Introduction	Mechanism design theory	Main results	Optimization	Applications	Wrap-up 00

Mechanism Design through Statistical Machine Learning: Part I (Auctions)

David C. Parkes

Computer Science John A. Paulson School of Engineering and Applied Sciences Harvard University

January 12, 2016

Introduction ●oooooo	Mechanism design theory	Main results	Optimization 0000	Applications	Wrap-up 00
	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	1 A A A A A A A A A A A A A A A A A A A	D •		

Example: allocate landing rights at Schiphol airport.

- An agent *i*'s type x_i specifies her value for each possible allocation $y \in Y$
- Design goal: maximize sum total value
- Constraint: incentive compaibility

Introduction ••••••	Mechanism design theory	Main results	Optimization	Applications	Wrap-up 00
Optimiza	ation where the	e Inputs a	are Privat	te	

Example: allocate landing rights at Schiphol airport.

- An agent *i*'s type x_i specifies her value for each possible allocation $y \in Y$
- Design goal: maximize sum total value
- Constraint: *incentive compaibility*

•000000	Mechanism design theory		0000	Applications	Wrap-up 00		
Optimization where the Inpute are Private							

Example: allocate landing rights at Schiphol airport.

- An agent *i*'s type x_i specifies her value for each possible allocation $y \in Y$
- Design goal: maximize sum total value
- Constraint: *incentive compaibility*

Introduction 000000	Mechanism de	esign theory	Main resul	lts Optimization	Applications	Wrap-up oo
<u> </u>						

- Alternative $y \in Y$. *n* agents.
- Valuation type $x_i \in X$, defines value $v_i(x_i, y)$.
- Design goal:

$$\max_{y \in Y} g(x_1, \dots, x_n, y)$$

s.t. incentive compatibility (IC)

IC: truthful reporting is a *dominant strategy* for each agent
 Typical to use *payments* to align incentives.

Introduction 000000	Mechanism 00	design theor	ry	Main re 0000	sults	Optii 000	imization	Applications	Wrap-up	
O 11 1							<u> </u>			

- Alternative $y \in Y$. *n* agents.
- Valuation type $x_i \in X$, defines value $v_i(x_i, y)$.
- Design goal:

$$\max_{y \in Y} g(x_1, \dots, x_n, y)$$

s.t. *incentive compatibility* (IC

IC: truthful reporting is a *dominant strategy* for each agent
 Typical to use *payments* to align incentives

Introduction 000000	Mechanism de	esign theory	Main resul	lts Optimization	Applications	Wrap-up oo
<u> </u>						

- Alternative $y \in Y$. *n* agents.
- Valuation type $x_i \in X$, defines value $v_i(x_i, y)$.
- Design goal:

$$\max_{y \in Y} g(x_1, \dots, x_n, y)$$

s.t. incentive compatibility (IC)

- IC: truthful reporting is a *dominant strategy* for each agent
- Typical to use *payments* to align incentives.

Introduction	Mechanism design theory	Main results	Optimization	Applications	Wrap-up oo
Exampl	e: Vickrev Auc	tion			

- An agent's type x_i specifies her value for an item.
 - e.g., values \$10, \$8, \$4 (agents 1, 2 and 3).
- *Design goal*: allocate to agent with maximum value
 Solution:
 - **Receive reports** $\hat{x}_1, \ldots, \hat{x}_n$
 - Allocate to highest bid, for second-highest bid amount
- Incentive compatible, optimal.

Introduction 000000	Mechanism design theory	Main results	Optimization	Applications	Wrap-up oo
Examp	le: Vickrev Auc	ction			

An agent's *type* x_i specifies her value for an item.

■ e.g., values \$10, \$8, \$4 (agents 1, 2 and 3).

- Design goal: allocate to agent with maximum value
- Solution:
 - Receive reports $\hat{x}_1, \ldots, \hat{x}_n$
 - Allocate to highest bid, for second-highest bid amount

Introduction 000000	Mechanism design theory	Main results	Optimization	Applications	Wrap-up oo
Examp	le: Vickrev Auc	ction			

- An agent's *type* x_i specifies her value for an item.
 - e.g., values \$10, \$8, \$4 (agents 1, 2 and 3).
- Design goal: allocate to agent with maximum value
- Solution:
 - Receive reports $\hat{x}_1, \ldots, \hat{x}_n$
 - Allocate to highest bid, for second-highest bid amount
- Incentive compatible, optimal.

Introduction 000000	Mechanism design theory	Main results	Optimization	Applications	Wrap-up

Example: Vickrey-Clarke-Groves mechanism

Example: allocate landing rights at Schiphol airport.

- An agent's type x_i specifies her value for each possible allocation $y \in Y$
- Design goal: maximize sum total value
- Solution:
 - **Receive reports** $\hat{x}_1, \ldots, \hat{x}_n$
 - Choose $y^* \in \arg \max_Y \sum_i v_i(\hat{x}_i, y)$
 - Charge $\sum_{j\neq i} v_j(\hat{x}_j, y^{-i}) \sum_{j\neq i} v_j(\hat{x}_j, y^*)$ to agent *i*

Introduction 000000	Mechanism design theory	Main results	Optimization	Applications	Wrap-up 00

Example: Vickrey-Clarke-Groves mechanism

Example: allocate landing rights at Schiphol airport.

- An agent's type x_i specifies her value for each possible allocation $y \in Y$
- Design goal: maximize sum total value
- Solution:
 - Receive reports $\hat{x}_1, \ldots, \hat{x}_n$
 - Choose $y^* \in \arg \max_Y \sum_i v_i(\hat{x}_i, y)$
 - Charge $\sum_{j \neq i} v_j(\hat{x}_j, y^{-i}) \sum_{j \neq i} v_j(\hat{x}_j, y^*)$ to agent *i*

Introduction 0000000	Mechanism design theory	Main results	Optimization	Applications	Wrap-up 00

Example: Vickrey-Clarke-Groves mechanism

Example: allocate landing rights at Schiphol airport.

- An agent's type x_i specifies her value for each possible allocation $y \in Y$
- Design goal: maximize sum total value
- Solution:
 - Receive reports $\hat{x}_1, \ldots, \hat{x}_n$
 - Choose $y^* \in \arg \max_Y \sum_i v_i(\hat{x}_i, y)$
 - Charge $\sum_{j \neq i} v_j(\hat{x}_j, y^{-i}) \sum_{j \neq i} v_j(\hat{x}_j, y^*)$ to agent *i*

An Inco	ntivo Mochani	om			
Introduction 0000000	Mechanism design theory	Main results	Optimization	Applications	Wrap-up

- A mechanism M = (f, t):
 - Receive reports $\hat{x} = (\hat{x}_1, \dots, \hat{x}_n)$
 - Outcome rule: choose $y^* = f(\hat{x})$
 - Payment rule: charge each agent i an amount $t_i(\hat{x}, y^*) \in \mathbb{R}$

Introduction 0000000	Mechanism design theory	Main results	Optimization 0000	Applications	Wrap-up 00
An Inco	antivo Mochani	em			

An Incentive Mechanism

- A mechanism M = (f, t):
 - Receive reports $\hat{x} = (\hat{x}_1, \dots, \hat{x}_n)$
 - Outcome rule: choose $y^* = f(\hat{x})$
 - *Payment rule*: charge each agent *i* an amount $t_i(\hat{x}, y^*) \in \mathbb{R}$

A mechanism is *incentive-compatible* if truthful reporting is a dominant strategy, for all reports of others.

Introduction ooooo●o	Mechanism design theory	Main results	Optimization	Applications	Wrap-up oo

Challenges in Mechanism Design

Single-dimensional mechanism design well understood

Valuation types x_i ∈ ℝ, value for alternative y monotone in x_i
 Myerson (1981)

Multi-dimensional mechanism design largely unsolved

- Vickrey-Clarke-Groves mechanism only general solution
 - limited to welfare-optimality, often intractable
- Analytical bottleneck: conditions such as cyclic-monotonicity hard to work with (Rochet'81)
- Some computational progress (Cai et al.'13, Alaei et al.'12, Daskalakis et al.'15), but not for general problems.

Introduction 0000000	Mechanism design theory	Main results	Optimization	Applications	Wrap-up oo

Challenges in Mechanism Design

Single-dimensional mechanism design well understood

- Valuation types $x_i \in \mathbb{R}$, value for alternative *y* monotone in x_i
- Myerson (1981)
- Multi-dimensional mechanism design largely unsolved
 - Vickrey-Clarke-Groves mechanism only general solution
 - limited to welfare-optimality, often intractable
 - Analytical bottleneck: conditions such as cyclic-monotonicity hard to work with (Rochet'81)
 - Some *computational progress* (Cai et al.'13, Alaei et al.'12, Daskalakis et al.'15), but not for general problems.

Introduction 0000000	Mechanism design theory	Main results	Optimization	Applications	Wrap-up oo

Challenges in Mechanism Design

Single-dimensional mechanism design well understood

- Valuation types $x_i \in \mathbb{R}$, value for alternative *y* monotone in x_i
- Myerson (1981)
- Multi-dimensional mechanism design largely unsolved
 - Vickrey-Clarke-Groves mechanism only general solution
 - limited to welfare-optimality, often intractable
 - Analytical bottleneck: conditions such as cyclic-monotonicity hard to work with (Rochet'81)
- Some computational progress (Cai et al.'13, Alaei et al.'12, Daskalakis et al.'15), but not for general problems.

Introduction oooooo●	Mechanism design theory	Main results	Optimization 0000	Applications 00000	Wrap-up oo
Automat	ted Design via	Learning			

$$\begin{array}{l} \max_{y \in Y} & g(x_1, \dots, x_n, y) \\ \text{s.t.} & \text{IC} \end{array} \right\} \quad \approx f(x)$$

- Input: training examples $\{(x^{\kappa}, f(x^{\kappa}))\}_{k}$ (generated with $x \sim_{IID} D$)
- Learn a payment rule t_w such that $M = (f, t_w)$, is approximately (G

Benefits:

- Rule f can be an algorithm (address comput. intractability)
- Allows graceful degradation to approximate-IC; avoid the analytical bottleneck.

Introduction 000000●	Mechanism design theory	Main results	Optimization 0000	Applications	Wrap-up 00
Automat	ted Design via	Learning			

$$\begin{array}{ccc} \max_{y \in Y} & g(x_1, \dots, x_n, y) \\ \text{s.t.} & \text{IC} \end{array} \right\} \quad \approx f(x)$$

- Input: training examples {(x^k, f(x^k))}_k (generated with x ∼_{IID} D)
- Learn a payment rule t_w such that $M = (f, t_w)$, is approximately IC

Benefits:

Rule f can be an algorithm (address comput. intractability)
 Allows graceful degradation to approximate-IC; avoid the analytical bottleneck.

Introduction 000000●	Mechanism design theory	Main results	Optimization 0000	Applications	Wrap-up 00
Automat	ted Design via	Learning			

$$\begin{array}{ccc} \max_{y \in Y} & g(x_1, \dots, x_n, y) \\ \text{s.t.} & \text{IC} \end{array} \right\} \quad \approx f(x)$$

- Input: training examples {(x^k, f(x^k))}_k (generated with x ∼_{IID} D)
- Learn a payment rule t_w such that $M = (f, t_w)$, is approximately IC

Benefits:

- Rule f can be an algorithm (address comput. intractability)
- Allows graceful degradation to approximate-IC; avoid the analytical bottleneck.

Introduction oooooo●	Mechanism design theory	Main results	Optimization 0000	Applications	Wrap-up 00
Automat	ted Design via	Learning			

$$\begin{array}{l} \max_{y \in Y} & g(x_1, \dots, x_n, y) \\ \text{s.t.} & \text{IC} \end{array} \right\} \quad \approx f(x)$$

- Input: training examples {(x^k, f(x^k))}_k (generated with x ∼_{IID} D)
- Learn a payment rule t_w such that $M = (f, t_w)$, is approximately IC

Benefits:

- Rule *f* can be an algorithm (address comput. intractability)
- Allows graceful degradation to approximate-IC; avoid the analytical bottleneck.

Introduction	Mechanism design theory ●○	Main results	Optimization	Applications	Wrap-up
- · ·					

Background: Characterization of IC mechanisms

Theorem 1

Mechanism (f, t) is IC if and only if:

- Agent-independence: price to *i* for *y* is $t_i(\hat{x}_{-i}, y)$
- No-regret: $\forall i : f(\hat{x}) \in \arg \max_{y} [v_i(\hat{x}_i, y) t_i(\hat{x}_{-i}, y)]$

Example:

- Bids \$10, \$8, \$4.
- Price to agent 2 is \$10 for the item, \$0 o.w. ⇒ no regret for not receiving item!

Introduction	Mechanism design theory ●○	Main results	Optimization	Applications	Wrap-up
-					

Background: Characterization of IC mechanisms

Theorem 1

Mechanism (f, t) is IC if and only if:

- Agent-independence: price to *i* for *y* is $t_i(\hat{x}_{-i}, y)$
- No-regret: $\forall i : f(\hat{x}) \in \arg \max_{y} [v_i(\hat{x}_i, y) t_i(\hat{x}_{-i}, y)]$

Example:

- Bids \$10, \$8, \$4.
- Price to agent 2 is \$10 for the item, \$0 o.w. ⇒ no regret for not receiving item!

Introduction	Mechanism design theory ○●	Main results	Optimization	Applications	Wrap-up 00
Approx	imate IC				

Case 1 (No regret): $v_i(x_i, y^*) - t_i(y^*) \ge \max_{y} [v_i(x_i, y) - t_i(y)]$

Case 2 (Regret > 0):

 $regret_t(x) = \max_{v} [v_i(x_i, y) - t_i(y)] - (v_i(x_i, y^*) - t_i(y^*)) > 0$

Definition 1

Payment rule t_w is maximally-IC given f and D if $t_w \in \arg\min_t \mathbb{E}_{x \sim D}[regret_t(x)]$

Expected regret = $0 \iff$ mech is IC

Introduction	Mechanism design theory ○●	Main results	Optimization 0000	Applications	Wrap-up oo
Approxi	mate IC				

Case 1 (No regret): $v_i(x_i, y^*) - t_i(y^*) \ge \max_{v} [v_i(x_i, y) - t_i(y)]$

Case 2 (Regret > 0):

 $regret_t(x) = \max_{v} [v_i(x_i, y) - t_i(y)] - (v_i(x_i, y^*) - t_i(y^*)) > 0$

Definition 1

Payment rule t_w is maximally-IC given f and D if $t_w \in \arg\min_t \mathbb{E}_{x \sim D}[regret_t(x)]$

Expected regret = $0 \iff$ mech is IC

Introduction	Mechanism design theory ○●	Main results	Optimization	Applications	Wrap-up 00
Approxi	mate IC				

Case 1 (No regret): $v_i(x_i, y^*) - t_i(y^*) \ge \max_{y} [v_i(x_i, y) - t_i(y)]$

Case 2 (Regret > 0):

 $regret_t(x) = \max_{y} [v_i(x_i, y) - t_i(y)] - (v_i(x_i, y^*) - t_i(y^*)) > 0$

Definition 1

Payment rule t_w is maximally-IC given f and D if $t_w \in \arg\min_t \mathbb{E}_{x \sim D}[regret_t(x)]$

Expected regret = $0 \iff$ mech is IC

Introduction 0000000	Mechanism design theory ○●	Main results	Optimization	Applications	Wrap-up 00
Approxi	mate IC				

Case 1 (No regret): $v_i(x_i, y^*) - t_i(y^*) \ge \max_{y} [v_i(x_i, y) - t_i(y)]$

Case 2 (Regret > 0):

 $regret_t(x) = \max_{y} [v_i(x_i, y) - t_i(y)] - (v_i(x_i, y^*) - t_i(y^*)) > 0$

Definition 1

Payment rule t_w is *maximally-IC* given f and D if $t_w \in \arg\min_t \mathbb{E}_{x\sim D}[regret_t(x)]$

Expected regret = $0 \iff$ mech is IC

Introduction	Mechanism design theory ○●	Main results	Optimization 0000	Applications	Wrap-up 00
Approxi	mate IC				

Case 1 (No regret): $v_i(x_i, y^*) - t_i(y^*) \ge \max_{y} [v_i(x_i, y) - t_i(y)]$

Case 2 (Regret > 0):

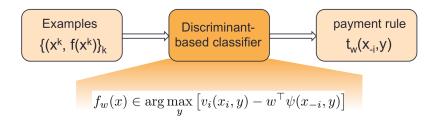
 $regret_t(x) = \max_{y} [v_i(x_i, y) - t_i(y)] - (v_i(x_i, y^*) - t_i(y^*)) > 0$

Definition 1

Payment rule t_w is *maximally-IC* given f and D if $t_w \in \arg\min_t \mathbb{E}_{x \sim D}[regret_t(x)]$

Expected regret = $0 \iff$ mech is IC

Introduction	Mechanism design theory	Main results ●000	Optimization	Applications	Wrap-up 00
Overall	Approach				



Introduction	Mechanism design theory	Main results o●oo	Optimization	Applications	Wrap-up 00

Review: Discriminant-Based Classifier

Feature space X^n .

Label space Y.

Learn hypothesis $h \in \mathcal{H}$.

For parameters w, define a discriminant function

 $H_w: X^n \times Y \mapsto \mathbb{R}.$

The corresponding *classifier* is:

$$f_w(x) \in \arg\max_y H_w(x, y).$$

Introduction	Mechanism design theory	Main results	Optimization	Applications	Wrap-up
		0000			

Review: Discriminant-Based Classifier

- Feature space X^n .
- Label space Y.
- Learn hypothesis $h \in \mathcal{H}$.

For parameters w, define a discriminant function

 $H_w: X^n \times Y \mapsto \mathbb{R}.$

The corresponding *classifier* is:

$$f_w(x) \in \arg\max_y H_w(x, y).$$

Introduction	Mechanism design theory	Main results	Optimization	Applications	Wrap-up
		0000			

Review: Discriminant-Based Classifier

- Feature space X^n .
- Label space Y.
- Learn hypothesis $h \in \mathcal{H}$.

For parameters w, define a discriminant function

$$H_w: X^n \times Y \mapsto \mathbb{R}.$$

The corresponding *classifier* is:

$$f_w(x) \in \arg\max_y H_w(x, y).$$

	accifier divec				
Introduction	Mechanism design theory	Main results ooeo	Optimization	Applications	Wrap-up

Exact Classifier gives an IC mechanism

Define a special *discriminant function*:

$$H_{W}(x, y) = v_{i}(x_{i}, y) - \underbrace{W^{\top}\psi(x_{-i}, y)}_{W},$$

payment $t_w(x_{-i}, y)$

for *features* $\psi(x_{-i}, y) \in \mathbb{R}^m$.

Theorem 2

An exact classifier for outcome rule f provides IC mech. (f, t_w).

Proof: Let $y^* = f(x)$. Because classifier f_w is exact, then $v_i(x_i, y^*) - t_w(x_{-i}, y^*) \ge v_i(x_i, y) - t_w(x_{-i}, y)$. $\Rightarrow (f, t_w)$ is IC (by Theorem 1).

Introduction	Mechanism design theory	Main results	Optimization 0000	Applications	Wrap-up 00
lature du cette a	Maahaniana daajana khaanuu	Main reaulta	Ontinaination	Annlingtions	14/2010 1100

Exact Classifier gives an IC mechanism

Define a special *discriminant function*:

$$H_w(x,y) = v_i(x_i,y) - \underbrace{w^{\top}\psi(x_{-i},y)}_{i},$$

payment $t_w(x_{-i}, y)$

for *features* $\psi(x_{-i}, y) \in \mathbb{R}^m$.

Theorem 2

An exact classifier for outcome rule f provides IC mech. (f, t_w).

Proof: Let $y^* = f(x)$. Because classifier f_w is exact, then $v_i(x_i, y^*) - t_w(x_{-i}, y^*) \ge v_i(x_i, y) - t_w(x_{-i}, y)$. $\Rightarrow (f, t_w)$ is IC (by Theorem 1).

0000000	00	0000	0000	00000	00
Introduction	Mechanism design theory	Main results	Optimization	Applications	Wrap-up

Exact Classifier gives an IC mechanism

Define a special *discriminant function*:

$$H_w(x, y) = v_i(x_i, y) - \underbrace{w^{\top}\psi(x_{-i}, y)}_{i \neq i \neq j},$$

payment $t_w(x_{-i}, y)$

for *features* $\psi(x_{-i}, y) \in \mathbb{R}^m$.

Theorem 2

An exact classifier for outcome rule f provides IC mech. (f, t_w).

Proof: Let $y^* = f(x)$. Because classifier f_w is exact, then $v_i(x_i, y^*) - t_w(x_{-i}, y^*) \ge v_i(x_i, y) - t_w(x_{-i}, y)$. $\Rightarrow (f, t_w)$ is IC (by Theorem 1).

Introduction	Mechanism design theory	Main results 000●	Optimization	Applications	Wrap-up 00

A Risk-Optimal Classifier gives Maximal IC

Definition 2

The discriminant loss function is

 $L_{w}(x, f(x)) = H_{w}(x, f_{w}(x)) - H_{w}(x, f(x)) \ge 0.$

Theorem 3

A classifier f_w that *minimizes exp loss* $\mathbb{E}_x[L_w(x, f(x))]$ provides a mechanism (f, t_w) that is *maximally-IC*.

Proof: The discriminant loss corresponds to regret, because

 $L_w(x, f(x)) = \max_{v} [H_w(x, y)] - H_w(x, y^*) = regret_{t_w}(x),$

since $H_w(x, y) = v_i(x_i, y) - w^{\top} \psi(x_{-i}, y)$.

Introduction	Mechanism design theory	Main results 000●	Optimization	Applications	Wrap-up 00

A Risk-Optimal Classifier gives Maximal IC

Definition 2

The discriminant loss function is

 $L_w(x, f(x)) = H_w(x, f_w(x)) - H_w(x, f(x)) \ge 0.$

Theorem 3

A classifier f_w that *minimizes exp loss* $\mathbb{E}_x[L_w(x, f(x))]$ provides a mechanism (f, t_w) that is *maximally-IC*.

Proof: The discriminant loss corresponds to regret, because

$$L_w(x, f(x)) = \max_{y} [H_w(x, y)] - H_w(x, y^*) = regret_{t_w}(x),$$

since $H_w(x, y) = v_i(x_i, y) - w^{\top} \psi(x_{-i}, y)$.

Introduction 0000000	Mechanism design theory	Main results	Optimization ●000	Applications	Wrap-up 00

Mechanism design via Risk-optimal Classifiers

The program:

- **1** Given training data $\{(x^k, f(x^k))\}_k$. Define feature map ψ .
- 2 Learn a classifier with discriminant function

$$H_{w}(x, y) = v_{i}(x_{i}, y) - w^{\top} \psi(x_{-i}, y)$$

that minimizes expected loss.

3 Obtain mechanism (f, t_w) , with payment rule

$$t_w(x_{-i},y) = w^\top \psi(x_{-i},y)$$

Use *structural support vector machines* to solve the multi-class classification problem (Joachims et al. 2009).

Introduction 0000000	Mechanism design theory	Main results	Optimization ●000	Applications	Wrap-up 00

Mechanism design via Risk-optimal Classifiers

The program:

- **1** Given training data $\{(x^k, f(x^k))\}_k$. Define feature map ψ .
- 2 Learn a classifier with discriminant function

$$H_{w}(x, y) = v_{i}(x_{i}, y) - w^{\top} \psi(x_{-i}, y)$$

that minimizes expected loss.

3 Obtain mechanism (f, t_w) , with payment rule

$$t_w(x_{-i}, y) = w^\top \psi(x_{-i}, y)$$

Use *structural support vector machines* to solve the multi-class classification problem (Joachims et al. 2009).

Introduction	Mechanism design theory	Main results	Optimization 0000	Applications	Wrap-up 00
Structur	al SVMs				

Training data $\{(x^k, y^k)\}_k$. Feature map ψ .

Training problem:

$$\min_{w,\xi\geq 0} \frac{1}{2} w^{\mathsf{T}} w + \frac{C}{\ell} \sum_{k} \xi^{k}$$
(QP)
s.t. $w^{\mathsf{T}} \psi(x^{k}, y^{k}) + \xi^{k} \geq \max_{y} w^{\mathsf{T}} \psi(x^{k}, y), \quad \forall k,$

where ξ^k is a *slack variable*, and indicates a discriminant loss on example k. Impose 'admissible' structure on ψ .

The QP minimizes the regularized, empirical discriminant loss.

Introduction	Mechanism design theory	Main results	Optimization o●oo	Applications	Wrap-up oo
Structur	ral SVMs				

Training data $\{(x^k, y^k)\}_k$. Feature map ψ .

Training problem:

$$\min_{w,\xi\geq 0} \frac{1}{2} w^{\mathsf{T}} w + \frac{C}{\ell} \sum_{k} \xi^{k}$$
(QP)
s.t. $w^{\mathsf{T}} \psi(x^{k}, y^{k}) + \xi^{k} \geq \max_{y} w^{\mathsf{T}} \psi(x^{k}, y), \quad \forall k,$

where ξ^k is a *slack variable*, and indicates a discriminant loss on example *k*. Impose 'admissible' structure on ψ .

The QP minimizes the regularized, empirical discriminant loss.

Introduction	Mechanism design theory	Main results	Optimization 0000	Applications	Wrap-up 00
Structur	al SVMs				

Training data $\{(x^k, y^k)\}_k$. Feature map ψ .

Training problem:

$$\min_{w,\xi \ge 0} \frac{1}{2} w^{\mathsf{T}} w + \frac{C}{\ell} \sum_{k} \xi^{k}$$
(QP)
s.t. $w^{\mathsf{T}} \psi(x^{k}, y^{k}) + \xi^{k} \ge \max_{y} w^{\mathsf{T}} \psi(x^{k}, y), \quad \forall k,$

where ξ^k is a *slack variable*, and indicates a discriminant loss on example *k*. Impose 'admissible' structure on ψ .

The QP minimizes the regularized, empirical discriminant loss.

Introduction	Mechanism design theory	Main results	Optimization 00●0	Applications	Wrap-up 00
Solving	the Training P	roblem			

1 Allow large attribute vector via *kernel trick*. Expand *attributes q* into features:

$$\psi(x_{-i}, y) = \phi(q) \in \mathbb{R}^m,$$

Features ψ only appear in dual via inner product:

 $\langle (\phi(q),\phi(q')\rangle = K(q,q'),$

where *K* is the *kernel*.

2 Handle large outcome space Y via efficient separation (following Taskar et al., 2004).

Introduction	Mechanism design theory	Main results	Optimization 00●0	Applications	Wrap-up 00
Solving	the Training P	roblem			

1 Allow large attribute vector via *kernel trick*. Expand *attributes q* into features:

$$\psi(x_{-i}, y) = \phi(q) \in \mathbb{R}^m,$$

Features ψ only appear in dual via inner product:

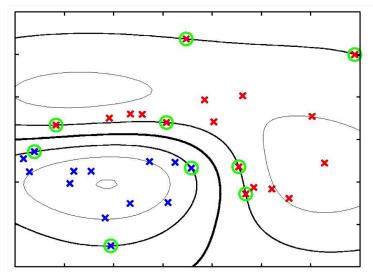
$$\langle (\phi(q),\phi(q')\rangle = K(q,q'),$$

where *K* is the *kernel*.

2 Handle large outcome space Y via efficient separation (following Taskar et al., 2004).

Support Vectors in Original Attribute Space

Bishop (2007)



Introduction	Mechanism design theory	Main results	Optimization	Applications ●0000	Wrap-up 00
Empiric	al Results				

Two problems that cannot be solved via classical methods

- Auction multiple landing times at Schiphol
 Each agent interested in multiple packages of landing slots
 Vary degree of complementanty between items
 f is a greedy allocation algorithm
- Fair assignment problem:
 - Each agent can receive at most one landing time
 - f maximizes egalitarian welfare (lex-max-min))

Benchmark: VCG-based rules (not IC!)

Introduction	Mechanism design theory	Main results	Optimization	Applications ●0000	Wrap-up oo
Empiric	al Results				

Two problems that cannot be solved via classical methods

- *Multi-minded combinatorial auction*:
 - Auction multiple landing times at Schiphol
 - Each agent interested in multiple packages of landing slots
 - Vary degree of *complementarity* between items
 - f is a greedy allocation algorithm
 - Fair assignment problem:

Each agent can receive at most one landing time

f maximizes egalitarian welfare (lex-max-min)

Benchmark: VCG-based rules (not IC!)

Introduction	Mechanism design theory	Main results	Optimization	Applications ●0000	Wrap-up oo
Empiric	al Results				

Two problems that cannot be solved via classical methods

- *Multi-minded combinatorial auction*:
 - Auction multiple landing times at Schiphol
 - Each agent interested in multiple packages of landing slots
 - Vary degree of complementarity between items
 - f is a greedy allocation algorithm
- Fair assignment problem:
 - Each agent can receive at most one landing time
 - f maximizes egalitarian welfare (lex-max-min)

Benchmark: VCG-based rules (not IC!)

Introduction	Mechanism design theory	Main results	Optimization	Applications	Wrap-up
				00000	

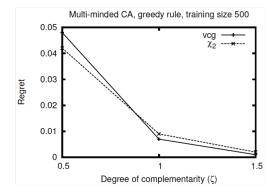
Succinct Valuation Representation for CA

- Need efficient separation problem
- Adopt graphical valuations (Conitzer & Sandholm 2005, Abraham et al. 2012)
 - Welfare-maximization NP-hard
 - Can solve separation problem (in dual QP)



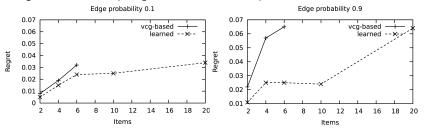
Introduction 0000000	Mechanism design theory	Main results	Optimization	Applications 00●00	Wrap-up oo	
Results I: Multi-Minded CAs						

5 agents, 5 items. Without succinct valuations.



Performance comparable to that of VCG-based rule.

Larger instances (6 agents, 2-20 items.) Succinct valuations.

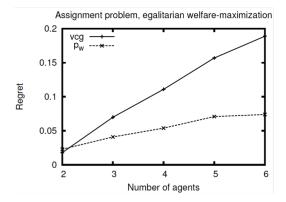


Higher edge density, higher complementarity.

Performance dominates that of VCG-based rule.

	II: Eair Accian				
Introduction	Mechanism design theory	Main results	Optimization	Applications	Wrap-up

Results II: Fair Assignment Problem



Performance dominates that of VCG-based rule.

Introduction	Mechanism design theory	Main results	Optimization	Applications	Wrap-up ●○
Conclus	sions				

- We use statistical learning to find a payment rule that makes an outcome rule approx-IC
- Connect discriminant-based classifiers and incentive-compatible payment rules.
 - Roughly: look for a discriminant for agent *i* that is linear in x_i and non-linear in x_{-i}
- Circumvents analytical bottleneck, opens up *empirical approach* where an efficient outcome rule is matched (automatically) with a suitable payment rule.

Introduction	Mechanism design theory	Main results	Optimization	Applications	Wrap-up ⊙●

Thank you

Reference: Payment Rules through Discriminant-Based Classifiers, P. Dütting, F. A. Fischer, P. Jirapinyo, J. K. Lai, B. Lubin, and D. C. Parkes, *ACM Transactions on Economics and Computation* **3**(1), 2014