

## Design and Analysis of Container Liner Shipping Networks

### Rommert Dekker, Judith Mulder

Erasmus School of Economics, Rotterdam, The Netherlands

## Contents

- Liner shipping
- Liner shipping Networks
- Network optimization
- Indonesia case

# **Demand for shipping**

• Usually global trade increases 2-3 times the global GDP increase. Same holds for container shipping.



# **Basic modes of operation in shipping**

### Industrial shipping

- Shipper(cargo owner) controls the fleet of vessels (owned or on TC)
- Must ship the total demand while minimizing costs
- Decisions: Routing and scheduling
- Vertically integrated companies

### Tramp shipping

- Combination of contract and optional spot cargoes
- Ships follow the available cargoes, similar to a taxi service
- Decisions: Routing/scheduling and selection of spot cargoes
- Maximize profit

### Liner shipping <-</li>

- Ships follow a published schedule, similar to a bus line
- Container, ro-ro and general cargo vessels

or on TC) Mostly bulk shipping

# **Liner Shipping Planning Levels**



Figure 2 Planning Levels for Liner Shipping

Agarwal and Ergun TS (2008)

### Difference shipping and other modes

- Cargo differs from passengers: passengers transfer by themselves, cargo needs to be handled: costly
- Passengers want short transfer connections: cargo may wait
- Ships operate 24/7, trains often not and planes are often not only allowed to take off / land during night
- Ships may vary speed and have to follow continents and important passages (Panama, Suez canals) Port calls are rather easily changed

# **Liner Shipping Networks**

- Route and schedule published every half year
- Split up per trade lane: Europe Asia, Intra-Asia, EU- US, etc
- Regularly small changes, yet important for ports!
- Big changes in case of crises (closure Suez Canal, pirates)

## Example ship string NYK line EU2

NEX EU2: North Europe Express



NEX EMX : NEX EU1 : NEX EU2 : NEX EU3 : NEX EU4 : NEX EU5 : NEX EUM

#### Key Transit Table

| WB. | LEH | AMS | НАМ | ANR | SOU | E/B | CAG | JED | JEA | SIN | кнн | SHK | YTN | HKG |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| кнн | 25  | 27  | 28  | 31  | 33  | LEH | 12  | 18  | 23  | 31  | 36  | 37  | 38  | 39  |
| SHK | 24  | 26  | 27  | 30  | 32  | AMS | 11  | 17  | 22  | 30  | 35  | 36  | 37  | 38  |
| YTN | 23  | 25  | 26  | 29  | 31  | HAM | 8   | 14  | 19  | 27  | 32  | 33  | 34  | 35  |
| HKG | 22  | 24  | 25  | 28  | 30  | ANR | 6   | 12  | 17  | 25  | 30  | 31  | 32  | 33  |
| SIN | 18  | 20  | 21  | 24  | 26  | SOU | 4   | 10  | 15  | 23  | 28  | 29  | 30  | 31  |
|     |     |     |     |     |     | CAG | -   | 5   | 10  | 18  | 23  | 24  | 25  | 26  |

Port Rotation

| Origin              | ETA/ETD    |  |  |  |  |  |
|---------------------|------------|--|--|--|--|--|
| Kaohsiung           | FRVSAT     |  |  |  |  |  |
| Shekou              | SAT/SUN    |  |  |  |  |  |
| Yantian             | SUNMON     |  |  |  |  |  |
| Hong Kong           | MON/TUE    |  |  |  |  |  |
| Singapore           | FRI/SAT    |  |  |  |  |  |
| Le Havre            | WED/THU    |  |  |  |  |  |
| Amsterdam           | FRVERI     |  |  |  |  |  |
| Hamburg             | SAT/MON    |  |  |  |  |  |
| Antwerp             | TUEWED     |  |  |  |  |  |
| Southampton         | THWFRI     |  |  |  |  |  |
| Cagliari            | TUEWED     |  |  |  |  |  |
| Jeddah              | MON/MON    |  |  |  |  |  |
| Jebel Ali           | SAT/SUN    |  |  |  |  |  |
| Singapore           | SUNMON     |  |  |  |  |  |
| Kaohsiung           | FRI/SAT    |  |  |  |  |  |
| Turnaround days: 63 |            |  |  |  |  |  |
| Weekly/Fixed D      | ay Service |  |  |  |  |  |
|                     |            |  |  |  |  |  |

# Liner network optimization - elements

- Demand O/D (origin / destination) matrix
- Cost structure
- Network / Route structure
- Vessel type
- Sailing frequency, speed, call restrictions

## Case Intra - Indonesia connections

- The government of Indonesia wants to support cheap and frequent container connections between its main islands.
- A study was done by Drewry Shipping on the best liner shipping network
- We redid some parts of the study to test our methods.



Figure 1.1: Location of six main ports in Indonesia

|             | Belawan | Jakarta | Surabaya | Banjarmasin | Makassar | Sorong | Supply |
|-------------|---------|---------|----------|-------------|----------|--------|--------|
| Belawan     | -       | 6500    | 1000     | 100         | 75       | 25     | 7700   |
| Jakarta     | 6750    | -       | 2000     | 4000        | 2800     | 450    | 16000  |
| Surabaya    | 1000    | 2500    | -        | 3750        | 4800     | 2150   | 14200  |
| Banjarmasin | 100     | 3600    | 3500     | -           | 10       | 0      | 7210   |
| Makassar    | 100     | 3500    | 4000     | 75          | -        | 0      | 7675   |
| Sorong      | 50      | 650     | 2000     | 0           | 0        | -      | 2700   |
| Demand      | 8000    | 16750   | 12500    | 7925        | 7685     | 2625   | 55485  |

Table 1.1: Expected weekly demand in TEU between the Indonesian ports (Source: own calculations)

### **Cost structure**

- Revenue for every transported container (dependent on distance?)
- Shipping costs dependent on type
  - annualized investment + operation costs:
  - fuel costs dependent on the speed
- Port costs
  - loading, unloading, transshipment of container
  - port call costs

# **Network / Route structure**

Many different types (definitions not precise)

- Prime (Mainline) and Secundary (Feeders) (aggregate small ports)
- Hub and Spoke / Feeder (KLM, Air France, etc)
- Point-to-point network (Easyjet, Ryanair)
- Line network (Dutch Railways)

# Point-to-point and hub-and-spoke networks



Ptp – applied by Ryanair, Easyjet, H&S by KLM, Lufthansa, Emirates.

> Source: Jean-Paul Rodrigue, Hofstra University

# **Shipping route structures**

 Hub and feeder system capacity can be adjusted per link. Costly transshipment needed. Congestion in hub



(a) Example of a hub and feeder system

# **Shipping route structure**

 Circular / milkrun route direction is important. One ship type. Transit times can be long. Notice ship direction!



(b) Example of a circular route

# **Shipping route structures**

 Butterfly: one port is visited twice by same ship More flexibility than circular route, but many more butterfly routes exist than circular routes!



(c) Example of a butterfly route

### **Route structure Pendulum**

- Advantage: no transshipment needed, fast links
- Disadvantage: one capacity for all links



### Proposed in studies: Pendulum Nusantara

### **Vessel Sizes: Increasing**



## Increasing vessel size

| First Generation (1956-1970)  | Length         | Draft   | TEU              |
|-------------------------------|----------------|---------|------------------|
| Converted Cargo Vessel        | 135 m          | < 9 m   | 500              |
| Converted Tanker              | 200 m          |         | 800              |
| Second Generation (1970-1980) |                |         |                  |
| Cellular Containership        | 215 m          | 10 m    | 1,000 -<br>2,500 |
| Third Generation (1980-1988)  |                |         |                  |
| Panamax Class                 | 250 m          | 11-12 m | 3,000            |
|                               | 290 m          |         | 4,000            |
| Fourth Generation (1988-2000) |                |         |                  |
| Post Panamax                  | 275 –<br>305 m | 11-13 m | 4,000 -<br>5,000 |
| Fifth Generation (2000-?)     |                |         |                  |
| Post Panamax Plus             | 335 m          | 13-14 m | 5,000 -<br>8,000 |

### Ships considered in case

- Data is not always certain, various definitions exist in port draft (e.g. actual draft, dredging target draft, published draft, etc).
- Bunker cost about 600 USD per ton more than the ship costs.

| Ship   | Capacity | Cost      | Draft | Min speed | Design speed | Max speed | Fuel usage                    |
|--------|----------|-----------|-------|-----------|--------------|-----------|-------------------------------|
|        | (TEU)    | (USD/day) | (m)   | (knots)   | (knots)      | (knots)   | $(\mathrm{ton}/\mathrm{day})$ |
| Type 1 | 900      | 5,000     | 8     | 10        | 12           | 14        | 18.8                          |
| Type 2 | 1600     | 8,000     | 9.5   | 10        | 14           | 17        | 23.7                          |
| Type 3 | 2400     | 11,000    | 12    | 12        | 18           | 19        | 52.5                          |
| Type 4 | 3500     | 15,000    | 12    | 12        | 18           | 20        | 55.0                          |
| Type 5 | 4800     | 21,000    | 11    | 12        | 16           | 22        | 57.4                          |

Table 1.3: Data of the ship characteristics (Source: Brouer et al. 2014a)

# **Speed optimization**

- Strategic which engines to use in ships: slow steaming gives a very large CO<sub>2</sub> reduction!
- Tactical choose a speed for a route
- Operational adapt speed to actual weather and delays encountered on route

In the case: fuel consumption  $F_s(v)$ , v actual speed,  $v_s$  nominal speed,  $f_s$  fuel consumption with design speed.

$$F_s(v) = 600 \cdot \left(\frac{v}{v_s^*}\right)^3 \cdot f_s$$

### **Speed vs fuel consumption of ships**



Figure 1.3: Fuel cost in USD per nautical mile

# Effect of speed reduction on supply chains

#### Source: Eefsen and Cerup-Simonson (2010)

Figure 10. Transportation costs and CO2 emissions for shipment of a container from Ningbo (China) to Bremerhaven (Germany) on a 6,600 TEU containership at varying speeds. Declared value is 23.5 USD/cu ft and interest rate 35%. Bunker oil price is 480 USD/MT.



# **Other route restrictions**

- Draft restrictions (not really in case, but largest containerships can not reach Hamburg fully laden)
- Frequency optimisation (how often / week)
- Fixed weekly calls now preferred by shippers coordinates factory processes with shipping
- This led to large scale alliances as for lines lasting 9 weeks 9 ships are necessary and individual shipping lines lacked the number of ships!

# **Optimization methods**

- Long history, but slow development compared to railways and airlines.
- Regular reviews by Roonen, Fagerholt, Christiansen
- Last one by Meng, Wang, Andersson and Thun (2014)
- Theory started from considering sub problems, simple lines, one ship type, to more complex structures.
- Popular approach: create many routes first, then select them and route cargo: allows to "optimize routes".

### Methods for Network Design & Cargo Routing

 Agarwal and Ergun (2008) MILP model based on space-time network, integrated ship-scheduling & cargo routing (NP-C) Greedy heuristic, column generation and two-phase Benders decomposition algorithm.

No transhipment costs! Speeds fixed.

• Alvarez (2009)

extends A&E by incorporating transhipment costs and considered "run" = ship + speed + ports of call" Applies Tabu search + column generation Problems with 120 ports and 5 ship/speed types. No weekly calls

## Methods for Network Design

- Meng & Wang (2011) considered specific network types
- Reinhardt & Pisinger considered butterfly routes.
- Mulder and Dekker (2013) Generate + optimize routes first using Mainport / feeder aggregation, evolutionary algorithm for creating main routes use LP model for cargo routing and integers for route selection
- Brouer et al. (2014) benchmark data + model.

# Indonesia Case Data

### Costs

- Revenue of shipping one TEU to destination: \$ 200
- Costs for loading / unloading one TEU \$40 per port
- Cost for transhipment: \$40
- Port fees: \$628 per port visit

### Assumptions

- Five ship types
- Port draft enough for all these types
- No existing fleet restriction
- Duration of transhipment in port 24 hours (should depend on cargo to be (un)loaded

## Methodology (Mulder et al. (2013))





- Only routes visiting every port at most once are considered (except for the start port). No butterfly routes
- All possible routes between the six ports are generated and duplicated for every ship type
- By enumerating, the total number of route-ship combinations is equal to 2045



 For all routes, the optimal speed is determined, considering both sailing and idle time, while adhering weekly call restrictions



- In the final step a reformulation of the cargoallocation model, originally presented by Mulder and Dekker [2013], is solved using a path formulation
- Mixed Integer-Programming profit optimization problem (you may choose not to ship all containers) integers for choosing routes
- Complexity increases dramatically by adding new routes

# Cargo Routing Model

### multi-commodity formulation

- $h \in \mathcal{H}$  Set of ports.
- $t \in T \subseteq H$  Set of transhipment ports.
- $s \in S$  Set of ship routes.
- $j \in \mathcal{J}$  Indicator set denoting whether a ship passes both ports  $h_1 \in \mathcal{H}$  and  $h_2 \in \mathcal{H}$  on ship route  $s \in S$ , where  $j = (h_1, h_2, s)$ .
- $k \in \mathcal{K}$  Indicator set denoting whether port  $h_2 \in \mathcal{H}$  is directly visited after port  $h_1 \in \mathcal{H}$  on ship route  $s \in S$ , where  $k = (h_1, h_2, s)$ .

$$\max \sum_{h_{1}\in\mathcal{H}h_{2}\in\mathcal{H}}\sum_{s\in\mathcal{S}}r_{h_{1},h_{2}}\left(x_{h_{1},h_{2},s}^{od}+\sum_{t\in\mathcal{T}}x_{h_{1},t,h_{2},s}^{ot}\right) \\ -\sum_{h_{1}\in\mathcal{H}}c_{h_{1}}^{h}\left(\sum_{t\in\mathcal{T}}\sum_{h_{2}\in\mathcal{H}}\sum_{s\in\mathcal{S}}\left[x_{h_{1},t,h_{2},s}^{ot}+x_{h_{2},t,h_{1},s}^{ot}\right]+\sum_{h_{2}\in\mathcal{H}}\sum_{s\in\mathcal{S}}\left[x_{h_{1},h_{2},s}^{od}+x_{h_{2},h_{1},s}^{od}\right]\right) \\ -\sum_{t_{1}\in\mathcal{T}}c_{t_{1}}^{t}\left(\sum_{t_{2}\in\mathcal{T}}\sum_{h_{2}\in\mathcal{H}s_{1}\in\mathcal{S}s_{2}\in\mathcal{S}}x_{t_{1},t_{2},h_{2},s_{1},s_{2}}^{tt}+\sum_{h_{2}\in\mathcal{H}s_{1}\in\mathcal{S}s_{2}\in\mathcal{S}}x_{t_{1},h_{2},s_{1},s_{2}}^{td}\right)$$
(1)  
s.t.  $\sum_{t\in\mathcal{T}}\sum_{s\in\mathcal{S}}x_{h_{1},t,h_{2},s}^{ot}+\sum_{s\in\mathcal{S}}x_{h_{1},h_{2},s}^{od}\leqslant d_{h_{1},h_{2}} \quad h_{1}\in\mathcal{H}, \quad h_{2}\in\mathcal{H}$ (2)

$$x_{h_1,h_2,s} \leqslant b_s \quad (h_1,h_2,s) \in \mathcal{K} \tag{3}$$

$$\sum_{h_{1}\in\mathcal{H}} X_{h_{1},t_{1},h_{2},s_{1}}^{ot} + \sum_{t_{2}\in\mathcal{T}s_{2}\in\mathcal{S}} X_{t_{2},t_{1},h_{2},s_{2},s_{1}}^{tt} - \sum_{s_{2}\in\mathcal{S}} X_{t_{1},h_{2},s_{1},s_{2}}^{td} - \sum_{t_{2}\in\mathcal{T}s_{2}\in\mathcal{S}} X_{t_{1},t_{2},h_{2},s_{1},s_{2}}^{tt} = \mathbf{0} \quad (t_{1},h_{2},s) \in \mathcal{J}$$

$$(4)$$

$$x_{h_1,h_2,s} - \sum_{h_3 \in \mathcal{H}} \sum_{h_4 \in \mathcal{H}} x_{h_3,h_4,s}^{tot} I_{h_3,h_4,h_1,h_2,s}^{path} = 0 \quad (h_1,h_2,s) \in \mathcal{K}$$
(5)

$$x_{h_1,h_2,s_1}^{tot} - x_{h_1,h_2,s_1}^{od} - \sum_{h_3 \in \mathcal{H}} x_{h_1,h_2,h_3,s_1}^{ot} - \sum_{s_2 \in \mathcal{S}} x_{h_1,h_2,s_2,s_1}^{td}$$

$$-\sum_{h_3\in\mathcal{H}s_2\in\mathcal{S}} x^{tt}_{h_1,h_2,h_3,s_2,s_1} = 0 \quad h_1\in\mathcal{H}, \ h_2\in\mathcal{H}, \ s_1\in\mathcal{S}$$
(6)

$$x_{h_1,h_2,s} \ge 0 \quad (h_1,h_2,s) \in \mathcal{K}$$

$$\tag{7}$$

$$x_{h_1,h_2,s}^{od} \ge 0 \quad h_1 \in \mathcal{H}, \ h_2 \in \mathcal{H}, \ s \in \mathcal{S}$$
(8)

$$\mathbf{x}_{t_1,t_2,h,s_1,s_2}^{tt} \ge \mathbf{0} \quad h \in \mathcal{H}, \ s_1 \in \mathcal{S}, \ (t_1,t_2,s_2) \in \mathcal{J}$$
(9)

$$x_{t,h,s_1,s_2}^{td} \ge 0 \quad s_1 \in \mathcal{S}, \ (t,h,s_2) \in \mathcal{J}$$

$$(10)$$

$$\boldsymbol{x}_{h_1,t,h_2,s}^{ot} \ge \boldsymbol{0} \quad h_2 \in \mathcal{H}, \ (h_1,t,s) \in \mathcal{J}$$

$$(11)$$

### **Results for best Hub-Feeder network**



(a) Utilized capacities in TEU for the hub and feeder system

### **Results for best circular route**



(b) Utilized capacities in TEU for the circular route

### **Results for best butterfly route**



(c) Utilized capacities in TEU for the butterfly route

### **Results for Pendulum network**



Figure 1.5: Pendulum route network

### **Route – ship characteristics**

| Route     | Distance | Duration | Frequency  | Required | Speed       |
|-----------|----------|----------|------------|----------|-------------|
|           | (nm)     | (weeks)  | (per week) | ships    | (knots)     |
| F1        | 2990     | 2        | 1          | 2        | $11.33^{*}$ |
| F2        | 3632     | 2        | 1          | 2        | 12.61       |
| F3        | 1201     | 1        | 1          | 1        | 12.51       |
| Circular  | 6476     | 4        | 1          | 4        | 12.27       |
| Butterfly | 6862     | 4        | 1          | 4        | 13.62       |

Table 1.4: Route characteristics for the different ships

### **Route – ship frequencies**

| Route     | Req. cap.  |        | Port   | Av. cap. | Cost   |        |        |                 |
|-----------|------------|--------|--------|----------|--------|--------|--------|-----------------|
|           | (TEU)      | Type 1 | Type 2 | Type 3   | Type 4 | Type 5 | (TEU)  | (USD/week)      |
| F1        | 18,000     | 0      | 0      | 0        | 4      | 1      | 18,800 | 1,700,643       |
| F2        | 2,700      | 0      | 2      | 0        | 0      | 0      | 3,200  | $476,\!052$     |
| F3        | $15,\!600$ | 0      | 1      | 0        | 4      | 0      | 15,600 | 703,606         |
| HF-Total  |            |        |        |          |        |        |        | $2,\!880,\!300$ |
| Circular  | $28,\!485$ | 0      | 0      | 0        | 7      | 1      | 29,300 | $5,\!508,\!321$ |
| Butterfly | $18,\!225$ | 0      | 0      | 0        | 4      | 1      | 18,800 | $3,\!935,\!988$ |

 Table 1.6: Network cost per week when shipping all demand

Optimal fleet size highly dependent on network structure!

# **Optimality Results**

| Network        | Shipped distance $(nm/TEU)$ | Profit (USD)    |
|----------------|-----------------------------|-----------------|
| Hub-and-feeder | 1433.65                     | 4,467,464       |
| Circular       | 3269.79                     | 2,328,879       |
| Butterfly      | 2199.65                     | 3,664,212       |
| Pendulum       | 996.80                      | 4,948,467       |
| Optimal        | 925.21                      | $6,\!152,\!105$ |

Table 1.7: Efficiency and profit of the different networks

Note: the average shipped distance for a pure point-to-point network is 836 nm/TEU

### "Optimal" network



Figure 1.6: Optimal route network

### Note: route 3 is route 4 reversed!

# **Discussion**

- Problem quickly becomes too large to solve exactly: too many networks, especially if ports are called multiple times
- In circular routes orientation is important transit times can become long
- What should be "good" freight prices?
- How can we allocate costs per route?
- Can we take competition & transit time dependent demand into account?

### **Conclusions case**

- Proposed network quite different from the "Pendulum Nusantara"
- Dual hub structure Jakarta and Surabaya
- High revenues should also cover office costs
- Optimisation can improve existing networks, but faster and more comprehensive methods are needed.

# Conclusions

- Liner shipping has been lacking application of optimization methods compared to airlines and trucking. Sector is somewhat conservative.
- Quite some research is being done and results are promising.
- Decision support systems are likely to come!
- Many more aspects can be optimized.