Introduction Social Choice

One-Sided Matching

Stable, Two-Sided Matching

General Approach

Wrap-up

Mechanism Design through Statistical Machine Learning: Part II (Social Choice and Matching)

David C. Parkes

Computer Science John A. Paulson School of Engineering and Applied Sciences Harvard University

January 13, 2016

Introduction ●○○○○○	Social Choice	One-Sided Matching	Stable, Two-Sided Matching	General Approach	Wrap-up 000
Mecha	inism De	esign withou	ut Money		

The use of money is *not natural* in many multi-agent settings:

- Matching students to high schools, doctors to hospitals
- Choosing a location for a new firestation
- Assigning volunteers to evening shifts at a childcare co-op
- Meeting scheduling

Agents have preference order $a \succ_i a'$ on alternatives $a \in A$.

Pareto-optimality, envy-free, non-dictatorial.

Introduction ●○○○○○	Social Choice	One-Sided Matching	Stable, Two-Sided Matching	General Approach	Wrap-up 000
Mecha	inism De	sign withou	ut Money		

The use of money is not natural in many multi-agent settings:

- Matching students to high schools, doctors to hospitals
- Choosing a location for a new firestation
- Assigning volunteers to evening shifts at a childcare co-op
- Meeting scheduling

Agents have preference order $a \succ_i a'$ on alternatives $a \in A$.

Example desiderata:

Pareto-optimality, envy-free, non-dictatorial.

Introduction ●00000	Social Choice	One-Sided Matching	Stable, Two-Sided Matching	General Approach	Wrap-up 000
Mecha	inism De	esign withou	ut Money		

The use of money is not natural in many multi-agent settings:

- Matching students to high schools, doctors to hospitals
- Choosing a location for a new firestation
- Assigning volunteers to evening shifts at a childcare co-op
- Meeting scheduling

Agents have preference order $a \succ_i a'$ on alternatives $a \in A$.

Example desiderata:

Pareto-optimality, envy-free, non-dictatorial.

Introduction 00000	Social Choice	One-Sided Matching	Stable, Two-Sided Matching	General Approach	Wrap-up 000
The R	asic Mor				

- Agent *i* has a preference order $\succ_i \in P$, preference profile $\succ = (\succ_1, \dots, \succ_n)$, sampled $\succ \sim D$
- Alternatives A. Outcome rule $f : P^n \mapsto A$
- Incentive compatibility. Given rule f, want

$f(\succ_i, \hat{\succ}_{-i}) \succeq_i f(\hat{\succ}_i, \hat{\succ}_{-i})$, for all \succ_i , all $\hat{\succ}_i$, all $\hat{\succ}_{-i}$

- Examples of IC Mechanisms:
 - For assignment: Random serial dictatorship, top-trading cycles, ...
 - For social choice: Median mechanism:

Introduction 00000	Social Choice	One-Sided Matching	Stable, Two-Sided Matching	General Approach	Wrap-up 000
The B	asic Moo	del			

- Agent *i* has a preference order $\succ_i \in P$, preference profile $\succ = (\succ_1, \dots, \succ_n)$, sampled $\succ \sim D$
- Alternatives A. Outcome rule $f : P^n \mapsto A$
- Incentive compatibility. Given rule f, want

$f(\succ_i, \hat{\succ}_{-i}) \succeq_i f(\hat{\succ}_i, \hat{\succ}_{-i}), \text{ for all } \succ_i, \text{ all } \hat{\succ}_i, \text{ all } \hat{\succ}_{-i}$

- Examples of IC Mechanisms:
 - For assignment: Random serial dictatorship, top-trading cycles, ...
 - For social choice: Median mechanism:

Introduction o●oooo	Social Choice	One-Sided Matching	Stable, Two-Sided Matching	General Approach	Wrap-up 000
The B	asic Moo	del			

- Agent *i* has a preference order $\succ_i \in P$, preference profile $\succ = (\succ_1, \dots, \succ_n)$, sampled $\succ \sim D$
- Alternatives A. Outcome rule $f : P^n \mapsto A$
- Incentive compatibility. Given rule f, want

$$f(\succ_i, \hat{\succ}_{-i}) \succeq_i f(\hat{\succ}_i, \hat{\succ}_{-i})$$
, for all \succ_i , all $\hat{\succ}_i$, all $\hat{\succ}_{-i}$

Examples of IC Mechanisms:

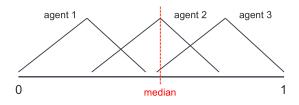
- For assignment: Random serial dictatorship, top-trading cycles, . . .
- For social choice: Median mechanism:

Introduction 00000	Social Choice	One-Sided Matching	Stable, Two-Sided Matching	General Approach	Wrap-up 000
The B	asic Moo	del			

- Agent *i* has a preference order $\succ_i \in P$, preference profile $\succ = (\succ_1, \dots, \succ_n)$, sampled $\succ \sim D$
- Alternatives A. Outcome rule $f : P^n \mapsto A$
- Incentive compatibility. Given rule f, want

$$f(\succ_i, \hat{\succ}_{-i}) \succeq_i f(\hat{\succ}_i, \hat{\succ}_{-i})$$
, for all \succ_i , all $\hat{\succ}_i$, all $\hat{\succ}_{-i}$

- Examples of IC Mechanisms:
 - For assignment: Random serial dictatorship, top-trading cycles, . . .
 - For social choice: Median mechanism:



Introduction 000000 Social Choice Or

One-Sided Matching

Stable, Two-Sided Matching

General Approach

Wrap-up

State of the art (MD without money)

Gibbard-Satterthwaite impossibility result

Characterization results for specific problems

 Often axiomatic, e.g., class of IC, onto, neutral rules for single-peaked setting is generalized median mechanisms
 Impossibility results as well

No general design theory, results for specific preference domains, axiomatic rather than optimization-based Introduction Social Choice One-Sided Matching Stable, Two-Sided Matching General Approach Wrap-up ooo

State of the art (MD without money)

Gibbard-Satterthwaite impossibility result

- Characterization results for specific problems
 - Often axiomatic, e.g., class of IC, onto, neutral rules for single-peaked setting is *generalized median mechanisms* Impossibility results as well
- No general design theory, results for specific preference domains, axiomatic rather than optimization-based

Introduction Social Choice One-Sided Matching Stable, Two-Sided Matching General Approach Wrap-up ooo

State of the art (MD without money)

Gibbard-Satterthwaite impossibility result

- Characterization results for specific problems
 - Often axiomatic, e.g., class of IC, onto, neutral rules for single-peaked setting is generalized median mechanisms
 Impossibility results as well
- No general design theory, results for specific preference domains, axiomatic rather than optimization-based

Introduction 000●00	Social Choice	One-Sided Matching	Stable, Two-Sided Matching	General Approach	Wrap-up 000
The M	achine L	earning Fra	amework		

- (Part 1) Mechanism design with money:
 - Given outcome rule $f : X^n \mapsto Y$
 - Want to *learn payment rule* t_w such that mechanism (*f*, t_w) is *maximally-IC*.

(Part 2) Mechanism design without money:

- Given target outcome rule $f : P^n \mapsto A$ (via training examples)
- Want to learn outcome rule f_w that is IC and solves

$$\min_{f_w \in \mathcal{F}_{ic}} \mathbb{E}_{\succ \sim D}[\ell(f(\succ), f_w(\succ), \succ)],$$

for IC rules \mathcal{F}_{ic} and *loss function* $l(\alpha, \alpha', \succ) \geq 0$.

Introduction 000●00	Social Choice	One-Sided Matching	Stable, Two-Sided Matching	General Approach	Wrap-up 000
The M	achine L	earning Fra	amework		

(Part 1) Mechanism design with money:

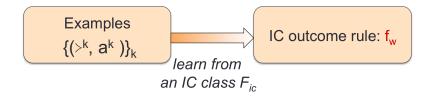
- Given outcome rule $f : X^n \mapsto Y$
- Want to *learn payment rule* t_w such that mechanism (f, t_w) is *maximally-IC*.

(Part 2) Mechanism design without money:

- Given *target outcome rule* $f : P^n \mapsto A$ (via training examples)
- Want to *learn outcome rule* f_w that is *IC* and solves

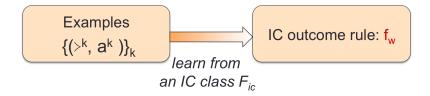
$$\min_{f_w \in \mathcal{F}_{ic}} \mathbb{E}_{\succ \sim D}[\ell(f(\succ), f_w(\succ), \succ)],$$

for IC rules \mathcal{F}_{ic} and *loss function* $\ell(a, a', \succ) \geq 0$.



Related work:

- Procaccia et al.'09: Learning non-IC voting rules
- Conitzer and Sandholm '02, Guo and Conitzer'10: Search through (parameterized) space of feasible mechanisms.



Related work:

- Procaccia et al.'09: Learning non-IC voting rules
- Conitzer and Sandholm '02, Guo and Conitzer'10: Search through (parameterized) space of feasible mechanisms.

Introduction ○○○○○●	Social Choice	One-Sided Matching	Stable, Two-Sided Matching	General Approach	Wrap-up
Outline	Э				

Configuration problems:

- 1 Single-Peaked Social choice
- 2 One-sided matching (assignment)
- 3 Stable, two-sided matching

Closing: towards a general framework (back to prices!), and a direction for 'with money' design.

Introduction ○○○○○●	Social Choice	One-Sided Matching	Stable, Two-Sided Matching	General Approach	Wrap-up
Outline	9				

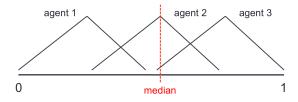
Configuration problems:

- Single-Peaked Social choice
- 2 One-sided matching (assignment)
- 3 Stable, two-sided matching

Closing: towards a general framework (back to prices!), and a direction for 'with money' design.

Setting 1: Single-Peaked Social Choice

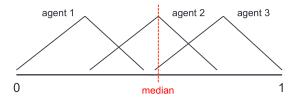
- Alternatives A, preference order \succ_i , with peak $o_i \in A$.
- Alternative *a* has *position* $z_a \in [0, 1]$.
 - a < a' indicates $z_a < z_{a'}$.



F_{ic}: class of *weighted generalized median rules*, generalize GM rules

Setting 1: Single-Peaked Social Choice

- Alternatives A, preference order \succ_i , with peak $o_i \in A$.
- Alternative *a* has *position* $z_a \in [0, 1]$.
 - a < a' indicates $z_a < z_{a'}$.

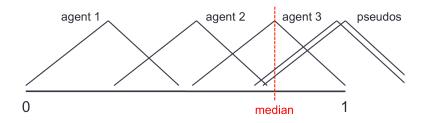


F_{ic}: class of *weighted generalized median rules*, generalize GM rules

Introduction	Social Choice	One-Sided Matching	Stable, Two-Sided Matching	General Approach	Wrap-up
	00000				

Generalized Median Rule

(Moulin'80)



$$rank(\succ, a) = \sum_{i} \mathbb{I}(o_{i} \le a) + \sum_{i'} \mathbb{I}(o_{i'} \le a)$$
$$f(\succ) = \arg\min_{a} \{z_{a} \mid rank(\succ, a) \ge \frac{(n+n_{p})}{2}\}$$

Introduction Social Choice One-Sided Matching Stable, Two-Sided Matching

• Weights $\alpha \in \mathbb{R}^n_{\geq 0}$ and $\beta \in \mathbb{R}^m_{\geq 0}$. Define: $rank_w(\succ, \alpha) = \sum_i \alpha_i \cdot \mathbb{1}(o_i \leq \alpha) + \sum_j \beta_j \cdot \mathbb{1}(j \leq \alpha)$

Given *threshold* $t \ge 0$, select:

$$f_w(\succ) = \arg\min_a \{z_a \mid rank_w(\succ, a) \ge t\}$$

General Approach

Wrap-up

Example

3 agents $\alpha = (1, 2, 3)$, 5 choices $\beta = (1.5, 0.5, 0, 0, 1.5)$, and t = 3. Agent peaks (α, c, d) . Ranks: 2.5, 3, 5, ...; $f_w(\succ) = b$.

Weighted Generalized-Median Rule

One-Sided Matching

Weights
$$\alpha \in \mathbb{R}^n_{\geq 0}$$
 and $\beta \in \mathbb{R}^m_{\geq 0}$. Define:
 $rank_w(\succ, \alpha) = \sum_i \alpha_i \cdot \mathbb{I}(o_i \leq \alpha) + \sum_j \beta_j \cdot \mathbb{I}(j \leq \alpha)$

Given *threshold* $t \ge 0$, select:

$$f_w(\succ) = \arg\min_a \{z_a \mid rank_w(\succ, a) \ge t\}$$

Stable, Two-Sided Matching

General Approach

Wrap-up

Example

Introduction

Social Choice

3 agents $\alpha = (1, 2, 3)$, 5 choices $\beta = (1.5, 0.5, 0, 0, 1.5)$, and t = 3. Agent peaks (α, c, d) . Ranks: 2.5, 3, 5, ...; $f_w(\succ) = b$.

Introduction 000000	Social Choice	One-Sided Matching	Stable, Two-Sided Matching	General Approach	Wrap-up 000			
Learni	Learning the optimal GWM rule							

1 $w \in \mathbb{R}^{n+m+1}$. Adopt (continuous) *discriminant function*:

$$H_w(\succ, a) = -(rank_w(\succ, a) - t)^2.$$

Not IC; but use learned w to instantiate a WGM rule.

2 Incorporate loss function $l(a, a', \succ) = |z_{a'} - z_a|$, via a continuous surrogate l', obtaining training problem:

$$\min_{w} \frac{1}{2} w^{\top} w + C \sum_{k} \ell'(a^{k}, f_{w}(\succ^{k}), \succ^{k}).$$

Need not be convex, solve via gradient-descent, restarts.

Introduction 000000	Social Choice 000●00	One-Sided Matching	Stable, Two-Sided Matching	General Approach	Wrap-up 000
Learni	ng the o	ptimal GWI	V rule		

1 $w \in \mathbb{R}^{n+m+1}$. Adopt (continuous) *discriminant function*:

$$H_w(\succ, a) = -(rank_w(\succ, a) - t)^2.$$

Not IC; but use learned w to instantiate a WGM rule.

2 Incorporate *loss function* $l(a, a', \succ) = |z_{a'} - z_a|$, via a continuous *surrogate* l', obtaining *training problem*:

$$\min_{w} \frac{1}{2} w^{\mathsf{T}} w + C \sum_{k} \ell'(\alpha^{k}, f_{w}(\succ^{k}), \succ^{k}).$$

Need not be convex, solve via gradient-descent, restarts.

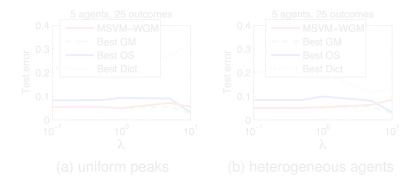
Introduction Social Choice One-Sided Matching Stable, Two-Sided Matching General Approach

Results: Single-Peaked Social Choice

■ Target outcome rule: priorities $C(z) = e^{-\lambda z}$ for $\lambda \ge 0$, and $f(\succ) \in \arg \min_a \sum_i C(z_{o_i}) \cdot (z_a - z_{o_i})^2$

Wrap-up

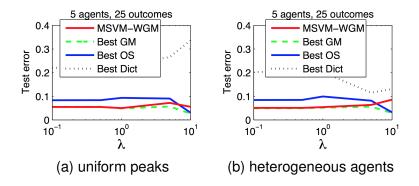
Compare with best GM rule, best order-statistic rule, and best dictatorial rule. Loss is distance from target.



Introduction Social Choice One-Sided Matching Stable, Two-Sided Matching General Approach Wrap-up ooo oo

Results: Single-Peaked Social Choice

- *Target outcome rule*: priorities $C(z) = e^{-\lambda z}$ for $\lambda \ge 0$, and $f(\succ) \in \arg \min_a \sum_i C(z_{o_i}) \cdot (z_a z_{o_i})^2$
- Compare with best GM rule, best order-statistic rule, and best dictatorial rule. Loss is distance from target.



Introduction	Social Choice 00000●	One-Sided Matching	Stable, Two-Sided Matching	General Approach	Wrap-up 000
Compa	aring rur	i time			

- m = 25, time in minutes.
- indicates did not complete in 24 hours

	n=5	n = 7	n=9	n = 11
MSVM-WGM	27.65	29.97	29.95	30.00
Best GM	0.33	9.33	168.27	-
Best Percentile	3E-5	5E-5	6E-5	7E-5

Introduction	Social Choice	One-Sided Matching	Stable, Two-Sided Matching	General Approach	Wrap-up
Setting	g 2: One	-Sided Mat	ching (Assigni	ment)	

- Alternative $a \in A$ assigns items $\{1, \ldots, n\}$ to agents
- *Preferences* \succ_i on items
- *F_{ic}*: class of *Adaptive Serial-Dictator rules*

Example

Serial dictator rule. 3 agents, 3 items. Priority order 1 > 2 > 3. Reports:

```
≻1: bca ≻2: cab ≻3: bac
```

1 gets *b*, 2 gets *c*, 3 gets *α*.

				(10.0	
Introduction	Social Choice	One-Sided Matching	Stable, Two-Sided Matching	General Approach	Wrap-up 000

Setting 2: One-Sided Matching (Assignment)

- Alternative $a \in A$ assigns items $\{1, \ldots, n\}$ to agents
- *Preferences* \succ_i on items
- *F_{ic}*: class of *Adaptive Serial-Dictator rules*

Example

Serial dictator rule. 3 agents, 3 items. Priority order 1 > 2 > 3. Reports:

```
\succ_1: bca \succ_2: cab \succ_3: bac
```

1 gets *b*, 2 gets *c*, 3 gets *a*.

Introduction	Social Choice	One-Sided Matching ○●○○	Stable, Two-Sided Matching	General Approach	Wrap-up 000		
Adaptive Serial-Dictator rules							

Adaptive Serial-Dictator (Bade 2015, Pápai 2001):

- Priorities determined adaptively based on current assignment
- Use a priority tree. Start at root. Node specifies highest-priority agent, next node depends on selected item.

Tree with one-level of adaptation:

Example

3 agents, 3 items. Reports:

 \succ_1 : bca \succ_2 : cab \succ_3 : bac

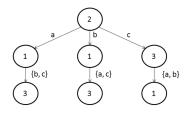
2 gets c, 3 gets b, and 1 gets a.

Introduction	Social Choice	One-Sided Matching	Stable, Two-Sided Matching	General Approach	Wrap-up 000		
Adaptive Serial-Dictator rules							

Adaptive Serial-Dictator (Bade 2015, Pápai 2001):

- Priorities determined adaptively based on current assignment
- Use a priority tree. Start at root. Node specifies highest-priority agent, next node depends on selected item.

Tree with *one-level* of adaptation:



Example

3 agents, 3 items. Reports:

$$\succ_1$$
: bca \succ_2 : cab \succ_3 : bac

2 gets
$$c$$
, 3 gets b , and 1 gets a .

Introduction

Social Choice One-Sided Matching

Stable, Two-Sided Matching

General Approach

Wrap-up

Learning Adaptive SD Rules

Challenge: combinatorially large number of priority trees

Use a greedy approach:

- Tree-splitting step: assign the agent who is top-priority in optimal SD at subproblem rooted at a node
- Branch on each item, and recurse
- Stop at a desired level; adopt optimal SD for rest of economy.

Introduction

Social Choice One-Sided Matching

Stable, Two-Sided Matching

General Approach

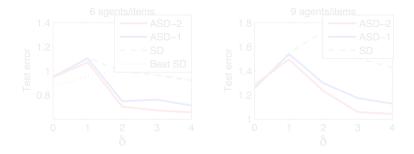
Wrap-up 000

Learning Adaptive SD Rules

- Challenge: combinatorially large number of priority trees
- Use a greedy approach:
 - Tree-splitting step: assign the agent who is top-priority in optimal SD at subproblem rooted at a node
 - Branch on each item, and *recurse*.
 - Stop at a desired level; adopt optimal SD for rest of economy.

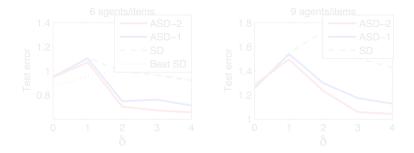
Results: One-sided Matching (Assignment)

- Target outcome rule: Hungarian assignment, with higher obj. value to agents who prefer particular items.
- Loss function: total absolute change in rank.
- Sary correlation parameter δ (higher, more concentration.)



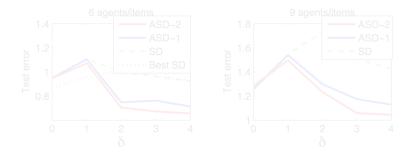
Results: One-sided Matching (Assignment)

- Target outcome rule: Hungarian assignment, with higher obj. value to agents who prefer particular items.
- Loss function: total absolute change in rank.
- Sary correlation parameter δ (higher, more concentration.)



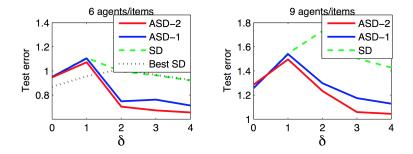
Results: One-sided Matching (Assignment)

- Target outcome rule: Hungarian assignment, with higher obj. value to agents who prefer particular items.
- Loss function: total absolute change in rank.
- Vary correlation parameter δ (higher, more concentration.)



Results: One-sided Matching (Assignment)

- Target outcome rule: Hungarian assignment, with higher obj. value to agents who prefer particular items.
- Loss function: total absolute change in rank.
- Vary correlation parameter δ (higher, more concentration.)



Introduction Social Choice One-Sided Matching Stable, Two-Sided Matching General Approach Wrap-up 000000 0000 000 000 000 000 000

Setting 3: Stable, Two-Sided Matching

Bipartite graph I and J. Alternative a defines a matching.

- For $i \in I$: preference order \succ_i on *J*.
- For $j \in J$: preference order \succ_j on I
- For example, medical residency matching.

Focus on *Stability*, not IC.

Example

Let $D = \{d_1, d_2, d_3\}$ and $H = \{h_1, h_2, h_3\}$. Consider the following:

Matching $((d_1, h_1), (d_2, h_3), (d_3, h_2))$ is *stable*. Matching $((d_1, h_1), (d_2, h_2), (d_3, h_3))$ is *unstable*. (d_3, h_2) blocking. Introduction Social Choice One-Sided Matching Stable, Two-Sided Matching General Approach Wrap-up 000 000 000

Setting 3: Stable, Two-Sided Matching

Bipartite graph I and J. Alternative a defines a matching.

- For $i \in I$: preference order \succ_i on J.
- For $j \in J$: preference order \succ_j on I
- For example, medical residency matching.

■ Focus on *Stability*, not IC.

Example

Let $D = \{d_1, d_2, d_3\}$ and $H = \{h_1, h_2, h_3\}$. Consider the following:

\succ_{d_1} : h_2 h_1 h_3	\succ_{h_1} : $d_1 \ d_2 \ d_3$
\succ_{d_2} : h_1 h_2 h_3	\succ_{h_2} : $d_3 d_2 d_1$
\succ_{d_3} : h_2 h_3 h_1	\succ_{h_3} : $d_1 d_3 d_2$

Matching $((d_1, h_1), (d_2, h_3), (d_3, h_2))$ is *stable*. Matching $((d_1, h_1), (d_2, h_2), (d_3, h_3))$ is *unstable*. (d_3, h_2) blocking.

Introduction	Social Choice	One-Sided Matching	Stable, Two-Sided Matching	General Approach	Wrap-up 000
Stable	Matchin	g Mechani	sms		

- Doctors propose to hospitals, hospitals hold onto best offer so far, and doctors move down their list.
- Stable.

Weighted LP polytope (Roth et al.'93):

■ Matchings are extreme points in *polytope* P(≻)
Given obl. coeff. A(>) ∈ R^(N), can solve

$$\max_{a \in \mathcal{P}(\succ)} \sum_{l} \sum_{j} \lambda_{ll}(\succ) \cdot a_{ll}$$

Use weights $w = (\alpha, \beta, \gamma)$ to define:

 $\lambda_{ij}(\succ) = \alpha_{ij} \cdot rank_i(h_j) + \beta_{ij} \cdot rank_j(d_i) + \gamma_{ij}.$

Introduction	Social Choice	One-Sided Matching	Stable, Two-Sided Matching	General Approach	Wrap-up 000				
Stable	Stable Matching Mechanisms								

- Doctors propose to hospitals, hospitals hold onto best offer so far, and doctors move down their list.
- Stable.

Weighted LP polytope (Roth et al.'93):

Matchings are extreme points in *polytope* P(≻)
 Given obj. coeff. λ(≻) ∈ ℝ^{n×n}, can solve

$$\max_{a\in\mathcal{P}(\succ)}\sum_{i}\sum_{j}\lambda_{ij}(\succ)\cdot a_{ij}$$

Use weights $w = (\alpha, \beta, \gamma)$ to define:

 $\lambda_{ij}(\succ) = \alpha_{ij} \cdot rank_i(h_j) + \beta_{ij} \cdot rank_j(d_i) + \gamma_{ij}.$

Introduction	Social Choice	One-Sided Matching	Stable, Two-Sided Matching	General Approach	Wrap-up 000				
Stable	Stable Matching Mechanisms								

Doctors propose to hospitals, hospitals hold onto best offer so far, and doctors move down their list.

Stable.

Weighted LP polytope (Roth et al.'93):

■ Matchings are extreme points in *polytope* $\mathcal{P}(\succ)$

Given obj. coeff. $\lambda(\succ) \in \mathbb{R}^{n \times n}$, can solve

$$\max_{a\in\mathcal{P}(\succ)}\sum_{i}\sum_{j}\lambda_{ij}(\succ)\cdot a_{ij}$$

Use weights $w = (\alpha, \beta, \gamma)$ to define:

 $\lambda_{ij}(\succ) = \alpha_{ij} \cdot rank_i(h_j) + \beta_{ij} \cdot rank_j(d_i) + \gamma_{ij}.$

Introduction	Social Choice	One-Sided Matching	Stable, Two-Sided Matching	General Approach	Wrap-up 000				
Stable	Stable Matching Mechanisms								

Doctors propose to hospitals, hospitals hold onto best offer so far, and doctors move down their list.

Stable.

Weighted LP polytope (Roth et al.'93):

■ Matchings are extreme points in *polytope* $\mathcal{P}(\succ)$

Given obj. coeff. $\lambda(\succ) \in \mathbb{R}^{n \times n}$, can solve

$$\max_{a\in\mathcal{P}(\succ)}\sum_{i}\sum_{j}\lambda_{ij}(\succ)\cdot a_{ij}$$

Use weights $w = (\alpha, \beta, \gamma)$ to define:

$$\lambda_{ij}(\succ) = \alpha_{ij} \cdot rank_i(h_j) + \beta_{ij} \cdot rank_j(d_i) + \gamma_{ij}.$$

Introduction Social Choice One-Sided Matching Stable, Two-Sided Matching General Approach Wrap-up ooo

Learning Stable, Weighted-Polytope Rules

1 $w \in \mathbb{R}^{3(n \times n)}$. Learned hypothesis:

$$f_w \in \arg \max_{a \in \mathcal{P}(\succ)} H_w(\succ, a),$$

with *discriminant* $H_w(\succ, a) = \sum_i \sum_j \lambda_{ij}(\succ) a_{ij}$.

Incorporate 0-1 loss via a continuous surrogate l', obtain training problem:

$$\min_{w} \frac{1}{2} w^{\mathsf{T}} w + C \sum_{k} \ell'(a^{k}, f_{w}(\succ^{k}), \succ^{k})$$

Convex problem.

Introduction Social Choice One-Sided Matching Stable, Two-Sided Matching General Approach Wrap-up ooo

Learning Stable, Weighted-Polytope Rules

1 $w \in \mathbb{R}^{3(n \times n)}$. Learned hypothesis:

$$f_w \in \arg \max_{a \in \mathcal{P}(\succ)} H_w(\succ, a),$$

with *discriminant* $H_w(\succ, a) = \sum_i \sum_j \lambda_{ij}(\succ) a_{ij}$.

Incorporate 0-1 loss via a continuous surrogate l', obtain training problem:

$$\min_{w} \frac{1}{2} w^{\mathsf{T}} w + C \sum_{k} \ell'(a^{k}, f_{w}(\succ^{k}), \succ^{k})$$

Convex problem.

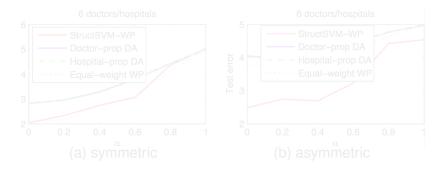
Introduction Social Choice One-Sided Matching Stable, Two-Sided Matching General Approach Wrap-up ooo ●

Results: Stable, two-sided matching

■ *Target outcome rule*: Weighted, Hungarian assignment:

- symmetric, equal weight to all
- asymmetric, pref. to some doctors, hospitals

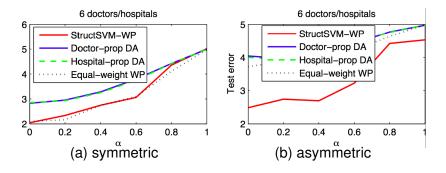
Vary corr. param. α (higher, more concentration of prefs). 0-1 loss function.



Results: Stable, two-sided matching

■ *Target outcome rule*: Weighted, Hungarian assignment:

- symmetric, equal weight to all
- asymmetric, pref. to some doctors, hospitals
- Vary corr. param. α (higher, more concentration of prefs). 0-1 loss function.



Introduction	Social Choice	One-Sided Matching	Stable, Two-Sided Matching	General Approach ●○○	Wrap-up 000
Back to	o Prices	(and IC)			

Goal: Given *training examples* $\{(\succ^k, a^k)\}_k$, and *loss function* $l(\alpha, \alpha', \succ)$, solve

$\min_{f_w \in \mathcal{F}_{ic}} \mathbb{E}_{\succ \sim D}[\ell(f(\succ), f_w(\succ), \succ)]$

Theorem 1

A rule *f* is IC if and only if, for *fixed budget* $b_i = 1$ (all *i*): **Agent-independence**: there are *virtual prices* $t_i(\hat{\succ}_{-i}, a)$ **No-regret**: Let $A_i = \{a : t_i(\hat{\succ}_{-i}, a) \le b_i\}$. $\forall i : f(\hat{\succ}) \in top_i(A_i, \hat{\succ}_i)$

Introduction	Social Choice	One-Sided Matching	Stable, Two-Sided Matching	General Approach ●○○	Wrap-up 000
Back t	o Prices	(and IC)			

Goal: Given *training examples* $\{(\succ^k, a^k)\}_k$, and *loss function* $l(a, a', \succ)$, solve

$\min_{f_w \in \mathcal{F}_{ic}} \mathbb{E}_{\succ \sim D}[\ell(f(\succ), f_w(\succ), \succ)]$

Theorem 1

A rule *f* is IC if and only if, for *fixed budget* $b_i = 1$ (all *i*): **Agent-independence**: there are virtual prices $t_i(\hat{\succ}_{-i}, a)$ **No-regret**: Let $A_i = \{a : t_i(\hat{\succ}_{-i}, a) \le b_i\}$. $\forall i : f(\hat{\succ}) \in top_i(A_i, \hat{\succ}_i)$

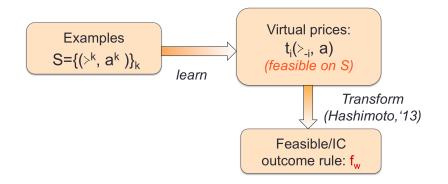
Introduction	Social Choice	One-Sided Matching	Stable, Two-Sided Matching	General Approach ●○○	Wrap-up 000
Back t	o Prices	(and IC)			

Goal: Given *training examples* $\{(\succ^k, a^k)\}_k$, and *loss function* $l(a, a', \succ)$, solve

$$\min_{f_w \in \mathcal{F}_{ic}} \mathbb{E}_{\succ \sim D}[\ell(f(\succ), f_w(\succ), \succ)]$$

Theorem 1

A rule *f* is IC if and only if, for *fixed budget* $b_i = 1$ (all *i*): **Agent-independence**: there are virtual prices $t_i(\hat{\succ}_{-i}, a)$ **No-regret**: Let $A_i = \{a : t_i(\hat{\succ}_{-i}, a) \le b_i\}$. $\forall i : f(\hat{\succ}) \in top_i(A_i, \hat{\succ}_i)$



Introduction Social Choice One-Sided Matching Stable, Two-Sided Matching General Approach One-Sided Matching One-Sided Matchin

General Framework (Virtual Prices)

Hypothesis represented by *virtual prices* $t_i(\hat{\succ}_{-i}, a)$ that delineate available alternatives (from agent *i*'s perspective)

Challenge is to achieve *feasibility* (all point to same a)

 $\bigcap_{i} top_i(A_i, \succ_i) \neq \emptyset$

- For assignment problems, can *transform* (Hashimoto 2013):
 - Allocate preferred choice in set A_i , unless rule is infeasible for $(\succ'_i, \hat{\succ}_{-i})$, for some \succ'_i .
 - Feasible, and remains IC.
- Ongoing work. Allows new mechanisms.

General Framework (Virtual Prices)

- Hypothesis represented by virtual prices t_i(
 [^]→_{-i}, a) that delineate available alternatives (from agent i's perspective)
- Challenge is to achieve *feasibility* (all point to same a)

 $\bigcap_{i} top_i(A_i, \succ_i) \neq \emptyset$

- For assignment problems, can *transform* (Hashimoto 2013):
 Allocate preferred choice in set A_i, unless rule is infeasible for (≻_i', ≻_{-i}), for some ≻_i'.
 Feasible, and remains IC.
- Ongoing work. Allows *new mechanisms*.

- Hypothesis represented by virtual prices t_i(
 [^]→_{-i}, a) that delineate available alternatives (from agent i's perspective)
- Challenge is to achieve *feasibility* (all point to same a)

$$\bigcap_i top_i(A_i, \succ_i) \neq \emptyset$$

- For assignment problems, can *transform* (Hashimoto 2013):
 - Allocate preferred choice in set A_i , unless rule is infeasible for $(\succ'_i, \hat{\succ}_{-i})$, for some \succ'_i .
 - Feasible, and remains IC.

Ongoing work. Allows new mechanisms.

General Framework (Virtual Prices)

- Hypothesis represented by *virtual prices* $t_i(\hat{\succ}_{-i}, a)$ that delineate available alternatives (from agent *i*'s perspective)
- Challenge is to achieve *feasibility* (all point to same a)

$$\bigcap_i top_i(A_i, \succ_i) \neq \emptyset$$

- For assignment problems, can *transform* (Hashimoto 2013):
 - Allocate preferred choice in set A_i , unless rule is infeasible for $(\succ'_i, \hat{\succ}_{-i})$, for some \succ'_i .
 - Feasible, and remains IC.
- Ongoing work. Allows *new mechanisms*.

Introduction	Social Choice	One-Sided Matching	Stable, Two-Sided Matching	General Approach	Wrap-up ●○○
Conclu	usions (1	of 2)			

Avoid analytical bottleneck by using statistical ML to design mechanisms specialized to a particular context.

With money, learn a payment rule to minimize expected regret, coupled with outcome rule *f*.

- Discriminant function provides the price rule, and the risk-optimal rule is maximally-IC
- Applications to multi-minded CAs with greedy assignment, and to egalitarian assignment

Introduction 000000	Social Choice	One-Sided Matching	Stable, Two-Sided Matching	General Approach	Wrap-up ●○○
Conclu	usions (1	of 2)			

- Avoid analytical bottleneck by using statistical ML to design mechanisms specialized to a particular context.
- With money, learn a payment rule to minimize expected regret, coupled with outcome rule *f*.
 - Discriminant function provides the price rule, and the risk-optimal rule is maximally-IC
 - Applications to multi-minded CAs with greedy assignment, and to egalitarian assignment

Introduction	Social Choice	One-Sided Matching	Stable, Two-Sided Matching	General Approach	Wrap-up ○●○
Conclu	usions (2	of 2)			

- Without money, learn an IC (stable) outcome rule to minimize expected loss relative to target outcome rule *f*.
 - Adopt parametric forms for single-peaked social choice, one-sided matching, and two-sided matching.
 - Learn via structural SVMs, greedy 'tree-splitting' algorithm.

Next steps:

- Build out the general approach for assignment problems, both with and without money (learn new, IC mechanisms)
- Can a general approach be developed for non-assignment problems?
- Understand the sample complexity of these problems

Introduction	Social Choice	One-Sided Matching	Stable, Two-Sided Matching	General Approach	Wrap-up ○●○
Conclusions (2 of 2)					

- Without money, learn an *IC* (stable) outcome rule to minimize expected loss relative to target outcome rule *f*.
 - Adopt parametric forms for single-peaked social choice, one-sided matching, and two-sided matching.
 - Learn via structural SVMs, greedy 'tree-splitting' algorithm.

Next steps:

- Build out the *general approach* for assignment problems, both with and without money (learn new, IC mechanisms)
- Can a general approach be developed for non-assignment problems?
- Understand the sample complexity of these problems

Introduction Social Choice

One-Sided Matching

Stable, Two-Sided Matching

General Approach

Wrap-up ○○●

Thank you

Learning Strategy-proof Mechanisms for Social Choice and Matching Problems, H. Narasimhan, S. Agarwal and D. C. Parkes, Working paper 2016.

Learning Strategy-proof Assignment Mechanisms without Money, H. Narasimhan and D. C. Parkes, Working paper 2016.