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• A subset S of a given (finite) set P of n points in Rd

is convex (relative to P) iff S = P ∩ conv(S) 
equivalently: P ∩ conv(S) ⊆ S  (since P ∩ conv(S) ⊇ S)
 i.e., if we select a subset S of points in P then we must 

also select all points of P that are in their convex hull 
 definition also applies to more general 

closure spaces or convexity spaces
• We are interested in formulating the 

restriction “the selected set of points 
must be convex” in Integer Programming models
 as hard or soft constraints

Convex Subsets of a Given Point Set

set P
set S

must also 
be in S

conv(S)
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Why Convex Subsets?

• Many (discrete) optimization models seek one 
or several subsets (of a given set of points, or 
of elementary regions, a.k.a., “cells”) that 
should satisfy some “shape constraint”
 often vaguely expressed: the set should “look 

compact”, its shape should no be “too odd”, etc.
• Convexity is one way of precisely formulating 

such shape constraints, which is appropriate 
(or approximately so) in some applications…
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Why Convex Subsets? (2)
Some applications:
• Designing electoral districts
 “Gerrymandering”

Gov. E. Gerry’s “salamander”
Massachusetts, 1812 Illinois, 2004

 Douglas M. King, et al., 2012. Geo-Graphs: An Efficient Model for Enforcing Contiguity 
and Hole Constraints in Planar Graph Partitioning. Operations Research 60(5) 1213–1228
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Why Convex Subsets? (3)
More applications:
• Spatial Planning, e.g.,
 Justin C. Williams, 2003. Convex land acquisition with zero -

one programming. Environment and Planning B: Planning 
and Design, 30, 255-270

• Farmland and Woodland Consolidation
(Remembrement, Ruilverkaveling)
 Steffen Borgwardt, Andreas Brieden, and Peter Gritzmann, 

2014. Geometric Clustering for the Consolidation of Farmland 
and Woodland. Math. Intelligencer 36 37-44

• Police Quadrant Design
 work with Fernando Ordoñez and Flavio Guiñez (U. Chile)…
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Why Convex Subsets? (4)
Police Quadrant Design
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Why Convex Subsets? (5)
More applications:
• Forest Planning, e.g.,
 M. Goycoolea, M., A. T. Murray, J.P. Vielma, A. Weintraub, 2009. 

Evaluating approaches for solving the area restriction model in harvest 
scheduling. Forest Sci. 55 (2) 149-165

 Example: old growth patch from a Harvest Scheduling model
• R. Carvajal, M. Constantino, M. Goycoolea, J.P. Vielma, A. Weintraub. 

Imposing Connectivity Constraints in Forest Planning Models, 2011

without shape constraints with connectivity constraint
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More applications:
• Underground Mine Design and Scheduling, e.g.,

 PhD work of Anita Parkinson (UBC, 2012) with Tony Diering
(Gemcom) and  Tom McCormick, on drawpoint scheduling 

Why Convex Subsets? (6)

 “convex” caves  have 
better geomechanical
stability

 access constraints
→ 1D convexity 

along tunnels
current mine scheduling practice
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Why Convex Subsets? (7)
Another 1-dimensional application:
• The Unit Commitment Problem in electric 

power generation
 A generating unit must be “up” for successive time 

periods, i.e., for a convex subset  of the planning 
horizon P = {1,2,…,T } 

 Jon Lee, Janny Leung, François Margot, 2004. Min-up/min-
down polytopes.  Discr. Opt. 1 77-85

 Deepak Rajan, Samer Takriti, 2005. Minimum Up/Down 
Polytopes of the Unit Commitment Problem with Start-Up 
Costs.  IBM Research Report.
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Why Convex Subsets? (8)

…and more applications (in various dimensions):
• Data Mining, Statistical Clustering, Pattern 

Recognition, Data Compression, see, e.g., 
references in:
 David Eppstein, Mark Overmars, Günter Rote, and Gerhard Woeginger, 

1992. Finding Minimum Area k-gons. Discrete and Computational 
Geometry 7 45-58

 Paul Fischer, 1997. Sequential and parallel algorithms for finding a 
maximum convex polygon. Computational Geometry 7 187-200.

 C. Bautista-Santiago, J.M. Díaz-Báñez, D. Lara, P. Pérez-Lantero, J. 
Urrutia, and I. Ventura, 2011. Computing optimal islands. Operations 
Research Letters 39 (4) 246-251
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Our Research Agenda

We seek to define notions of (“convex”) shapes
that are
• relevant to applications, and
• computationally tractable:
 the Optimization Problem is efficiently solvable 

(or approximable)
 the shape requirements can be enforced 

(or approximated) by a concise system of linear 
inequalities in natural and/or extended variables
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Lectures Overview
Part 1: Computational complexity and algorithms
1. The Maximum Weight Convex Subset problem
2. Dimension 3 and higher: hardness results
3. One-dimension: a well understood case
Part 2: Modeling 2D and related convexities
1. 2D (points in the plane): DP algorithm for the 

optimization problem
2. 2D convex-shape constraints: IP modeling
3. Other notions of convexity

a) Poset convexity
b) Geodesic convexities and related notions
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1. Maximum Weight Convex Subset Problem

To model convex-shape constraints with linear 
inequalities, the Polytime Equivalence of 
Separation and Optimization (GLS 1985) suggests 
considering the optimization problem:
 Given a set P of n points in Rd and weights wp (of 

arbitrary sign) for all p∈P
 find a convex subset S of P with maximum weight  

w(S) = Σp∈S wp

the Maximum Weight Convex Subset problem
 also of interest for Lagrangian Relaxation, and  

Column Generation
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2. Dimension Three and Higher
• Joint work with Jeremy Barbay (U.Chile), Marek Chrobak (U.C. 

Riverside) and Miguel Constantino (U. Lisboa)
Theorem: The Maximum Weight Convex Subset problem is 

NP-hard for every dimension d > 3.
Proof: reduction from MIS3CONPLAN, the Maximum Independent 

Set problem on 3-connected planar graphs:
 embed instance G = (V, E) of MIS3CONPLAN in R3 as the 

skeleton of a convex polytope with vertices p(v) for all v∈V
 add the midpoint p(u,v) = (p(u)+p(v))/2

of every edge (u,v) ∈E
 let weights wp(u) = 1 and 

wp(u,v) = − M < −|V |
 a subset S of these |V |+ |E| points 

is convex with w(S) > 0 iff S∩V is 
an independent set in G, and w(S) = | S |

 proof trivially extends to every dimension d > 3                QED

+1

−M
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2. Dimension Three and Higher (2)
Theorem: When the dimension d is not fixed, the 

Maximum Weight Convex Subset problem cannot be 
approximated in polynomial time to within any 
factor n1−ε with ε > 0, unless P = NP

Proof: similar to previous proof, using the Maximum 
Independent Set (MIS) problem, known to be inapproximable
to within any factor n1−ε with ε > 0, unless P = NP:
 embed instance G = (V, E) of MIS in RV where p(v) is the 

v-th unit vector
 rest of the proof is identical

• for every (u,v)∈E add a point p(u,v) at midpoint (p(u)+p(v))/2 
• let weights wp(u) = 1 and wp(u,v) = − M < −|V |
• a subset S of these |V |+ |E| points is convex with w(S) > 0 iff

S∩V is an independent set in G, and w(S) = |S |                     QED
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2. Dimension Three and Higher (3)
Theorem: The Maximum Weight Convex Subset 

problem is NP-hard for every dimension d > 3.
Theorem: When the dimension d is not fixed, the 

Maximum Weight Convex Subset problem cannot 
be approximated in polynomial time to within 
any factor n1−ε with ε > 0, unless P = NP

Open Problem: to find approximation algorithms 
(e.g., with constant factor, or PTAS, …) for the 
MWCS problem in dimension 3 (or higher)?
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3. One-Dimension: a Well Understood Case

Given set P of n points p1 < p2 < … < pn in R, a subset S ⊆ P
is convex iff it consists of consecutive (or contiguous) points 
in P, i.e., iff S = {pi , …, pj } for some i < j (or S = ∅)
• given any weights w1 , …, wn the optimization problem 

(MWCS) is very easy
 solved in linear time (by Dynamic Programming)

• with “natural” membership binary variables yj = 1 iff pj∈S
O(n3)  3-point constraints

yi > yh + yj − 1  for all h < i < j
suffice to enforce convexity of S (with binary variables)
 Using   i = h+1  suffices, so O(n2) constraints suffice
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3. One-Dimension (2)
• … but the polyhedron defined by the 3-point alternating 

constraints and 0 < y < 1 has fractional extreme points
• General alternating constraints:  

Σi=1,..,k (−1)i+1 yd(i)  < 1  for every 
 odd integer k = 3, 5, …  (3 < k < n)
 (odd) subsequence d(1) < d(2) < … < d(k) of points

• Polyhedral result (Groeflin & Liebling, 1981; Lee & al., 
2004):
Theorem: In one dimension, the general alternating 
constraints and   0 < y < 1  define the convex hull (in Rn ) 
of the set of all characteristic vectors y of contiguous 
subsets.
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3. One-Dimension (3)
• General alternating constraints:  

Σi=1,..,k (−1)i+1 yd(i) < 1  for every 
 odd integer k = 3, 5, …  (3 < k < n)  and
 (odd) subsequence d(1) < d(2) < … < d(k)

• About 2n-1 such constraints 
• Cutting plane approach

…requires solving the Separation Problem: 
Given vector y satisfying 0 < y < 1 
does y satisfy all alternating constraints? 
 and, if not, identify a violated constraint.

• O(n) exact separation algorithm (Lee & al.)
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3. One-Dimension (4)
Extended Formulation:
• Auxiliary variable Fi = 1 indicates that point p(i) is 

the leftmost point of the selected region S

ii yF ≤

1−−≥ iii yyF

1
1

≤∑
=

n

i
iF

Point p(i) must be selected to be leftmost

If p(i) is selected but p(i −1)  is not, 
then p(i) must be leftmost 

At most one leftmost point

Theorem (Malkin & Wolsey, 2003; Rajan & Takriti,’05):
This extended formulation is ideal, i.e., the extreme 
points of the corresponding polyhedron are the 0-1 
vectors representing all the contiguous solutions

>
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Formulation as a Minimum Cost (actually, Maximum 
Profit) Network Flow Problem: 
• send at most 1 unit of flow to maximize ∑

=

n

i
ii yw

1

ixxy s,iiii nodethruflowtheiswhere ,1 += −

1
w1

2
w2

Source s

n-1
wn-1

n
wn

xs,1

x1,z x2,z

Sink z

xs,2
x1,2

xs,n

x2,3 xn-1,n

xn,z1
1

, ≤∑
=

n

i
isx

z,ii,ii,ii,s xxxx +=+ +− 11

s,ii,ii xxy += −1

3. One-Dimension (5)
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iii Fyy −≥−1

)0(from0 1 ≥≥− − i,iii xFy

1≤∑ iF

 Split each node to represent the flow through this node
 Extreme point solutions are integral
 Eliminate arc flow variables xi-1,i → Extended Formulation

1’1 2’2

Source

n-1’n-1 n’n

F1

y1 y2

Sink

F2

yn

Fn-1

Fn

yn-1

3. One-Dimension (6)
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3. One-Dimension (7)
 Formulate Separation Problem for given vector y as feasibility flow
with flow value 1; LB & UB yi on split-node arcs, 0 & +∞ elsewhere
Apply Alan Hoffman’s Feasible Circulation Theorem:

– finite capacity cuts  ↔ odd subsets d(1) < d(2) < … < d(k) 

1’1 2’2

Source

n-1’n-1 n’n

F1

y1 y2

Sink

F2

yn

Fn-1

Fn

yn-1

1)1(
1 )(

1 ≤−∑ =
+k

i id
i y

Example:
y1 − y2 + yn-1 ≤ 1

UB
LB

Σ→ LB − Σ← UB ≤ 1

→ gives the alternating
constraints!

= 1
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Lectures Overview
Part 1: Computational complexity and algorithms
1. The Maximum Weight Convex Subset problem
2. Dimension 3 and higher: hardness results
3. One-dimension: a well understood case
Part 2: Modeling 2D and related convexities
1. 2D (points in the plane): DP algorithm for the 

optimization problem
2. 2D convex-shape constraints: IP modeling
3. Other notions of convexity

a) Poset convexity
b) Geodesic convexities and related notions
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