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Mechanism Design without Money

The use of money is not natural in many multi-agent settings:
B Matching students to high schools, doctors to hospitals
B Choosing a location for a new firestation
B Assigning volunteers to evening shifts at a childcare co-op
B Meeting scheduling

Agents have preference order a =; a’ on alternatives a € A.

Example desiderata:
B Pareto-optimality, envy-free, non-dictatorial.
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The Basic Model

B Agent ( has a preference order »; € P, preference profile
==(>1,...,>n), sampled =~ D

B Alternatives A. Qutcome rule f : P" — A

B /ncentive compatibility. Given rule f, want

FO=0o%=_) = f(=, =_), forall =; all =;, all =_;
B Examples of IC Mechanisms:
m For assignment: Random serial dictatorship, top-trading
cycles, ...
m For social choice: Median mechanism:

agent 1 agent 2 agent 3

0 meéian 1
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State of the art (MD without money)

B Gibbard-Satterthwaite impossibility result
B Characterization results for specific problems
m Often axiomatic, e.g., class of IC, onto, neutral rules for
single-peaked setting is generalized median mechanisms
m Impossibility results as well
B No general design theory, results for specific preference
domains, axiomatic rather than optimization-based
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The Machine Learning Framework

(Part 1) Mechanism design with money:
B Given outcome rule f : X" —Y

m Want to /earn payment rule t,, such that mechanism (f, ty)
is maximally-IC.

(Part 2) Mechanism design without money:
m Given target outcome rule f : P" — A (via training examples)
m Want to learn outcome rule f,, that is /C and solves

fTeich Ex~o[LGF(>-), fw(>), )],

for IC rules Fjc and loss function £(a, a’, =) > 0.
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Overview: Learning Mechanisms without Money

Examples

{(X, @ )y

IC outcome rule: f,,

learn from
an IC class F;,

Related work:
B Procaccia et al.’09: Learning non-IC voting rules

B Conitzer and Sandholm ‘02, Guo and Conitzer'10: Search through
(parameterized) space of feasible mechanisms.
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Outline

Configuration problems:
El Single-Peaked Social choice
B One-sided matching (assignment)
B Stable,two-sided matching

Closing: towards a general framework (back to prices!), and a
direction for ‘with money’ design.
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Setting 1: Single-Peaked Social Choice

m Alternatives A, preference order >, with peak o; € A.
m Alternative a has position zq € [0, 1].
m a < a’ indicates zq < zg'.

agent 1 i agent 2 agent 3
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B Fi.: class of weighted generalized median rules, generalize
GM rules
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Generalized Median Rule

(Moulin’80)

agent 1 agent 2 i agent 3 pseudos

0 mecllian 1

rank(>,a) = Z I(o;<a)+ Z TI(or < a)

) (n+np)
f(>)=arg m(;n{za | rank(>,a) > ——
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Weighted Generalized-Median Rule

m Weights a € IR’Z’O and B € IR’Z"O. Define:

ranky (>, a) = Za,- -1(oiLa)+ ZBJ- 1 £a)
i J

B Given threshold t > 0, select:

fw(>)=arg main{za | rankw(>,a) >t}

3 agents a = (1, 2, 3), 5 choices B =(1.5,0.5,0,0,1.5), and
t = 3. Agent peaks (q, ¢, d). Ranks: 2.5, 3,5, ...; fu(>) =b.
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Learning the optimal GWM rule

E w e R"™™M+1 Adopt (continuous) discriminant function:
Hw(>, @) = —(ranky (>, a) — t)?.

Not IC; but use learned w to instantiate a WGM rule.
B Incorporate loss function £(a, a@’, =) = |zq' — 24|, via a
continuous surrogate {’, obtaining training problem:

1
P 1¢ ~k k k
rru/nzw w+CEk (@, fw(>5), =5).

Need not be convex, solve via gradient-descent, restarts.
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Results: Single-Peaked Social Choice

W Target outcome rule: priorities C(2) = e™*Z for A > 0, and
f(>) € argming ZiC(Zoi) (24 — Zo,')2

m Compare with best GM rule, best order-statistic rule, and
best dictatorial rule. Loss is distance from target.

5 agents, 25 outcomes 5 agents, 25 outcomes
0.4 MSVM-WGM 0.4 MSVM-WGM
Best GM K Best GM
S 0.3 Best OS ” <} 0.3 Best OS
:03 o2l Best Dict E) oofe e Best Dict
173 173
s el T
0.1 0.1 —_—
M <
0 1 0 1 0 —1 0 1
10 10 10 10 10 10
A A

(a) uniform peaks (b) heterogeneous agents
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Comparing run time

B m = 25, time in minutes.
B - indicates did not complete in 24 hours

n=5|n=7| n=9 | n=11
MSVM-WGM | 27.65 | 29.97 29.95 30.00

Best GM 0.33 9.33 168.27 -
Best Percentile | 3E-5 5E-5 6E-5 7E-5
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Setting 2: One-Sided Matching (Assignment)

B Alternative a € A assigns items {1, ..., n} to agents
B Preferences = on items
B Fi.: class of Adaptive Serial-Dictator rules

Serial dictator rule. 3 agents, 3 items. Priority order 1 > 2 > 3.
Reports:

=1: bca »2: cab >=3: bac

1 gets b, 2 gets ¢, 3 gets a.
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Adaptive Serial-Dictator rules

Adaptive Serial-Dictator (Bade 2015, Papai 2001):
B Priorities determined adaptively based on current assignment

B Use a priority tree. Start at root. Node specifies
highest-priority agent, next node depends on selected item.

Tree with one-level of adaptation:

3 agents, 3 items. Reports:

=1: bca =2:cab =3: bac

2 gets ¢, 3 gets b, and 1 gets a.
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Learning Adaptive SD Rules

m Challenge: combinatorially large number of priority trees

B Use a greedy approach:
m Tree-splitting step: assign the agent who is top-priority in
optimal SD at subproblem rooted at a node
m Branch on each item, and recurse.
m Stop at a desired level; adopt optimal SD for rest of economy.
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Results: One-sided Matching (Assignment)

B Target outcome rule: Hungarian assignment, with higher obj.
value to agents who prefer particular items.

B Loss function: total absolute change in rank.
m Vary correlation parameter 6 (higher, more concentration.)

6 agents/items 9 agents/items
1.4 ASD-2 1.8 ASD-2
— ASD-1 — ASD-1
5 1.2 SD 5 1.6 SD
21 214
[} 2]
s s
0.8 1.2
1
0 1 2 3 4 0 1 2 3 4
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Setting 3: Stable, Two-Sided Matching

B Bipartite graph I and J. Alternative a defines a matching.

m For { € I: preference order >; on J.
m For j €J: preference order =j on I
m For example, medical residency matching.

m Focus on Stability, not IC.

Let D = {d1,d>,d3} and H = {h1, h2, h3}. Consider the following:

~ad,: h2 h1 hs =p,: di1 dz d3
~d,: h1 hz hs =h,: d3 dz di
=ds: h2 hs hp =hy: d1 d3 d2

Matching ((d1, h1), (d2, h3), (d3, h2)) is stable.
Matching ((d1, h1), (d2, h2), (d3, h3)) is unstable. (d3, h2) blocking.
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Deferred Acceptance (Gale and Shapley’62):

m Doctors propose to hospitals, hospitals hold onto best offer
so far, and doctors move down their list.

m Stable.
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Stable Matching Mechanisms

Deferred Acceptance (Gale and Shapley’62):

m Doctors propose to hospitals, hospitals hold onto best offer
so far, and doctors move down their list.

m Siable.
Weighted LP polytope (Roth et al.93):

B Matchings are extreme points in polytope P(>)
B Given obj. coeff. A(>) € R"™*", can solve

max Aj(>) - ajj
aeP(>)zi:; u( ) iy

m Use weights w = (a, 3, v) to define:

Aij(=) = aij - ranki(h;) + Bij - rank;(d;) + vi.
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Learning Stable, Weighted-Polytope Rules

B w e R3("™M_ earned hypothesis:
fw € arg max Hy(>, ),
aeP(>)
with discriminant Hy (=, a) = ZiZjAU(>-)aij.

B Incorporate 0-1 loss via a continuous surrogate £/, obtain
training problem:

1
min=w'w+C» £/(aX, fu(>X), =¥
lin > ;( fu(=5), %)

Convex problem.
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Results: Stable, two-sided matching

B Target outcome rule: Weighted, Hungarian assignment:
m symmetric, equal weight to all
m asymmetric, pref. to some doctors, hospitals
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loss function.
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Results: Stable, two-sided matching

B Target outcome rule: Weighted, Hungarian assignment:

m symmetric, equal weight to all
m asymmetric, pref. to some doctors, hospitals

m Vary corr. param. o (higher, more concentration of prefs). 0-1
loss function.

6 doctors/hospitals 6 doctors/hospitals
6 5 —
—— StructSVM-WP —— StructSVM-WP =
5 Doctor—prop DA L Doctor—prop DA //
Hospital-prop DA 7 < g 47 Hospital-prop DA
4| Equal-weight WP/ 20 L Equal-weight WP
/ 3
= 3
3 /J
2= 2
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

(a) symametric (b) asymﬁletric
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Back to Prices (and IC)

Goal: Given training examples {(=¥, ak)}«, and loss function
L(a, a’, »), solve

fvrvneigc Ex-~p [L(F(-), fw (), »)]

Theorem 1
A rule f is IC if and only if, for fixed budget b; = 1 (all i):
m Agent-independence: there are virtual prices ti(*_;, a)
m No-regret: Let A;= {a : t{(*_; a) < b;}.
Vi: f(*) € topi(A, &)
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Overview: Learning Mechanisms via Virtual Prices

Virtual prices:
Examples t(>, a)
S={(*, a*)} Sible
) k (feasible on S)
learn

’ ‘ Transform
(Hashimoto,‘13)

Feasible/IC
outcome rule: f,,
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General Framework (Virtual Prices)

m Hypothesis represented by virtual prices t;(>_;, a) that
delineate available alternatives (from agent i's perspective)

m Challenge is to achieve feasibility (all point to same Q)

(top(Ai, ) # @

m For assignment problems, can transform (Hashimoto 2013):

m Allocate preferred choice in set A;, unless rule is infeasible for
(>':{' =_), for some >—lf.
m Feasible, and remains IC.

B Ongoing work. Allows new mechanisms.
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Conclusions (1 of 2)

B Avoid analytical bottleneck by using statistical ML to design
mechanisms specialized to a particular context.

B With money, learn a payment rule to minimize expected regret,
coupled with outcome rule f.
m Discriminant function provides the price rule, and the
risk-optimal rule is maximally-IC
m Applications to multi-minded CAs with greedy assignment,
and to egalitarian assignment
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B Without money, learn an IC (stable) outcome rule to minimize
expected loss relative to target outcome rule f.
m Adopt parametric forms for single-peaked social choice,
one-sided matching, and two-sided matching.
m Learn via structural SVMs, greedy ‘tree-splitting’ algorithm.



Conclusions (2 of 2)

B Without money, learn an IC (stable) outcome rule to minimize
expected loss relative to target outcome rule f.
m Adopt parametric forms for single-peaked social choice,
one-sided matching, and two-sided matching.
m Learn via structural SVMs, greedy ‘tree-splitting’ algorithm.

B Next steps:

m Build out the general approach for assignment problems, both
with and without money (learn new, IC mechanisms)

m Can a general approach be developed for non-assignment
problems?

m Understand the sample complexity of these problems



Thank you

Learning Strategy-proof Mechanisms for Social Choice and Matching
Problems, H. Narasimhan, S. Agarwal and D. C. Parkes, Working paper
2016.

Learning Strategy-proof Assignment Mechanisms without Money, H.
Narasimhan and D. C. Parkes, Working paper 2016.
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