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I stylized models are limited: new (variants of existing) models
keep on being studied, called for by new developments in the
application domains.

I size: networks become larger (increasingly connected world,
with more data available). Requires structural understanding
of such large networks, and powerful computational
techniques.

I not stand-alone: increasing awareness that stochastic and
deterministic issues should not be dealt with separately. Along
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December 2013: large grant for fundamental research was awarded
for research on (stochastic and combinatorial) analysis of networks.

Runs from 2014 till 2024.
Focuses on understanding and optimizing large complex networks.
Math/cs teams Univ. of Amsterdam, CWI, Eindhoven, Leiden.
Big volume (7 TTers, ± 50 PhD students, ± 20 postdocs, ± 20
local staff involved).
Surrounded by practical domain-specific projects.

Have a look at http://www.thenetworkcenter.nl
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TODAY

Content of today very much in line with mentioned trends. Six
talks with new developments, seen from theoretical as well as
practical angle.

10.40 - 11.20 The power of social network analysis – Ana Barros (TNO).
11.35 - 12.15 The hub-network of KLM: importance and succesfactors –

Pieter Cornelisse (KLM).
13.30 - 14.10 Design and operational challenges of communication networks

– Richa Malhotra (SURFnet).
14.10 - 14.50 Supply Network Analytics - Operations Research in the Supply

Chain – Jan van Doremalen (CQM).
15.05 - 15.45 Design and analysis of container liner shipping networks –

Rommert Dekker (Erasmus University Rotterdam).
15.45 - 16.25 Towards data-driven models for the mobility system – Maaike

Snelders (TNO and TU Delft).
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distribution about the amount of work they bring along?
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Likewise: wireless communication network, with multiple classes of
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Background process corresponds to which links are ‘up’/‘down’.

When link is down, all classes using this link have arrival rate 0 and
departure rate ∞.
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MARKOV-MODULATED SINGLE-SERVER NETWORK

I Notoriously hard...

I Simplest model: two single-server queues, modulated by the
same background process X (t), irreducible continuous-time
Markov chain, living on {1, . . . , d}.
If X (t) = i , then
– arrival rate of queue A is λA

i (→ number of customers at
queue A increases by 1), and of queue B it is λB

i (→
number of customers at queue B increases by 1).

– departure rate of queue A is µA
i (→ number of customers

at queue A decreases by 1), and of queue B it is µB
i (→

number of customers at queue B decreases by 1).
I Goal: joint distribution of stationary number in both queues:

P(MA = k,MB = `).
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I Ironically:
marginals P(MA = k) and P(MB = `) can be found by
elementary methods (‘matrix-geometric form’ — Neuts, early
1980s).

I Joint distribution has not been found (apart from trivial
cases).

Problem: discontinuity at 0 (as queue cannot become
negative). Solution requires solving non-trivial boundary value
problem, unless one queue systematically majorizes the other.
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Now impose Markov modulation. As before, X (t) is background
process.
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I Transition rates: Q = (qij)d
i ,j=1, (unique) invariant

distribution: π.
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I Markov-modulated infinite-server queues: partial results on
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queue typically in terms of

I d-dimensional system of (partial) differential equations to
describe pgf of M(t) and stationary counterpart, M.

I Recursive scheme to determine all moments; for transient
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differential equations needs to be solved.
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For Markov-modulated single-server queue a lot is known (Neuts):
stationary number in the system follows a matrix-geometric
distribution (generalization of M/M/1).

Therefore in the context of MMIS queue one would naïvely expect
a matrix-Poisson distribution (generalization of M/M/∞)...

but this is not true.
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MARKOV-MODULATED INFINITE-SERVER QUEUE

MMIS queue comes in two flavors.

In above model (referred to as Model I) the transition rates depend
on the current state of the background process. M(t) has Poisson
distribution with random parameter∫ t

0
λX(s)e−

∫ t
s µX(r) dr ds.

Alternative model (Model II): service times are sampled upon
arrival. M(t) has Poisson distribution with random parameter∫ t

0
λX(s)e−µX(s) (t−s)ds.

In this talk: µi identical across i , so that both models coincide.
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MMIS: THE LOW HANGING FRUIT...

First characterize invariant distribution (pk)∞k=0, where pk is
d-dimensional row-vector, defined by

[pk ]j := P(M = k,X = j).

The (row-vector-)pgf p(z) is then given by

p(z) :=
∞∑

k=0
pkzk .

Elementary (from Kolmogorov equations): p(z) satisfies ODE

p(z)Q = (z − 1)
(
p′(z)diag{µ} − p(z)diag{λ}

)
.

For transient behavior we obtain similar DE (which is a PDE).
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With ODE

p(z)Q = (z − 1)
(
p′(z)diag{µ} − p(z)diag{λ}

)
.

stationary (factorial) moments can be found by differentiation and
plugging in z ↑ 1.

Define

mk := E[M(M − 1) · · · (M − k + 1)1{X=i}] = p(k)(1).

Recursion (realize m0 = π):

mkQ = kmk diag{µ} − kmk−1 diag{λ}.

(Same for transient moments: then in each step of the recursion
non-homogeneous system of differential equations must be solved.)
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MMIS: THE LOW HANGING FRUIT...

This is nice – one could numerically analyze the model now.
However, we’d like to have ‘structural insight’ into the model...

Therefore: consider scaling limits.

We let some of the parameters of the model (viz. λ, µ, and Q)
grow large of small, in a ‘coordinated manner’, and see whether we
obtain any explicit results...
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MMIS: SCALING LIMITS...

‘Black magic’: what is the right scaling?
To provide intuition, let’s explicitly compute the mean and
variance of M(t).



MMIS: MEAN AND VARIANCE

Straightforward (for instance from Poisson-with-random-mean
representation):

EM(t) =
d∑

i=1
πi
λi
µ

(1− e−µt).

Scaling the λis by N blows up scale of process by a factor N...
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Var(E(M(t) |X )) = Var
(∫ t

0
λX(s)e−µ(t−s)ds

)
=

∫ t

0

∫ t

0
Cov

(
λX(s)e−µ(t−s),λX(u)e−µ(t−u)

)
dsdu

=
d∑

i ,j=1
λiλj

∫ t

0

∫ t

0
e−µ(t−s)e−µ(t−u)Cov

(
1{X(s)=i}, 1{X(u)=j}

)
dsdu.

Reduces to:
d∑

i ,j=1
λiλj

∫ t

0

∫ u

0
e−µ(t−s)e−µ(t−u)πi (pij(u − s)− πj)dsdu

+
d∑

i ,j=1
λiλj

∫ t

0

∫ t

u
e−µ(t−s)e−µ(t−u)πi (pij(u − s)− πj)dsdu.
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MMIS: MEAN AND VARIANCE

Deviation matrix:

Dij :=
∫ ∞

0
(pij(t)− πj)dt.

Perform parameter scaling λ 7→ λN, and Q 7→ QN f , for some
f > 0.

Elementary calculations for stationary number in system:

VarM(N) ∼ N λ∞
µ

+ N2−f
d∑

i ,j=1
πi
λiλj
µ

Dij ,

with λ∞ :=
∑d

i=1 πiλi .



MMIS: MEAN AND VARIANCE

Deviation matrix:

Dij :=
∫ ∞

0
(pij(t)− πj)dt.

Perform parameter scaling λ 7→ λN, and Q 7→ QN f , for some
f > 0.

Elementary calculations for stationary number in system:

VarM(N) ∼ N λ∞
µ

+ N2−f
d∑

i ,j=1
πi
λiλj
µ

Dij ,

with λ∞ :=
∑d

i=1 πiλi .



MMIS: MEAN AND VARIANCE

Deviation matrix:

Dij :=
∫ ∞

0
(pij(t)− πj)dt.

Perform parameter scaling λ 7→ λN, and Q 7→ QN f , for some
f > 0.

Elementary calculations for stationary number in system:

VarM(N) ∼ N λ∞
µ

+ N2−f
d∑

i ,j=1
πi
λiλj
µ

Dij ,

with λ∞ :=
∑d

i=1 πiλi .



MMIS: DICHOTOMY

Interesting dichotomy:

I If f > 1 the variance essentially equals

VarM(N) ∼ N%, where % := λ∞
µ

.

The system behaves ‘Poissonian’: background process moves
faster than arrival process.
Limiting system is effectively a non-modulated infinite-server
queue.

I If f < 1 the variance essentially equals

VarM(N) ∼ N2−f
d∑

i ,j=1
πi
λiλj
µ

Dij .

‘Local equilibria’.
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MMIS: DICHOTOMY

We consider two types of limit results:

I Behavior ‘around the mean’: central limit theorems.
Crucially different behavior for f < 1, f = 1, and f > 1:
apparently the right CLT scaling is Nγ , with

γ := max
{1
2 , 1− f

2

}
.

I Rare-event behavior, ‘far away from the mean’: large
deviations.
Again crucially different behavior for f < 1, f = 1, and f > 1.
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I Central limit theorems,
I Large deviations (very brief, time permitting!).

For both I’ll present the main ideas and underlying reasoning, state
the result in its basic form. Many extensions, generalizations, and
ramifications are possible.
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CENTRAL LIMIT THEOREM

Basic form: single MMIS queue, stationary behavior.

I Set up a DE for the PGF of M(N).
I Transform this is into a DE for the MGF of

M̃(N) := M(N) − N%
Nγ

.

I Manipulate this expression and let N →∞.
I Observe that we obtain a Gaussian limit.

By now we have various alternative techniques (generator-based;
martingale-based); this one is most insightful.
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First characterize invariant distribution (p(N)
k )∞k=0, where p(N)

k is
d-dimensional row-vector, defined by

[p(N)
k ]j := P(M(N) = k,X (N) = j).

The (row-vector-)pgf p(N)(z) is then given by

p(N)(z) :=
∞∑

k=0
p(N)

k zk .

Kolmogorov equations are now given by

p(N)(z)Q = (z − 1)
N f

(
(p(N))′(z)diag{µ} − Np(N)(z)diag{λ}

)
.
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Translate into mgf of M̃(N):

p̃(N)(ϑ) := EeϑM̃(N) = E exp
(
ϑ
M(N) − N%

Nγ

)
= e−ϑN1−γ%p(N)

(
eϑN−γ

)
.
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Manipulate resulting DE.

I Π := 1πT.
I F := D + Π (fundamental matrix).
I Standard properties: QF = FQ = Π− I, F1 = 1, and

ΠD = DΠ = 0.

Postmultiply DE by F .
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When the dust has settled...

p̃(N)(ϑ) = p̃(N)(ϑ)Π + N1−f
(
z(N)(ϑ)− 1

)
p̃(N)(ϑ)diag{λ}F

−N1−f
(
1− 1

z(N)(ϑ)

)
% p̃(N)(ϑ)diag{µ}F

−N1−f−β/2
(
1− 1

z(N)(ϑ)

)
(p̃(N))′(ϑ)diag{µ}F .

Here: β := min{f , 1}, and z ≡ z(N)(ϑ) := exp(ϑN−1+β/2).
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Then

I ‘Taylor’ the z , and iterate the equation to get rid of all terms
that are o(N−f ) :

I Goal: transform the coupled system of ODE’s in p̃(N)(ϑ) into
a single-dimensional ODE in terms of φ(N)(ϑ) := p̃(N)(ϑ)1.
Postmultiply by 1N f /ϑ; realize that Π1 = 1 and F1 = 1.
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We thus obtain

(φ(N))′(ϑ) = ϑNβ−f κφ(N)(ϑ) + ϑNβ−1%φ(N)(ϑ) + o(1), with

κ := πT(diag{λ} − % diag{µ})F (diag{λ} − %diag{µ})1
µ

.

Conclude, recalling that β = min{f , 1},
I f < 1: only first term RHS matters → Normal distribution

with variance
d∑

i ,j=1
πi
λiλj
µ

Dij .

I f > 1: only second term RHS matters → Normal distribution
with variance

d∑
i=1

πi
λi
µ

= λ∞
µ

.

I f = 1: both terms matter.
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d∑

i ,j=1
πi
λiλj
µ

Dij .

I f > 1: only second term RHS matters → Normal distribution
with variance

d∑
i=1

πi
λi
µ

= λ∞
µ

.

I f = 1: both terms matter.



LARGE DEVIATIONS

Under the same scaling, large deviations can be examined.
Objective in transient case:

lim
N→∞

1
N logP

(
M(N)(t)

N ≥ a
)

;

for stationary case, replace M(N)(t) by M(N).

Again crucially different behavior for f > 1 and f < 1.



LARGE DEVIATIONS, ctd.

First concentrate on f > 1.

I Stationary case: rate function looks like that of Poisson
random variable with parameter

% := λ∞
µ

.

I Transient case: same result, but then with parameter

%t := λ∞
µ

(1− e−µt).
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LARGE DEVIATIONS, ctd.

Second regime: f < 1.

Take for ease f = 0 (that is, background process is unscaled) and
Model II (for Model I analysis is similar). Recall: M(N)(t) has a
Poisson distribution with parameter

N
∫ t

0
λX(s)e−µX(s) (t−s)ds.

I A single path f (s) of X (s) (s ∈ [0, t]) determines asymptotics.
I Naïve first thought: background process (essentially) stays in

state i that maximizes λi/µi .
Wrong! Result: X (s) close to path f ?(s), defined by

argmax
f (s)

λf (s) e−µf (s)(t−s).

Idea: maximize parameter of Poisson distribution.

Again, this was result in its basic form. Many extensions possible!
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EPILOGUE

I Area of stochastic networks highly relevant, and
mathematically extremely rich,

I with many challenges for the years to come,
I particularly at the interface with algorithmics/combinatorics

and statistics,
I examples in talk illustrate how they complement each other.

Thanks for your attention!
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