P'', \leq_{\cup})$ iff $S^* := \{v \in P : v' \notin T \text{ and } v'' \in T\}$ is a maximum weight convex subset in (P, \leq)

Maurice Queyranne

Modeling Convex Subsets of Points

3a. Extended Formulation

 $\{y \in \Re^V : 0 \le y \le 1, \text{ and } y_u \le y_v \text{ for all } u \rightarrow v \}$

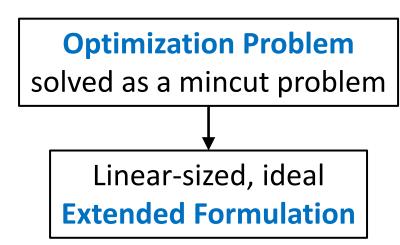
• The reduction between the optimization problems implies:

<u>Theorem</u>: Given a poset P, let V' and V'' be two copies of V. Then

$$E_P = \{(x, y', y'') \in \Re^{V \times V' \times V''} : x = y'' - y'$$
$$0 \le y' \le y'' \le 1$$
$$y'_u \le y'_v \text{ and } y''_u \le y''_v \text{ for all } u \rightarrow v \}$$

is a compact ideal extended formulation of poset convex subsets of P

3a. Proof Overview



3a. Alternating Inequalities and their Separation

- A sequence $c = (c_1, ..., c_{l(c)})$ of elements of poset *P* is a chain (a totally ordered subset) iff $c_1 < c_2 < ... < c_{l(c)}$
- Its alternating vector $a^c \in \Re^V$ has components

$$a_{u}^{\ c} = \begin{cases} +1 & \text{if } u = c_{i} \text{ for some odd } i \\ -1 & \text{if } u = c_{i} \text{ for some even } i \\ 0 & \text{otherwise} \end{cases}$$

- Chain c is odd if its length l(c) is odd
- Odd(P) = set of all odd chains in P

Lemma (Validity of poset alternating inequalities):

The characteristic vector x of every convex subset in a poset P satisfies the **alternating inequalities**

 $a^c x \leq 1$ for all $c \in \text{Odd}(P)$

• i.e., $x_{c_1} - x_{c_2} + x_{c_3} - \ldots + x_{c_{l(c)}} \le 1$

Maurice Queyranne

Modeling Convex Subsets of Points

3a. Separation Problem for Alternating Inequalities

• Given poset *P* and a vector $x^0 \in \Re^V$, decide whether x^0 satisfies all alternating inequalities and, if not, produce a violated inequality, i.e., a chain $c \in \text{Odd}(P)$ such that $a^c x^0 > 1$

Dynamic Programming:

- $Pred(v) = \{u \in V : u < v\}$ set of all (strict) predecessor of $v \in V$
- **Pred***(v) = Pred(v) \ $\bigcup_{u \in Pred(v)}$ Pred(u) that of its immediate predecessors
- Odd(v) [resp., Even(v)] the set of all odd [resp., even] chains in P that end at or before v
 - the empty chain $\emptyset \in \text{Even}(v)$ for all v
- **DP value functionals** *F* and $G: V \rightarrow \Re$ $F(v) = \max\{a^c x^0 : c \in Odd(v)\}$ $G(v) = \max\{a^c x^0 : c \in Even(v)\}$

3a. Separation for Alternating Inequalities (2)

- DP value functionals *F* and $G \in \mathbb{R}^V$ $F(v) = \max\{a^c x^0 : c \in Odd(v)\}$
 - $G(v) = \max\{a^c x^0 : c \in \operatorname{Even}(v)\}$
- **DP recursions:**

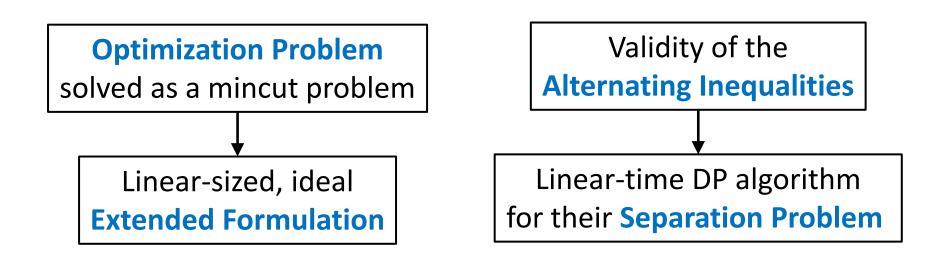
$$F(v) = \begin{bmatrix} x_v^0 & \text{if } \operatorname{Pred}^*(v) = \emptyset \\ \max_{u \in \operatorname{Pred}^*(v)} \{ \max\{F(u), G(u) + x_v^0\} \} & \text{o/w} \end{bmatrix}$$

$$G(v) = \begin{bmatrix} 0 & \text{if } \operatorname{Pred}^*(v) = \emptyset \\ \max_{u \in \operatorname{Pred}^*(v)} \{ \max\{G(u), F(u) - x_v^0\} \} & \text{o/w} \end{bmatrix}$$

Lemma: Using these DP recursions solves the separation problem for the alternating inequalities in linear time

Maurice Queyranne

3a. Proof Overview (2)



3a. DP Functionals: Properties

• **DP recursions:**

 $F(v) = \begin{bmatrix} x_v^0 & \text{if } \operatorname{Pred}^*(v) = \emptyset \\ \max_{u \in \operatorname{Pred}^*(v)} \{ \max\{F(u), G(u) + x_v^0\} \} & \text{o/w} \end{bmatrix}$

$$G(v) = \begin{bmatrix} 0 & \text{if } \operatorname{Pred}^*(v) = \emptyset \\ \max_{u \in \operatorname{Pred}^*(v)} \{ \max\{G(u), F(u) - x_v^0\} \} & \text{o/w} \end{bmatrix}$$

(1) *F* and *G* are nondecreasing w.r.t. poset order \leq

• i.e., $u \le v$ implies $F(u) \le F(v)$ and $G(u) \le G(v)$

(2) $F(v) - G(v) = x_v^0$

• If $\operatorname{Pred}^*(v) \neq \emptyset$ then

$$G(v) + x_{v}^{0} = \max_{u \in \operatorname{Pred}^{*}(v)} \{ \max\{G(u) + x_{v}^{0}, F(u)\} \} = F(v)$$

3a. DP Functionals and the Extended Formulation

Lemma (Properties of the DP functionals):

(1) *F* and *G* are nondecreasing w.r.t. poset order \leq (2) $x^0 = F - G$

Recall the Extended Formulation:

$$E_P = \{(x, y', y'') \in \Re^{V \times V' \times V''} : x = y'' - y'$$

$$0 \le y' \le y'' \le 1$$

$$y'_u \le y'_v \text{ and } y''_u \le y''_v \text{ for all } u \rightarrow v \}$$

<u>Proposition</u>: If $x^0 \ge 0$ and all $F(v) \le 1$ then $(x^0, y', y'') \in E_p$ where $y'_v = G(v)$ and $y''_v = F(v)$ for all $v \in V$

<u>Corollary</u>: $x^0 \in C_P$ iff $x^0 \ge 0$ and satisfies all the alternating inequalities.

• This solves the Polyhedral Description question!

Maurice Queyranne

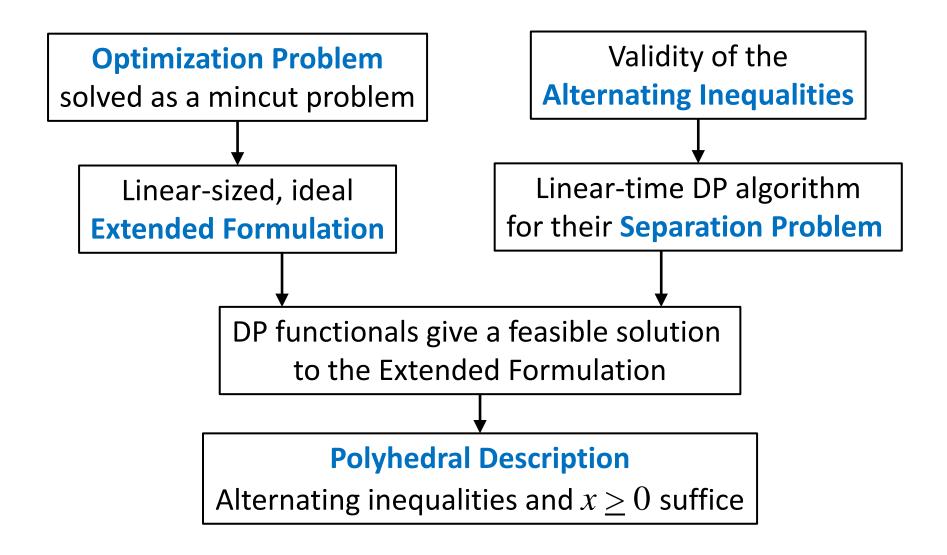
Modeling Convex Subsets of Points

3a. In Summary

Theorem: Let *P* be a given finite poset.

- (i) The optimization problem for convex subsets of P is solvable in strongly polynomial time as an *s*-*t*-cut problem
- (ii) The alternating inequalities plus the nonnegativity constraints $x \ge 0$ form the minimal linear inequality system defining the convex hull of the characteristic vectors of all convex subsets in *P*.
- (iii) The separation problem for this convex hull is solvable in linear time.

3a. In Summary (2): Proof Method



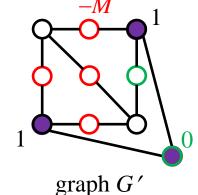
3b. Other Notions of Convexity : Geodesic Convexity and Related Notions

- A subset $C \subseteq X$ of a metric space is (geodesic) **convex** iff *C* contains <u>all</u> shortest *s*-*t* paths (in *X*) for all *s*,*t* \in *C*
- Geodesic convex subsets form a convex structure
 - a generalization of standard convexity in **R**^d
- Examples:
- In **R**^d (or **Z**^d) with the L₁ metric, this gives the box convexity
 - convex sets are boxes (rectangles)
 - the optimization problem is easy
- Geodesic convexity in graphs, with (nonnegative) edge lengths...

3b. Geodesic Convexity (2)

- **Theorem:** The Maximum Weight Geodesic Convex Subset problem in a graph with *unit edge lengths* cannot be approximated in polytime to any factor $n^{1-\varepsilon}$ with $\varepsilon > 0$, unless P = NP
- **Proof**: similar to previous proof, also using the Maximum Independent Set (MIS) problem: given instance G = (V, E) of MIS, define a unit-edge-length graph G' = (V', E') as follows:
 - split each edge *uv* of the complete graph *K*(*V*) with a node *p*(*u*,*v*)
 - so *u*-*p*(*u*,*v*)-*v* is the unique shortest *u*-*v* path in *G*′
 - Let all edge lengths = 1, and node weights $w_u = 1$

graph G

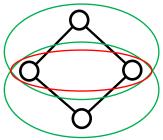


3b. Geodesic Convexity and Related Notions (3)

How about subsets $C \subseteq X$ that contain <u>some</u> shortest *s*-*t* paths (in *X*) for every pair *s*, *t* \in *C* ?

- Such weakly geodesic subsets do <u>not</u> form a convex structure
 - not stable under intersection

Examples:



- The police officer assigned to a quadrant should be able to remain in his/her quadrant while going as quickly as possible from any quadrant point to any other quadrant point
- In (connected) graphs with *zero edge lengths* this defines connected subsets
 - The Optimization problem for connected subsets is NP-hard to approximate within any constant factor
 [E. Alvarez-Miranda, I. Ljubic, P. Mutzel (2013)]
- **Theorem:** The Maximum Weight Weakly Geodesic Convex Subset problem in a graph with *unit edge lengths* cannot be approximated in polytime to any factor $n^{1-\varepsilon}$ with $\varepsilon > 0$, unless P = NP
 - The same proof applies

Thank you for your attention

Questions? Comments?