
Introduction Mechanism design theory Main results Optimization Applications Wrap-up

Mechanism Design through
Statistical Machine Learning:

Part I (Auctions)

David C. Parkes

Computer Science
John A. Paulson School of Engineering and Applied Sciences

Harvard University

January 12, 2016

Introduction Mechanism design theory Main results Optimization Applications Wrap-up

Optimization where the Inputs are Private

Example: allocate landing rights at Schiphol airport.

An agent ’s type  specifies her value for each possible
allocation y ∈ Y
Design goal: maximize sum total value
Constraint: incentive compaibility

Introduction Mechanism design theory Main results Optimization Applications Wrap-up

Optimization where the Inputs are Private

Example: allocate landing rights at Schiphol airport.

An agent ’s type  specifies her value for each possible
allocation y ∈ Y
Design goal: maximize sum total value
Constraint: incentive compaibility

Introduction Mechanism design theory Main results Optimization Applications Wrap-up

Optimization where the Inputs are Private

Example: allocate landing rights at Schiphol airport.

An agent ’s type  specifies her value for each possible
allocation y ∈ Y
Design goal: maximize sum total value
Constraint: incentive compaibility

Introduction Mechanism design theory Main results Optimization Applications Wrap-up

Optimization where the Inputs are Private

Alternative y ∈ Y. n agents.
Valuation type  ∈ X, defines value (, y).
Design goal:

mx
y∈Y

g(1, . . . , n, y)

s.t. incentive compatibility (IC)

IC: truthful reporting is a dominant strategy for each agent
Typical to use payments to align incentives.

Introduction Mechanism design theory Main results Optimization Applications Wrap-up

Optimization where the Inputs are Private

Alternative y ∈ Y. n agents.
Valuation type  ∈ X, defines value (, y).
Design goal:

mx
y∈Y

g(1, . . . , n, y)

s.t. incentive compatibility (IC)

IC: truthful reporting is a dominant strategy for each agent
Typical to use payments to align incentives.

Introduction Mechanism design theory Main results Optimization Applications Wrap-up

Optimization where the Inputs are Private

Alternative y ∈ Y. n agents.
Valuation type  ∈ X, defines value (, y).
Design goal:

mx
y∈Y

g(1, . . . , n, y)

s.t. incentive compatibility (IC)

IC: truthful reporting is a dominant strategy for each agent
Typical to use payments to align incentives.

Introduction Mechanism design theory Main results Optimization Applications Wrap-up

Example: Vickrey Auction

An agent’s type  specifies her value for an item.
e.g., values $10, $8, $4 (agents 1, 2 and 3).

Design goal: allocate to agent with maximum value
Solution:

Receive reports ̂1, . . . , ̂n
Allocate to highest bid, for second-highest bid amount

Incentive compatible, optimal.

Introduction Mechanism design theory Main results Optimization Applications Wrap-up

Example: Vickrey Auction

An agent’s type  specifies her value for an item.
e.g., values $10, $8, $4 (agents 1, 2 and 3).

Design goal: allocate to agent with maximum value
Solution:

Receive reports ̂1, . . . , ̂n
Allocate to highest bid, for second-highest bid amount

Incentive compatible, optimal.

Introduction Mechanism design theory Main results Optimization Applications Wrap-up

Example: Vickrey Auction

An agent’s type  specifies her value for an item.
e.g., values $10, $8, $4 (agents 1, 2 and 3).

Design goal: allocate to agent with maximum value
Solution:

Receive reports ̂1, . . . , ̂n
Allocate to highest bid, for second-highest bid amount

Incentive compatible, optimal.

Introduction Mechanism design theory Main results Optimization Applications Wrap-up

Example: Vickrey-Clarke-Groves mechanism

Example: allocate landing rights at Schiphol airport.

An agent’s type  specifies her value for each possible
allocation y ∈ Y
Design goal: maximize sum total value
Solution:

Receive reports ̂1, . . . , ̂n
Choose y∗ ∈ rgmxY

∑

 (̂, y)
Charge

∑

j 6= j(̂j, y
−)−

∑

j 6= j(̂j, y
∗) to agent 

Incentive compatible, optimal.

Introduction Mechanism design theory Main results Optimization Applications Wrap-up

Example: Vickrey-Clarke-Groves mechanism

Example: allocate landing rights at Schiphol airport.

An agent’s type  specifies her value for each possible
allocation y ∈ Y
Design goal: maximize sum total value
Solution:

Receive reports ̂1, . . . , ̂n
Choose y∗ ∈ rgmxY

∑

 (̂, y)
Charge

∑

j 6= j(̂j, y
−)−

∑

j 6= j(̂j, y
∗) to agent 

Incentive compatible, optimal.

Introduction Mechanism design theory Main results Optimization Applications Wrap-up

Example: Vickrey-Clarke-Groves mechanism

Example: allocate landing rights at Schiphol airport.

An agent’s type  specifies her value for each possible
allocation y ∈ Y
Design goal: maximize sum total value
Solution:

Receive reports ̂1, . . . , ̂n
Choose y∗ ∈ rgmxY

∑

 (̂, y)
Charge

∑

j 6= j(̂j, y
−)−

∑

j 6= j(̂j, y
∗) to agent 

Incentive compatible, optimal.

Introduction Mechanism design theory Main results Optimization Applications Wrap-up

An Incentive Mechanism

A mechanism M = (ƒ , t):
Receive reports ̂ = (̂1, . . . , ̂n)
Outcome rule: choose y∗ = ƒ (̂)
Payment rule: charge each agent  an amount t(̂, y∗) ∈ R

A mechanism is incentive-compatible if truthful reporting is a
dominant strategy, for all reports of others.

Introduction Mechanism design theory Main results Optimization Applications Wrap-up

An Incentive Mechanism

A mechanism M = (ƒ , t):
Receive reports ̂ = (̂1, . . . , ̂n)
Outcome rule: choose y∗ = ƒ (̂)
Payment rule: charge each agent  an amount t(̂, y∗) ∈ R

A mechanism is incentive-compatible if truthful reporting is a
dominant strategy, for all reports of others.

Introduction Mechanism design theory Main results Optimization Applications Wrap-up

Challenges in Mechanism Design

Single-dimensional mechanism design well understood
Valuation types  ∈ R, value for alternative y monotone in 
Myerson (1981)

Multi-dimensional mechanism design largely unsolved
Vickrey-Clarke-Groves mechanism only general solution

limited to welfare-optimality, often intractable

Analytical bottleneck: conditions such as cyclic-monotonicity
hard to work with (Rochet’81)

Some computational progress (Cai et al.’13, Alaei et al.’12,
Daskalakis et al.’15), but not for general problems.

Introduction Mechanism design theory Main results Optimization Applications Wrap-up

Challenges in Mechanism Design

Single-dimensional mechanism design well understood
Valuation types  ∈ R, value for alternative y monotone in 
Myerson (1981)

Multi-dimensional mechanism design largely unsolved
Vickrey-Clarke-Groves mechanism only general solution

limited to welfare-optimality, often intractable

Analytical bottleneck: conditions such as cyclic-monotonicity
hard to work with (Rochet’81)

Some computational progress (Cai et al.’13, Alaei et al.’12,
Daskalakis et al.’15), but not for general problems.

Introduction Mechanism design theory Main results Optimization Applications Wrap-up

Challenges in Mechanism Design

Single-dimensional mechanism design well understood
Valuation types  ∈ R, value for alternative y monotone in 
Myerson (1981)

Multi-dimensional mechanism design largely unsolved
Vickrey-Clarke-Groves mechanism only general solution

limited to welfare-optimality, often intractable

Analytical bottleneck: conditions such as cyclic-monotonicity
hard to work with (Rochet’81)

Some computational progress (Cai et al.’13, Alaei et al.’12,
Daskalakis et al.’15), but not for general problems.

Introduction Mechanism design theory Main results Optimization Applications Wrap-up

Automated Design via Learning

mxy∈Y g(1, . . . , n, y)
s.t. IC

�

≈ ƒ ()

Given ƒ . Learn a payment rule to accompany ƒ :
Input: training examples {(k, ƒ (k))}k (generated with
 ∼D D)
Learn a payment rule t such that M = (ƒ , t), is
approximately IC

Benefits:
Rule ƒ can be an algorithm (address comput. intractability)
Allows graceful degradation to approximate-IC; avoid the
analytical bottleneck.

Introduction Mechanism design theory Main results Optimization Applications Wrap-up

Automated Design via Learning

mxy∈Y g(1, . . . , n, y)
s.t. IC

�

≈ ƒ ()

Given ƒ . Learn a payment rule to accompany ƒ :
Input: training examples {(k, ƒ (k))}k (generated with
 ∼D D)
Learn a payment rule t such that M = (ƒ , t), is
approximately IC

Benefits:
Rule ƒ can be an algorithm (address comput. intractability)
Allows graceful degradation to approximate-IC; avoid the
analytical bottleneck.

Introduction Mechanism design theory Main results Optimization Applications Wrap-up

Automated Design via Learning

mxy∈Y g(1, . . . , n, y)
s.t. IC

�

≈ ƒ ()

Given ƒ . Learn a payment rule to accompany ƒ :
Input: training examples {(k, ƒ (k))}k (generated with
 ∼D D)
Learn a payment rule t such that M = (ƒ , t), is
approximately IC

Benefits:
Rule ƒ can be an algorithm (address comput. intractability)
Allows graceful degradation to approximate-IC; avoid the
analytical bottleneck.

Introduction Mechanism design theory Main results Optimization Applications Wrap-up

Automated Design via Learning

mxy∈Y g(1, . . . , n, y)
s.t. IC

�

≈ ƒ ()

Given ƒ . Learn a payment rule to accompany ƒ :
Input: training examples {(k, ƒ (k))}k (generated with
 ∼D D)
Learn a payment rule t such that M = (ƒ , t), is
approximately IC

Benefits:
Rule ƒ can be an algorithm (address comput. intractability)
Allows graceful degradation to approximate-IC; avoid the
analytical bottleneck.

Introduction Mechanism design theory Main results Optimization Applications Wrap-up

Background: Characterization of IC mechanisms

Theorem 1

Mechanism (ƒ , t) is IC if and only if:
Agent-independence: price to  for y is t(̂−, y)
No-regret: ∀ : ƒ (̂) ∈ rgmxy[(̂, y)− t(̂−, y)]

Example:
Bids $10,$8,$4.
Price to agent 2 is $10 for the item, $0 o.w. ⇒ no regret for
not receiving item!

Introduction Mechanism design theory Main results Optimization Applications Wrap-up

Background: Characterization of IC mechanisms

Theorem 1

Mechanism (ƒ , t) is IC if and only if:
Agent-independence: price to  for y is t(̂−, y)
No-regret: ∀ : ƒ (̂) ∈ rgmxy[(̂, y)− t(̂−, y)]

Example:
Bids $10,$8,$4.
Price to agent 2 is $10 for the item, $0 o.w. ⇒ no regret for
not receiving item!

Introduction Mechanism design theory Main results Optimization Applications Wrap-up

Approximate IC

Fix type , reports of others. y∗ is choice of mechanism. Let
t(y) denote price function. Two possibilities:

Case 1 (No regret):
(, y∗)− t(y∗) ≥mx

y
[(, y)− t(y)]

Case 2 (Regret > 0):

regrett() =mxy [(, y)− t(y)]− ((, y∗)− t(y∗)) > 0

Definition 1

Payment rule t is maximally-IC given ƒ and D if

t ∈ rgmin
t

E∼D[regrett()]

Expected regret = 0 ⇔ mech is IC
Generally interested in low expected regret

Introduction Mechanism design theory Main results Optimization Applications Wrap-up

Approximate IC

Fix type , reports of others. y∗ is choice of mechanism. Let
t(y) denote price function. Two possibilities:

Case 1 (No regret):
(, y∗)− t(y∗) ≥mx

y
[(, y)− t(y)]

Case 2 (Regret > 0):

regrett() =mxy [(, y)− t(y)]− ((, y∗)− t(y∗)) > 0

Definition 1

Payment rule t is maximally-IC given ƒ and D if

t ∈ rgmin
t

E∼D[regrett()]

Expected regret = 0 ⇔ mech is IC
Generally interested in low expected regret

Introduction Mechanism design theory Main results Optimization Applications Wrap-up

Approximate IC

Fix type , reports of others. y∗ is choice of mechanism. Let
t(y) denote price function. Two possibilities:

Case 1 (No regret):
(, y∗)− t(y∗) ≥mx

y
[(, y)− t(y)]

Case 2 (Regret > 0):

regrett() =mxy [(, y)− t(y)]− ((, y∗)− t(y∗)) > 0

Definition 1

Payment rule t is maximally-IC given ƒ and D if

t ∈ rgmin
t

E∼D[regrett()]

Expected regret = 0 ⇔ mech is IC
Generally interested in low expected regret

Introduction Mechanism design theory Main results Optimization Applications Wrap-up

Approximate IC

Fix type , reports of others. y∗ is choice of mechanism. Let
t(y) denote price function. Two possibilities:

Case 1 (No regret):
(, y∗)− t(y∗) ≥mx

y
[(, y)− t(y)]

Case 2 (Regret > 0):

regrett() =mxy [(, y)− t(y)]− ((, y∗)− t(y∗)) > 0

Definition 1

Payment rule t is maximally-IC given ƒ and D if

t ∈ rgmin
t

E∼D[regrett()]

Expected regret = 0 ⇔ mech is IC
Generally interested in low expected regret

Introduction Mechanism design theory Main results Optimization Applications Wrap-up

Approximate IC

Fix type , reports of others. y∗ is choice of mechanism. Let
t(y) denote price function. Two possibilities:

Case 1 (No regret):
(, y∗)− t(y∗) ≥mx

y
[(, y)− t(y)]

Case 2 (Regret > 0):

regrett() =mxy [(, y)− t(y)]− ((, y∗)− t(y∗)) > 0

Definition 1

Payment rule t is maximally-IC given ƒ and D if

t ∈ rgmin
t

E∼D[regrett()]

Expected regret = 0 ⇔ mech is IC
Generally interested in low expected regret

Introduction Mechanism design theory Main results Optimization Applications Wrap-up

Overall Approach

Introduction Mechanism design theory Main results Optimization Applications Wrap-up

Review: Discriminant-Based Classifier

Feature space Xn.
Label space Y.
Learn hypothesis h ∈ H.

For parameters , define a discriminant function

H : Xn × Y 7→ R.

The corresponding classifier is:

ƒ() ∈ rgmx
y

H(, y).

Introduction Mechanism design theory Main results Optimization Applications Wrap-up

Review: Discriminant-Based Classifier

Feature space Xn.
Label space Y.
Learn hypothesis h ∈ H.

For parameters , define a discriminant function

H : Xn × Y 7→ R.

The corresponding classifier is:

ƒ() ∈ rgmx
y

H(, y).

Introduction Mechanism design theory Main results Optimization Applications Wrap-up

Review: Discriminant-Based Classifier

Feature space Xn.
Label space Y.
Learn hypothesis h ∈ H.

For parameters , define a discriminant function

H : Xn × Y 7→ R.

The corresponding classifier is:

ƒ() ∈ rgmx
y

H(, y).

Introduction Mechanism design theory Main results Optimization Applications Wrap-up

Exact Classifier gives an IC mechanism

Define a special discriminant function:

H(, y) = (, y)− >ψ(−, y)
︸ ︷︷ ︸

payment t(−, y)

,

for features ψ(−, y) ∈ Rm.

Theorem 2

An exact classifier for outcome rule ƒ provides IC mech. (ƒ , t).

Proof: Let y∗ = ƒ (). Because classifier ƒ is exact, then
(, y∗)− t(−, y∗) ≥ (, y)− t(−, y).
⇒ (ƒ , t) is IC (by Theorem 1).

Introduction Mechanism design theory Main results Optimization Applications Wrap-up

Exact Classifier gives an IC mechanism

Define a special discriminant function:

H(, y) = (, y)− >ψ(−, y)
︸ ︷︷ ︸

payment t(−, y)

,

for features ψ(−, y) ∈ Rm.

Theorem 2

An exact classifier for outcome rule ƒ provides IC mech. (ƒ , t).

Proof: Let y∗ = ƒ (). Because classifier ƒ is exact, then
(, y∗)− t(−, y∗) ≥ (, y)− t(−, y).
⇒ (ƒ , t) is IC (by Theorem 1).

Introduction Mechanism design theory Main results Optimization Applications Wrap-up

Exact Classifier gives an IC mechanism

Define a special discriminant function:

H(, y) = (, y)− >ψ(−, y)
︸ ︷︷ ︸

payment t(−, y)

,

for features ψ(−, y) ∈ Rm.

Theorem 2

An exact classifier for outcome rule ƒ provides IC mech. (ƒ , t).

Proof: Let y∗ = ƒ (). Because classifier ƒ is exact, then
(, y∗)− t(−, y∗) ≥ (, y)− t(−, y).
⇒ (ƒ , t) is IC (by Theorem 1).

Introduction Mechanism design theory Main results Optimization Applications Wrap-up

A Risk-Optimal Classifier gives Maximal IC

Definition 2

The discriminant loss function is

L(, ƒ ()) = H(, ƒ())−H(, ƒ ()) ≥ 0.

Theorem 3

A classifier ƒ that minimizes exp loss E[L(, ƒ ())] provides
a mechanism (ƒ , t) that is maximally-IC.

Proof: The discriminant loss corresponds to regret, because

L(, ƒ ()) =mx
y
[H(, y)]−H(, y∗) = regrett(),

since H(, y) = (, y)−>ψ(−, y).

Introduction Mechanism design theory Main results Optimization Applications Wrap-up

A Risk-Optimal Classifier gives Maximal IC

Definition 2

The discriminant loss function is

L(, ƒ ()) = H(, ƒ())−H(, ƒ ()) ≥ 0.

Theorem 3

A classifier ƒ that minimizes exp loss E[L(, ƒ ())] provides
a mechanism (ƒ , t) that is maximally-IC.

Proof: The discriminant loss corresponds to regret, because

L(, ƒ ()) =mx
y
[H(, y)]−H(, y∗) = regrett(),

since H(, y) = (, y)−>ψ(−, y).

Introduction Mechanism design theory Main results Optimization Applications Wrap-up

Mechanism design via Risk-optimal Classifiers

The program:
1 Given training data {(k, ƒ (k))}k. Define feature map ψ.
2 Learn a classifier with discriminant function

H(, y) = (, y)−>ψ(−, y)

that minimizes expected loss.
3 Obtain mechanism (ƒ , t), with payment rule

t(−, y) =>ψ(−, y)

Use structural support vector machines to solve the multi-class
classification problem (Joachims et al. 2009).

Introduction Mechanism design theory Main results Optimization Applications Wrap-up

Mechanism design via Risk-optimal Classifiers

The program:
1 Given training data {(k, ƒ (k))}k. Define feature map ψ.
2 Learn a classifier with discriminant function

H(, y) = (, y)−>ψ(−, y)

that minimizes expected loss.
3 Obtain mechanism (ƒ , t), with payment rule

t(−, y) =>ψ(−, y)

Use structural support vector machines to solve the multi-class
classification problem (Joachims et al. 2009).

Introduction Mechanism design theory Main results Optimization Applications Wrap-up

Structural SVMs

Training data {(k, yk)}k. Feature map ψ.

Training problem:

min
,ξ≥0

1

2
>+

C

ℓ

∑

k

ξk (QP)

s.t. >ψ(k, yk) + ξk ≥mx
y

>ψ(k, y), ∀k,

where ξk is a slack variable, and indicates a discriminant loss on
example k. Impose ‘admissible’ structure on ψ.

The QP minimizes the regularized, empirical discriminant loss.

Introduction Mechanism design theory Main results Optimization Applications Wrap-up

Structural SVMs

Training data {(k, yk)}k. Feature map ψ.

Training problem:

min
,ξ≥0

1

2
>+

C

ℓ

∑

k

ξk (QP)

s.t. >ψ(k, yk) + ξk ≥mx
y

>ψ(k, y), ∀k,

where ξk is a slack variable, and indicates a discriminant loss on
example k. Impose ‘admissible’ structure on ψ.

The QP minimizes the regularized, empirical discriminant loss.

Introduction Mechanism design theory Main results Optimization Applications Wrap-up

Structural SVMs

Training data {(k, yk)}k. Feature map ψ.

Training problem:

min
,ξ≥0

1

2
>+

C

ℓ

∑

k

ξk (QP)

s.t. >ψ(k, yk) + ξk ≥mx
y

>ψ(k, y), ∀k,

where ξk is a slack variable, and indicates a discriminant loss on
example k. Impose ‘admissible’ structure on ψ.

The QP minimizes the regularized, empirical discriminant loss.

Introduction Mechanism design theory Main results Optimization Applications Wrap-up

Solving the Training Problem

1 Allow large attribute vector via kernel trick. Expand attributes
q into features:

ψ(−, y) = ϕ(q) ∈ Rm,

Features ψ only appear in dual via inner product:

〈(ϕ(q), ϕ(q′)〉 = K(q, q′),

where K is the kernel.
2 Handle large outcome space Y via efficient separation

(following Taskar et al., 2004).

Introduction Mechanism design theory Main results Optimization Applications Wrap-up

Solving the Training Problem

1 Allow large attribute vector via kernel trick. Expand attributes
q into features:

ψ(−, y) = ϕ(q) ∈ Rm,

Features ψ only appear in dual via inner product:

〈(ϕ(q), ϕ(q′)〉 = K(q, q′),

where K is the kernel.
2 Handle large outcome space Y via efficient separation

(following Taskar et al., 2004).

Introduction Mechanism design theory Main results Optimization Applications Wrap-up

Support Vectors in Original Attribute Space

Bishop (2007)

Introduction Mechanism design theory Main results Optimization Applications Wrap-up

Empirical Results

Two problems that cannot be solved via classical methods

Multi-minded combinatorial auction:
Auction multiple landing times at Schiphol
Each agent interested in multiple packages of landing slots
Vary degree of complementarity between items
ƒ is a greedy allocation algorithm

Fair assignment problem:
Each agent can receive at most one landing time
ƒ maximizes egalitarian welfare (lex-max-min)

Benchmark: VCG-based rules (not IC!)

Introduction Mechanism design theory Main results Optimization Applications Wrap-up

Empirical Results

Two problems that cannot be solved via classical methods

Multi-minded combinatorial auction:
Auction multiple landing times at Schiphol
Each agent interested in multiple packages of landing slots
Vary degree of complementarity between items
ƒ is a greedy allocation algorithm

Fair assignment problem:
Each agent can receive at most one landing time
ƒ maximizes egalitarian welfare (lex-max-min)

Benchmark: VCG-based rules (not IC!)

Introduction Mechanism design theory Main results Optimization Applications Wrap-up

Empirical Results

Two problems that cannot be solved via classical methods

Multi-minded combinatorial auction:
Auction multiple landing times at Schiphol
Each agent interested in multiple packages of landing slots
Vary degree of complementarity between items
ƒ is a greedy allocation algorithm

Fair assignment problem:
Each agent can receive at most one landing time
ƒ maximizes egalitarian welfare (lex-max-min)

Benchmark: VCG-based rules (not IC!)

Introduction Mechanism design theory Main results Optimization Applications Wrap-up

Succinct Valuation Representation for CA

Need efficient separation problem
Adopt graphical valuations (Conitzer & Sandholm 2005,
Abraham et al. 2012)

Welfare-maximization NP-hard
Can solve separation problem (in dual QP)

Introduction Mechanism design theory Main results Optimization Applications Wrap-up

Results I: Multi-Minded CAs

5 agents, 5 items. Without succinct valuations.

Performance comparable to that of VCG-based rule.

Introduction Mechanism design theory Main results Optimization Applications Wrap-up

Results I: Multi-Minded CAs

Larger instances (6 agents, 2–20 items.) Succinct valuations.

Higher edge density, higher complementarity.
Performance dominates that of VCG-based rule.

Introduction Mechanism design theory Main results Optimization Applications Wrap-up

Results II: Fair Assignment Problem

Performance dominates that of VCG-based rule.

Introduction Mechanism design theory Main results Optimization Applications Wrap-up

Conclusions

We use statistical learning to find a payment rule that makes
an outcome rule approx-IC
Connect discriminant-based classifiers and
incentive-compatible payment rules.

Roughly: look for a discriminant for agent  that is linear in 
and non-linear in −

Circumvents analytical bottleneck, opens up empirical
approach where an efficient outcome rule is matched
(automatically) with a suitable payment rule.

Introduction Mechanism design theory Main results Optimization Applications Wrap-up

Thank you

Reference: Payment Rules through Discriminant-Based Classifiers, P.
Dütting, F. A. Fischer, P. Jirapinyo, J. K. Lai, B. Lubin, and D. C. Parkes,
ACM Transactions on Economics and Computation 3(1), 2014

	Introduction
	Mechanism design theory
	Main results
	Optimization
	Applications
	Wrap-up

