Modeling Convex Subsets of Points - Part 1

Maurice Queyranne

Sauder School of Business at UBC, and CORE, Université Catholique de Louvain
based on recent and current joint with several collaborators...

LNMB Conference, Lunteren
January 12-13, 2016

ORBEL 30 CONFERENCE

JANUARY 28-29, 2016
A 50 DAYS@CORE EVENT

GEYNOTE LECTURES

Eva K. LEE (Georgia Technology Institute)
Yurii NESTEROV (Université catholique de Louvain)
Laurence A. WOLSEY (Université catholique de Louvain]

VENUE

Université catholique de Louvain
AGORA Auditorium [Place Agora, B-1348 Louvain-la-Neuve, Belgium]
REGISTRATION
To register, visit: hitp //formw ortbel be/arbel30

CORE@50 CONFERENCE

 BRIDGING GAPS • MAY 23-27, 2016
CALL FOR PAPERS

KEYNOTE LECTURES
Marc FLEURBAEY (Princeton)
Michel GOEMANS (MIT)
George NEMHAUSER (Georgia Tech) Victor CHERNOZHUKOV (MIT)

VENUE

Université catholique de Louvain
Louvain-la-Neuve, Belgium

For information, to register or submit a paper http://www.core50.be/

UCL

Université catholique de Louvain

C RE

Convex Subsets of a Given Point Set

- A subset S of a given (finite) set P of n points in \mathbf{R}^{d} is convex (relative to P) iff $S=P \cap \operatorname{conv}(S)$ equivalently: $P \cap \operatorname{conv}(S) \subseteq S($ since $P \cap \operatorname{conv}(S) \supseteq S$)
- i.e., if we select a subset S of points in P then we must also select all points of P that are in their convex hull
- definition also applies to more general closure spaces or convexity spaces
- We are interested in formulating the restriction "the selected set of points
 must be convex" in Integer Programming models
- as hard or soft constraints

Why Convex Subsets?

- Many (discrete) optimization models seek one or several subsets (of a given set of points, or of elementary regions, a.k.a., "cells") that should satisfy some "shape constraint"
- often vaguely expressed: the set should "look compact", its shape should no be "too odd", etc.
- Convexity is one way of precisely formulating such shape constraints, which is appropriate (or approximately so) in some applications...

Why Convex Subsets? (2)

Some applications:

- Designing electoral districts
- "Gerrymandering"

Gov. E. Gerry's "salamander" Massachusetts, 1812

Illinois, 2004

- Douglas M. King, et al., 2012. Geo-Graphs: An Efficient Model for Enforcing Contiguity and Hole Constraints in Planar Graph Partitioning. Operations Research 60(5) 1213-1228

Why Convex Subsets? (3)

More applications:

- Spatial Planning, e.g.,
- Justin C. Williams, 2003. Convex land acquisition with zero one programming. Environment and Planning B: Planning and Design, 30, 255-270
- Farmland and Woodland Consolidation
(Remembrement, Ruilverkaveling)
- Steffen Borgwardt, Andreas Brieden, and Peter Gritzmann, 2014. Geometric Clustering for the Consolidation of Farmland and Woodland. Math. Intelligencer 36 37-44
- Police Quadrant Design
- work with Fernando Ordoñez and Flavio Guiñez (U. Chile)...

Why Convex Subsets? (4) Police Quadrant Design

The Resource Assignment Plan

Why Convex Subsets? (5)

More applications:

- Forest Planning, e.g.,
- M. Goycoolea, M., A. T. Murray, J.P. Vielma, A. Weintraub, 2009. Evaluating approaches for solving the area restriction model in harvest scheduling. Forest Sci. 55 (2) 149-165
- Example: old growth patch from a Harvest Scheduling model
- R. Carvajal, M. Constantino, M. Goycoolea, J.P. Vielma, A. Weintraub. Imposing Connectivity Constraints in Forest Planning Models, 2011

without shape constraints

with connectivity constraint

Why Convex Subsets? (6)

More applications:

- Underground Mine Design and Scheduling, e.g.,
- PhD work of Anita Parkinson (UBC, 2012) with Tony Diering (Gemcom) and Tom McCormick, on drawpoint scheduling
- "convex" caves have better geomechanical stability
- access constraints
\rightarrow 1D convexity along tunnels

current mine scheduling practice

Why Convex Subsets? (7)

Another 1-dimensional application:

- The Unit Commitment Problem in electric power generation
- A generating unit must be "up" for successive time periods, i.e., for a convex subset of the planning horizon $P=\{1,2, \ldots, T\}$
- Jon Lee, Janny Leung, François Margot, 2004. Min-up/mindown polytopes. Discr. Opt. 1 77-85
- Deepak Rajan, Samer Takriti, 2005. Minimum Up/Down Polytopes of the Unit Commitment Problem with Start-Up Costs. IBM Research Report.

Why Convex Subsets? (8)

....and more applications (in various dimensions):

- Data Mining, Statistical Clustering, Pattern Recognition, Data Compression, see, e.g., references in:
- David Eppstein, Mark Overmars, Günter Rote, and Gerhard Woeginger, 1992. Finding Minimum Area k-gons. Discrete and Computational Geometry 7 45-58
- Paul Fischer, 1997. Sequential and parallel algorithms for finding a maximum convex polygon. Computational Geometry 7 187-200.
- C. Bautista-Santiago, J.M. Díaz-Báñez, D. Lara, P. Pérez-Lantero, J. Urrutia, and I. Ventura, 2011. Computing optimal islands. Operations Research Letters 39 (4) 246-251

Our Research Agenda

We seek to define notions of ("convex") shapes that are

- relevant to applications, and
- computationally tractable:
- the Optimization Problem is efficiently solvable (or approximable)
- the shape requirements can be enforced (or approximated) by a concise system of linear inequalities in natural and/or extended variables

Lectures Overview

Part 1: Computational complexity and algorithms

1. The Maximum Weight Convex Subset problem
2. Dimension 3 and higher: hardness results
3. One-dimension: a well understood case

Part 2: Modeling 2D and related convexities

1. 2D (points in the plane): DP algorithm for the optimization problem
2. 2D convex-shape constraints: IP modeling
3. Other notions of convexity
a) Poset convexity
b) Geodesic convexities and related notions

1. Maximum Weight Convex Subset Problem

To model convex-shape constraints with linear inequalities, the Polytime Equivalence of Separation and Optimization (GLS 1985) suggests considering the optimization problem:

- Given a set P of n points in \mathbf{R}^{d} and weights w_{p} (of arbitrary sign) for all $p \in P$
- find a convex subset S of P with maximum weight $w(S)=\Sigma_{p \in S} w_{p}$
the Maximum Weight Convex Subset problem
- also of interest for Lagrangian Relaxation, and Column Generation

2. Dimension Three and Higher

- Joint work with Jeremy Barbay (U.Chile), Marek Chrobak (U.C. Riverside) and Miguel Constantino (U. Lisboa)
Theorem: The Maximum Weight Convex Subset problem is NP-hard for every dimension $d \geq 3$.
Proof: reduction from MIS3ConPlan, the Maximum Independent Set problem on 3-connected planar graphs:
- embed instance $G=(V, E)$ of MIS3ConPLAN in \mathbf{R}^{3} as the skeleton of a convex polytope with vertices $p(v)$ for all $v \in V$
- add the midpoint $p(u, v)=(p(u)+p(v)) / 2$ of every edge $(u, v) \in E$
- let weights $w_{p(u)}=1$ and

$$
w_{p(u, v)}=-M<-|V|
$$

- a subset S of these $|V|+|E|$ points is convex with $w(S) \geq 0$ iff $S \cap V$ is an independent set in G, and $w(S)=|S|$

- proof trivially extends to every dimension $d>3$

2. Dimension Three and Higher (2)

Theorem: When the dimension d is not fixed, the Maximum Weight Convex Subset problem cannot be approximated in polynomial time to within any factor $n^{1-\varepsilon}$ with $\varepsilon>0$, unless $\mathrm{P}=\mathrm{NP}$
Proof: similar to previous proof, using the Maximum Independent Set (MIS) problem, known to be inapproximable to within any factor $n^{1-\varepsilon}$ with $\varepsilon>0$, unless $\mathrm{P}=\mathrm{NP}$:

- embed instance $G=(V, E)$ of MIS in \mathbf{R}^{V} where $p(v)$ is the v-th unit vector
- rest of the proof is identical
- for every $(u, v) \in E$ add a point $p(u, v)$ at midpoint $(p(u)+p(v)) / 2$
- let weights $w_{p(u)}=1$ and $w_{p(u, v)}=-M<-|V|$
- a subset S of these $|V|+|E|$ points is convex with $w(S) \geq 0$ iff $S \cap V$ is an independent set in G, and $w(S)=|S|$

2. Dimension Three and Higher (3)

Theorem: The Maximum Weight Convex Subset problem is NP-hard for every dimension $d \geq 3$.

Theorem: When the dimension d is not fixed, the Maximum Weight Convex Subset problem cannot be approximated in polynomial time to within any factor $n^{1-\varepsilon}$ with $\varepsilon>0$, unless $\mathrm{P}=\mathrm{NP}$

Open Problem: to find approximation algorithms (e.g., with constant factor, or PTAS, ...) for the MWCS problem in dimension 3 (or higher)?

3. One-Dimension: a Well Understood Case

Given set P of n points $p_{1}<p_{2}<\ldots<p_{n}$ in \mathbf{R}, a subset $S \subseteq P$ is convex iff it consists of consecutive (or contiguous) points in P, i.e., iff $S=\left\{p_{i}, \ldots, p_{j}\right\}$ for some $i \leq j$ (or $S=\varnothing$)

- given any weights w_{1}, \ldots, w_{n} the optimization problem (MWCS) is very easy
- solved in linear time (by Dynamic Programming)
- with "natural" membership binary variables $y_{j}=1$ iff $p_{j} \in S$ $\mathrm{O}\left(n^{3}\right)$ 3-point constraints

$$
y_{i} \geq y_{h}+y_{j}-1 \text { for all } h<i<j
$$

suffice to enforce convexity of S (with binary variables)

- Using $i=h+1$ suffices, so $O\left(n^{2}\right)$ constraints suffice

3. One-Dimension (2)

- ... but the polyhedron defined by the 3-point alternating constraints and $0 \leq y \leq 1$ has fractional extreme points
- General alternating constraints:

$$
\sum_{i=1, ., k}(-1)^{i+1} y_{d(i)} \leq 1 \text { for every }
$$

- odd integer $k=3,5, \ldots \quad(3 \leq k \leq n)$
- (odd) subsequence $d(1)<d(2)<\ldots<d(k)$ of points
- Polyhedral result (Groeflin \& Liebling, 1981; Lee \& al., 2004):

Theorem: In one dimension, the general alternating constraints and $0 \leq y \leq 1$ define the convex hull (in \mathbf{R}^{n}) of the set of all characteristic vectors y of contiguous subsets.

3. One-Dimension (3)

- General alternating constraints:

$$
\sum_{i=1, \ldots, k}(-1)^{i+1} y_{d(i)} \leq 1 \text { for every }
$$

- odd integer $k=3,5, \ldots(3 \leq k \leq n)$ and
- (odd) subsequence $d(1)<d(2)<\ldots<d(k)$
- About 2^{n-1} such constraints
- Cutting plane approach
...requires solving the Separation Problem:
Given vector y satisfying $0 \leq y \leq 1$
- does y satisfy all alternating constraints?
- and, if not, identify a violated constraint.
- $\mathrm{O}(n)$ exact separation algorithm (Lee \& al.)

3. One-Dimension (4)

Extended Formulation:

- Auxiliary variable $F_{i}=1$ indicates that point $p(i)$ is the leftmost point of the selected region S

$$
\begin{aligned}
& F_{i} \leq y_{i} \\
& F_{i} \geq y_{i}-y_{i-1}
\end{aligned}
$$

Point $p(i)$ must be selected to be leftmost
If $p(i)$ is selected but $p(i-1)$ is not, then $p(i)$ must be leftmost
$\sum_{i=1}^{n} F_{i} \leq 1$
At most one leftmost point
Theorem (Malkin \& Wolsey, 2003; Rajan \& Takriti,'05): This extended formulation is ideal, i.e., the extreme points of the corresponding polyhedron are the $0-1$ vectors representing all the contiguous solutions

3. One-Dimension (5)

Formulation as a Minimum Cost (actually, Maximum Profit) Network Flow Problem:

- send at most 1 unit of flow to maximize $\sum_{i=1}^{n} w_{i} y_{i}$

3. One-Dimension (6)

- Split each node to represent the flow through this node
- Extreme point solutions are integral
- Eliminate arc flow variables $x_{i-1, i} \rightarrow$ Extended Formulation

3. One-Dimension (7)

- Formulate Separation Problem for given vector y as feasibility flow with flow value $1 ; \mathrm{LB} \& \mathrm{UB} y_{i}$ on split-node arcs, $0 \&+\infty$ elsewhere
- Apply Alan Hoffman's Feasible Circulation Theorem:
- finite capacity cuts \leftrightarrow odd subsets $d(1)<d(2)<\ldots<d(k)$

Lectures Overview

Part 1: Computational complexity and algorithms 1. The Maximum Weight Convex Subset problem
2. Dimension 3 and higher: hardness results
3. One-dimension: a well understood case

Part 2: Modeling 2D and related convexities

1. 2D (points in the plane): DP algorithm for the optimization problem
2. 2D convex-shape constraints: IP modeling
3. Other notions of convexity
a) Poset convexity
b) Geodesic convexities and related notions
