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Optimization where the Inputs are Private

Example: allocate landing rights at Schiphol airport.

An agent ’s type  specifies her value for each possible
allocation y ∈ Y
Design goal: maximize sum total value
Constraint: incentive compaibility
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Optimization where the Inputs are Private

Alternative y ∈ Y. n agents.
Valuation type  ∈ X, defines value (, y).
Design goal:

mx
y∈Y

g(1, . . . , n, y)

s.t. incentive compatibility (IC)

IC: truthful reporting is a dominant strategy for each agent
Typical to use payments to align incentives.
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Example: Vickrey Auction

An agent’s type  specifies her value for an item.
e.g., values $10, $8, $4 (agents 1, 2 and 3).

Design goal: allocate to agent with maximum value
Solution:

Receive reports ̂1, . . . , ̂n
Allocate to highest bid, for second-highest bid amount

Incentive compatible, optimal.
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Example: Vickrey-Clarke-Groves mechanism

Example: allocate landing rights at Schiphol airport.

An agent’s type  specifies her value for each possible
allocation y ∈ Y
Design goal: maximize sum total value
Solution:

Receive reports ̂1, . . . , ̂n
Choose y∗ ∈ rgmxY

∑

 (̂, y)
Charge

∑

j 6= j(̂j, y
−)−

∑

j 6= j(̂j, y
∗) to agent 

Incentive compatible, optimal.



Introduction Mechanism design theory Main results Optimization Applications Wrap-up

Example: Vickrey-Clarke-Groves mechanism

Example: allocate landing rights at Schiphol airport.

An agent’s type  specifies her value for each possible
allocation y ∈ Y
Design goal: maximize sum total value
Solution:

Receive reports ̂1, . . . , ̂n
Choose y∗ ∈ rgmxY

∑

 (̂, y)
Charge

∑

j 6= j(̂j, y
−)−

∑

j 6= j(̂j, y
∗) to agent 

Incentive compatible, optimal.



Introduction Mechanism design theory Main results Optimization Applications Wrap-up

Example: Vickrey-Clarke-Groves mechanism

Example: allocate landing rights at Schiphol airport.

An agent’s type  specifies her value for each possible
allocation y ∈ Y
Design goal: maximize sum total value
Solution:

Receive reports ̂1, . . . , ̂n
Choose y∗ ∈ rgmxY

∑

 (̂, y)
Charge

∑

j 6= j(̂j, y
−)−

∑

j 6= j(̂j, y
∗) to agent 

Incentive compatible, optimal.



Introduction Mechanism design theory Main results Optimization Applications Wrap-up

An Incentive Mechanism

A mechanism M = (ƒ , t):
Receive reports ̂ = (̂1, . . . , ̂n)
Outcome rule: choose y∗ = ƒ (̂)
Payment rule: charge each agent  an amount t(̂, y∗) ∈ R

A mechanism is incentive-compatible if truthful reporting is a
dominant strategy, for all reports of others.
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Challenges in Mechanism Design

Single-dimensional mechanism design well understood
Valuation types  ∈ R, value for alternative y monotone in 
Myerson (1981)

Multi-dimensional mechanism design largely unsolved
Vickrey-Clarke-Groves mechanism only general solution

limited to welfare-optimality, often intractable

Analytical bottleneck: conditions such as cyclic-monotonicity
hard to work with (Rochet’81)

Some computational progress (Cai et al.’13, Alaei et al.’12,
Daskalakis et al.’15), but not for general problems.
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Automated Design via Learning

mxy∈Y g(1, . . . , n, y)
s.t. IC

�

≈ ƒ ()

Given ƒ . Learn a payment rule to accompany ƒ :
Input: training examples {(k, ƒ (k))}k (generated with
 ∼D D)
Learn a payment rule t such that M = (ƒ , t), is
approximately IC

Benefits:
Rule ƒ can be an algorithm (address comput. intractability)
Allows graceful degradation to approximate-IC; avoid the
analytical bottleneck.
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Background: Characterization of IC mechanisms

Theorem 1

Mechanism (ƒ , t) is IC if and only if:
Agent-independence: price to  for y is t(̂−, y)
No-regret: ∀ : ƒ (̂) ∈ rgmxy[(̂, y)− t(̂−, y)]

Example:
Bids $10,$8,$4.
Price to agent 2 is $10 for the item, $0 o.w. ⇒ no regret for
not receiving item!
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Approximate IC

Fix type , reports of others. y∗ is choice of mechanism. Let
t(y) denote price function. Two possibilities:

Case 1 (No regret):
(, y∗)− t(y∗) ≥mx

y
[(, y)− t(y)]

Case 2 (Regret > 0):

regrett() =mxy [(, y)− t(y)]− ((, y∗)− t(y∗)) > 0

Definition 1

Payment rule t is maximally-IC given ƒ and D if

t ∈ rgmin
t

E∼D[regrett()]

Expected regret = 0 ⇔ mech is IC
Generally interested in low expected regret
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Overall Approach
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Review: Discriminant-Based Classifier

Feature space Xn.
Label space Y.
Learn hypothesis h ∈ H.

For parameters , define a discriminant function

H : Xn × Y 7→ R.

The corresponding classifier is:

ƒ() ∈ rgmx
y

H(, y).
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Exact Classifier gives an IC mechanism

Define a special discriminant function:

H(, y) = (, y)− >ψ(−, y)
︸ ︷︷ ︸

payment t(−, y)

,

for features ψ(−, y) ∈ Rm.

Theorem 2

An exact classifier for outcome rule ƒ provides IC mech. (ƒ , t).

Proof: Let y∗ = ƒ (). Because classifier ƒ is exact, then
(, y∗)− t(−, y∗) ≥ (, y)− t(−, y).
⇒ (ƒ , t) is IC (by Theorem 1).
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A Risk-Optimal Classifier gives Maximal IC

Definition 2

The discriminant loss function is

L(, ƒ ()) = H(, ƒ())−H(, ƒ ()) ≥ 0.

Theorem 3

A classifier ƒ that minimizes exp loss E[L(, ƒ ())] provides
a mechanism (ƒ , t) that is maximally-IC.

Proof: The discriminant loss corresponds to regret, because

L(, ƒ ()) =mx
y
[H(, y)]−H(, y∗) = regrett(),

since H(, y) = (, y)−>ψ(−, y).
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Mechanism design via Risk-optimal Classifiers

The program:
1 Given training data {(k, ƒ (k))}k. Define feature map ψ.
2 Learn a classifier with discriminant function

H(, y) = (, y)−>ψ(−, y)

that minimizes expected loss.
3 Obtain mechanism (ƒ , t), with payment rule

t(−, y) =>ψ(−, y)

Use structural support vector machines to solve the multi-class
classification problem (Joachims et al. 2009).
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Structural SVMs

Training data {(k, yk)}k. Feature map ψ.

Training problem:

min
,ξ≥0

1

2
>+

C

ℓ

∑

k

ξk (QP)

s.t. >ψ(k, yk) + ξk ≥mx
y

>ψ(k, y), ∀k,

where ξk is a slack variable, and indicates a discriminant loss on
example k. Impose ‘admissible’ structure on ψ.

The QP minimizes the regularized, empirical discriminant loss.
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Solving the Training Problem

1 Allow large attribute vector via kernel trick. Expand attributes
q into features:

ψ(−, y) = ϕ(q) ∈ Rm,

Features ψ only appear in dual via inner product:

〈(ϕ(q), ϕ(q′)〉 = K(q, q′),

where K is the kernel.
2 Handle large outcome space Y via efficient separation

(following Taskar et al., 2004).
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Support Vectors in Original Attribute Space

Bishop (2007)
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Empirical Results

Two problems that cannot be solved via classical methods

Multi-minded combinatorial auction:
Auction multiple landing times at Schiphol
Each agent interested in multiple packages of landing slots
Vary degree of complementarity between items
ƒ is a greedy allocation algorithm

Fair assignment problem:
Each agent can receive at most one landing time
ƒ maximizes egalitarian welfare (lex-max-min)

Benchmark: VCG-based rules (not IC!)
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Succinct Valuation Representation for CA

Need efficient separation problem
Adopt graphical valuations (Conitzer & Sandholm 2005,
Abraham et al. 2012)

Welfare-maximization NP-hard
Can solve separation problem (in dual QP)
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Results I: Multi-Minded CAs

5 agents, 5 items. Without succinct valuations.

Performance comparable to that of VCG-based rule.
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Results I: Multi-Minded CAs

Larger instances (6 agents, 2–20 items.) Succinct valuations.

Higher edge density, higher complementarity.
Performance dominates that of VCG-based rule.
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Results II: Fair Assignment Problem

Performance dominates that of VCG-based rule.



Introduction Mechanism design theory Main results Optimization Applications Wrap-up

Conclusions

We use statistical learning to find a payment rule that makes
an outcome rule approx-IC
Connect discriminant-based classifiers and
incentive-compatible payment rules.

Roughly: look for a discriminant for agent  that is linear in 
and non-linear in −

Circumvents analytical bottleneck, opens up empirical
approach where an efficient outcome rule is matched
(automatically) with a suitable payment rule.
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Thank you

Reference: Payment Rules through Discriminant-Based Classifiers, P.
Dütting, F. A. Fischer, P. Jirapinyo, J. K. Lai, B. Lubin, and D. C. Parkes,
ACM Transactions on Economics and Computation 3(1), 2014
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