Robert Weismantel

MINLPs with few integer variables

ETH Zürich
January 2015

What and why?

MINLP model

Let $P \subseteq \mathbf{R}^{n+d}$ be a polytope and $f: \mathbf{R}^{n+d} \rightarrow \mathbf{R}$ a nonlinear function.
$\min f(x, y)$
s.t.

$$
\begin{aligned}
& (x, y) \in P \\
& x \in \mathbf{Z}^{d}, y \in \mathbf{R}^{n} .
\end{aligned}
$$

What and why?

MINLP model

Let $P \subseteq \mathbf{R}^{n+d}$ be a polytope and $f: \mathbf{R}^{n+d} \rightarrow \mathbf{R}$ a nonlinear function.
$\min f(x, y)$
s.t.

$$
\begin{aligned}
& (x, y) \in P, \\
& x \in \mathbf{Z}^{d}, y \in \mathbf{R}^{n} .
\end{aligned}
$$

Why study this model?

- (MILP) and (CO) are about to become a technology.
- understand specific class of MINLPs: optimization over continous relaxations is "tractable".
- build a bridge to other areas of mathematics.

The central question
 Can we extend theory and algorithms from MILP and NLO to the mixed integer setting?

What and why?

MINLP model

Let $P \subseteq \mathbf{R}^{n+d}$ be a polytope and $f: \mathbf{R}^{n+d} \rightarrow \mathbf{R}$ a nonlinear function.
$\min f(x, y)$
s.t.

$$
\begin{aligned}
& (x, y) \in P \\
& x \in \mathbf{Z}^{d}, y \in \mathbf{R}^{n} .
\end{aligned}
$$

What do we aim at?

- Complexity results.
- Algorithmic schemes amenable to an analysis.

Why study this model?

- (MILP) and (CO) are about to become a technology.
- understand specific class of MINLPs: optimization over continous relaxations is "tractable".
- build a bridge to other areas of mathematics.

The central question

Can we extend theory and algorithms from MILP and NLO to the mixed integer setting?

Aspects of nonlinear discrete optimization

Polynomial optimization

Convex minimization

Parametric non-linear optimization and W-mappings
A borderline case from the point of view of computational complexity

$$
\begin{array}{cl}
\min & f(W x) \\
\text { s.t. } & x \in P \cap Z^{n}
\end{array}
$$

with $W \in \mathbf{Z}^{m \times n}$ where n is regarded as variable, but m as fixed. ("Maps variable dimension to fixed dimension" [Onn, Rothblum '05])

The landscape of computational complexity

Variables

Objective

function	Dimension two	Fixed dimension	Parametric
Convex max	poly-time	poly-time	poly-time
			NP-hard

Convex min	poly-time	poly-time	poly-time NP-hard
Polynomial	poly-time	FPTAS	$?$
	NP-hard	NP-hard	$?$

Concave minimization or convex maximization

Observation

Let P be a rational polytope in \mathbf{R}^{n}, and let f be such that for every $\bar{z} \in P \cap \mathbf{Z}^{n}$, the set $\{z \in P \mid f(z) \geq f(\bar{z})\}$ is convex. For fixed n, $\min \left\{f(x) \mid x \in P \cap \mathbf{Z}^{n}\right\}$ can be solved in polynomial time.

Proof

Concave minimization or convex maximization

Observation

Let P be a rational polytope in \mathbf{R}^{n}, and let f be such that for every $\bar{z} \in P \cap \mathbf{Z}^{n}$, the set $\{z \in P \mid f(z) \geq f(\bar{z})\}$ is convex. For fixed n, $\min \left\{f(x) \mid x \in P \cap \mathbf{Z}^{n}\right\}$ can be solved in polynomial time.

Proof

- We can find the set V of the vertices of P_{I} (Cook, Hartman, Kannan, McDiarmid, 1992)

Concave minimization or convex maximization

Observation

Let P be a rational polytope in \mathbf{R}^{n}, and let f be such that for every $\bar{z} \in P \cap \mathbf{Z}^{n}$, the set $\{z \in P \mid f(z) \geq f(\bar{z})\}$ is convex. For fixed n, $\min \left\{f(x) \mid x \in P \cap \mathbf{Z}^{n}\right\}$ can be solved in polynomial time.

Proof

- We can find the set V of the vertices of P_{I} (Cook, Hartman, Kannan, McDiarmid, 1992)
- Let \bar{z} be the best vertex, and let

$$
W:=\{z \in P \mid f(z) \geq f(\bar{z})\}
$$

- $V \subseteq W$
- As W is convex, $P_{l}=\operatorname{conv} V \subseteq W$

State of the art for convex minimization: fixed dimension

Theorem [Lenstra '83] [Grötschel, Lovász, Schrijver '88]

For any fixed $n \geq 1$, there exists an oracle-polynomial algorithm that, for any convex set $K \subseteq \mathbf{R}^{n}$ with $B(*, r) \subseteq K \subseteq B(0, R)$ given by a weak separation oracle, and for any rational $\varepsilon>0$, either finds a point in $(K+B(0, \varepsilon)) \cap \mathbf{Z}^{n}$, or concludes that $K \cap \mathbf{Z}^{n}=\emptyset$.

Theorem [Khachiyan, Porkolab '00] and improvements by [Heinz '05], [Hildebrand, Köppe '12] [Dadush '13]

Let $g_{1}, \ldots, g_{m} \in \mathbf{Z}\left[x_{1}, \ldots, x_{n}\right]$ be quasi-convex polynomials of degree at most δ whose coefficients have a binary encoding length of at most s. There exists an algorithm for testing feasibility of

$$
g_{1}(x) \leq 0, \ldots, g_{m}(x) \leq 0, x \in \mathbf{Z}^{n}
$$

whose running time is polynomial in m, s, δ provided that n is constant.

A general scheme for mixed integer convex minimization

 [Baes, Oertel, Wagner, W.] [Yudin, Nemirovskii 79]
An augmentation oracle

For a mixed integer set \mathcal{F} and $x \in \mathbf{R}^{n}$ either (a) return a point $\hat{x} \in \mathcal{F}$ such that $f(\hat{x}) \leq(1+\alpha) f(x)+\delta$ or (b) assert non-existence.

Gradient Descent method (GDM) $\left(N \in Z_{+}, x_{0}=\hat{x}_{0} \in \mathcal{F}\right)$
For $k=0, \ldots, N-1$, perform the following steps:

- Determine $x_{k+1}=x_{k}-h_{k} \nabla f\left(x_{k}\right)$
- If $f\left(x_{k+1}\right) \geq f\left(x_{k}\right)$ set $x_{k+1}=x_{k}, x_{\hat{k+1}}=\hat{x_{k}}$ and continue.
- If $f\left(x_{k+1}\right)<f\left(x_{k}\right)$ query the oracle with input x_{k}.
- If the oracle output is (a), then update $x_{k+1}^{\hat{1}}$.
- If the oracle output is (b), then start gap closing :

For $I \leq f^{*} \leq u$ and precision $\epsilon>0$, find $x \in \mathcal{F}$ such that

$$
f(x)-f^{*} \leq \epsilon
$$

Analysis and extensions [Baes, Oertel, Wagner, W.]

Theorem. For $a=\delta=0$ and f convex with Lipschitz-constant L:

If (GDM) does not terminate before N steps, then

$$
f\left(x_{\text {best }}\right)-f^{*} \leq L \sqrt{\frac{\delta_{\mathcal{F}}}{2}} \quad \frac{\ln (N)+2}{2 \sqrt{N+2}-2}
$$

The gap-closing algorithm can be implemented to run in oracle polynomial time in $\ln (\epsilon)$ and in $\ln \left(f\left(x_{\text {best }}\right)-f^{*}\right)$.

Extensions

- We can generalize GDM to Mirror-Descent Methods, for better convergence properties.
- Constrained problems: we need a projector and a separator from the continuous feasible set.
- We allow for $\alpha, \delta>0$, without accumulation of errors during the iterations (smallest affordable gap: $(2+\alpha)\left(\alpha \hat{f}^{*}+\delta\right)$).

Implementation of the oracle: optimality conditions

The continuous case without constraints
Theorem. Let f be convex and continously differentiable on its domain. Let $x^{*} \in \operatorname{dom} f$. Then, x^{*} attains the value
$\min \{f(x) \mid x \in \operatorname{dom} f\}$
if and only if

$$
\nabla f\left(x^{*}\right)=0
$$

Implementation of the oracle: optimality conditions

The continuous case without constraints

Theorem. Let f be convex and continously differentiable on its domain. Let $x^{*} \in \operatorname{dom} f$. Then, x^{*} attains the value
$\min \{f(x) \mid x \in \operatorname{dom} f\}$
if and only if

$$
\nabla f\left(x^{*}\right)=0
$$

The unconstrained mixed integer case: [Baes, Oertel, W.]

Theorem. Let $f: \mathbf{R}^{n+d} \mapsto \mathbf{R}$ be a continuous convex function. Then, $x^{*} \in \mathbf{Z}^{n} \times \mathbf{R}^{d}$ attains the value

$$
\min \left\{f(x) \mid x \in \operatorname{dom} f, x \in \mathbf{Z}^{n} \times \mathbf{R}^{d}\right\}
$$

if and only if there exist $k \leq 2^{n}$ points $x_{1}=x^{\star}, x_{2}, \ldots, x_{k} \in \mathbf{Z}^{n} \times \mathbf{R}^{d}$ and vectors $h_{i} \in \partial f\left(x_{i}\right)$ such that the following conditions hold:
(a) $f\left(x_{1}\right) \leq \ldots \leq f\left(x_{k}\right)$,
(b) $\left\{x \mid h_{i}^{T}\left(x-x_{i}\right)<0 \forall i\right\} \cap\left(\mathbf{Z}^{n} \times \mathbf{R}^{d}\right)=\emptyset$,
(c) $h_{i} \in \mathbf{R}^{n} \times\{0\}^{d}$ for $i=1, \ldots, k$.

Implementation of the oracle: duality

Assumptions

Let $f: \mathbf{R}^{n+d} \mapsto \mathbf{R}$ and $g: \mathbf{R}^{n+d} \mapsto \mathbf{R}^{m}$ be differentiable, convex functions, $\emptyset \neq\left\{x \in \mathbf{R}^{n+d} \mid g(x) \leq 0\right\} \subset \operatorname{dom} f$ is compact. Let g fulfill the (mixed-integer) Slater condition.

Continuous Lagrangian duality

$$
f^{\star}=\min _{x \in \mathbf{R}^{n}}\{f(x) \mid g(x) \leq 0\}=\max _{\alpha, u \in \mathbf{R}_{+}^{m}}\left\{\alpha \mid \alpha \leq f(x)+u^{T} g(x) \forall x \in \mathbf{R}^{r}\right\}
$$

Implementation of the oracle: duality

Assumptions

Let $f: \mathbf{R}^{n+d} \mapsto \mathbf{R}$ and $g: \mathbf{R}^{n+d} \mapsto \mathbf{R}^{m}$ be differentiable, convex functions, $\emptyset \neq\left\{x \in \mathbf{R}^{n+d} \mid g(x) \leq 0\right\} \subset \operatorname{dom} f$ is compact. Let g fulfill the (mixed-integer) Slater condition.

Continuous Lagrangian duality

$f^{\star}=\min _{x \in \mathbf{R}^{n}}\{f(x) \mid g(x) \leq 0\}=\max _{\alpha, u \in \mathbf{R}_{+}^{m}}\left\{\alpha \mid \alpha \leq f(x)+u^{T} g(x) \forall x \in \mathbf{R}^{n}\right\}$.
Mixed integer duality [Baes, Oertel, W. 2014]

$$
\begin{aligned}
&= \min _{\substack{x \in \mathbf{Z}^{n} \times \mathbf{R}^{d}}}\{f(x) \mid g(x) \leq 0\} \\
& \substack{\alpha \in \mathbb{R} \\
u \in \mathbf{R}_{+}^{2 n} \times m} \\
&\left.\forall x \in \mathbf{Z}^{n} \times \mathbf{R}^{d} \alpha \leq f(x)+U_{\pi(x)} g(x) \text { or } 1 \leq U_{\pi(x)} g(x)\right\} .
\end{aligned}
$$

Behind duality: Mixed integer KKT theorem

KKT theorem under standard assumptions

x^{\star} such that $g\left(x^{\star}\right) \leq 0$ attains the optimal solution if and only if there exist $h_{f} \in \partial f\left(x^{\star}\right), h_{g_{i}} \in \partial g_{i}\left(x^{\star}\right), \lambda_{i} \geq 0$ for all i such that

$$
h_{f}+\sum_{i=1}^{m} \lambda_{i} h_{g_{i}}=0 \text { and } \lambda_{i} g_{i}\left(x^{\star}\right)=0 \forall i .
$$

Mixed integer version of KKT [Baes, Oertel, W. 2014]

$x^{\star} \in \mathbf{Z}^{n} \times \mathbf{R}^{d}, g\left(x^{\star}\right) \leq 0$ solves mixed integer convex problem if and only if there exist $k \leq 2^{n}$ points $x_{1}=x^{\star}, x_{2}, \ldots, x_{k} \in \mathbf{Z}^{n} \times \mathbf{R}^{d}$ and k vectors $u_{1}, \ldots, u_{k} \in \mathbf{R}_{+}^{m+1}$ with $h_{i, m+1} \in \partial f\left(x_{i}\right)$, and $h_{i, j} \in \partial g_{j}\left(x_{i}\right) \forall j$ such that:
(a) If $g\left(x_{i}\right) \leq 0$ then $f\left(x_{i}\right) \geq f\left(x_{1}\right), u_{i, m+1}>0$ and $u_{i, j} g_{j}\left(x_{i}\right)=0 \forall j$,
(b) If $g\left(x_{i}\right) \not \leq 0$ then $u_{i, m+1}=0$ and $u_{i, k}\left(g_{k}\left(x_{i}\right)-g_{l}\left(x_{i}\right)\right) \geq 0 \forall k, l$,
(c) $\left\{x \mid \sum_{j=1}^{m+1} u_{i, j} h_{i, j}^{T}\left(x-x_{i}\right)<0\right.$ for all $\left.i\right\} \cap\left(\mathbf{Z}^{n} \times \mathbf{R}^{d}\right)=\emptyset$,
(d) $\sum_{j=1}^{m+1} u_{i, j} h_{i, j} \in \mathbf{R}^{n} \times\{0\}^{d}$ for $i=1, \ldots, k$.

Implementation of the oracle II: [Oertel, Wagner, W.]

"MICO by MILPing"

- Let K be a convex set presented by a first order oracle.

Implementation of the oracle II: [Oertel, Wagner, W.]

"MICO by MILPing"

- Let K be a convex set presented by a first order oracle.
- Replace the ellispoid type method by a polytope shrinking algorithm.

The ingredients:

- For convex compact G, the centroid $c_{G}=\frac{\int_{G} \times d x}{\operatorname{vol}(G)}$.
- $G_{\lambda}:=\lambda\left(G-c_{G}\right)+c_{G}$.

Implementation of the oracle II: [Oertel, Wagner, W.]

"MICO by MILPing"

- Let K be a convex set presented by a first order oracle.
- Replace the ellispoid type method by a polytope shrinking algorithm.

The steps for testing $K \cap \mathbf{Z}^{n}=\emptyset$:

- Step 1: Let $P=\{x \mid A x \leq b\}$ be a polytope containing K.

The ingredients:

- For convex compact G, the centroid $c_{G}=\frac{\int_{G} \times d x}{\operatorname{vol}(G)}$.
- $G_{\lambda}:=\lambda\left(G-c_{G}\right)+c_{G}$.

Implementation of the oracle II: [Oertel, Wagner, W.]

"MICO by MILPing"

- Let K be a convex set presented by a first order oracle.
- Replace the ellispoid type method by a polytope shrinking algorithm.

The steps for testing $K \cap \mathbf{Z}^{n}=\emptyset$:

- Step 1: Let $P=\{x \mid A x \leq b\}$ be a polytope containing K.
- Step 2: If $P_{\lambda} \cap Z^{n}=\emptyset$, generate subproblems.

The ingredients:

- For convex compact G, the centroid $c_{G}=\frac{\int_{G} \times d x}{\operatorname{vol}(G)}$.
- $G_{\lambda}:=\lambda\left(G-c_{G}\right)+c_{G}$.

Implementation of the oracle II: [Oertel, Wagner, W.]

"MICO by MILPing"

- Let K be a convex set presented by a first order oracle.
- Replace the ellispoid type method by a polytope shrinking algorithm.

The steps for testing $K \cap \mathbf{Z}^{n}=\emptyset$:

- Step 1: Let $P=\{x \mid A x \leq b\}$ be a polytope containing K.
- Step 2: If $P_{\lambda} \cap Z^{n}=\emptyset$, generate subproblems.
- Step 3: Let $x \in P_{\lambda} \cap \mathbf{Z}^{n}$.

If $x \notin K$, separate x.

The ingredients:

- For convex compact G, the centroid $c_{G}=\frac{\int_{G} \times d x}{\operatorname{vol}(G)}$.
- $G_{\lambda}:=\lambda\left(G-c_{G}\right)+c_{G}$.

三

Implementation of the oracle II：［Oertel，Wagner，W．］

＂MICO by MILPing＂

－Let K be a convex set presented by a first order oracle．
－Replace the ellispoid type method by a polytope shrinking algorithm．

The steps for testing $K \cap \mathbf{Z}^{n}=\emptyset$ ：

－Step 1：Let $P=\{x \mid A x \leq b\}$ be a polytope containing K ．
－Step 2：If $P_{\lambda} \cap Z^{n}=\emptyset$ ， generate subproblems．
－Step 3：Let $x \in P_{\lambda} \cap \mathbf{Z}^{n}$ ． If $x \notin K$ ，separate x ．

The ingredients：
－For convex compact G ，the centroid $c_{G}=\frac{\int_{G} x d x}{\operatorname{vol}(G)}$ ．
－$G_{\lambda}:=\lambda\left(G-c_{G}\right)+c_{G}$ ．

Extension of a theorem of Grünbaum $1960(\lambda=0)$
Let G be a compact convex set， let H be a halfspace and let $0<\lambda<1$ ．If $G_{\lambda} \cap H \neq \emptyset$ ，then

$$
\frac{\operatorname{vol}(G \cap H)}{\operatorname{vol}(G)} \geq(1-\lambda)^{n}\left(\frac{n}{n+1}\right)^{n}
$$

Analysis of the polytope-shrinking algorithm:

Iterations k until $\operatorname{vol}(P) \leq \frac{1}{n!}$:

$$
k \leq \frac{n[\log (2 B)+\log (n)]}{(1-\lambda)^{n}\left(\frac{n}{n+1}\right)^{n}}
$$

Analysis of the polytope-shrinking algorithm:

Iterations k until $\operatorname{vol}(P) \leq \frac{1}{n!}$:

$$
k \leq \frac{n[\log (2 B)+\log (n)]}{(1-\lambda)^{n}\left(\frac{n}{n+1}\right)^{n}} .
$$

Good news about the computation of $x \in P_{\lambda} \cap \mathbf{Z}^{n}$:

- For n fixed, P_{λ} can be efficiently computed by solving a mixed integer linear program in dimension $n+1$:

$$
\begin{aligned}
t^{*}= & \max t \\
& a_{i}^{T} x+\omega\left(\mathbf{P}, \mathbf{a}_{\mathbf{i}}\right) t \leq b_{i} \forall i \\
& x \in \mathbf{Z}^{n}, t \geq 0
\end{aligned}
$$

- $\left(x^{*}, t\right)$ feasible implies (a) $x^{*} \in P_{1-t}$ and
- $\left(x^{*}, t\right)$ feasible implies (b) $x^{*} \in\{x \mid x+t(P-P) \subseteq P\}$.

W-mappings

The setting: $\min \left\{f(W x): A x \leq b, x \in \mathbf{Z}^{n}\right\}$
Given

W-mappings

The setting: $\min \left\{f(W x): A x \leq b, x \in \mathbf{Z}^{n}\right\}$

Given

- Matrices $A \in \mathbf{Z}^{m \times n}$ and $W \in \mathbf{Z}^{d \times n}$, a vector $b \in \mathbf{Z}^{m}$

W-mappings

The setting: $\min \left\{f(W x): A x \leq b, x \in \mathbf{Z}^{n}\right\}$

Given

- Matrices $A \in \mathbf{Z}^{m \times n}$ and $W \in \mathbf{Z}^{d \times n}$, a vector $b \in \mathbf{Z}^{m}$
- We assume to have access to a fiber oracle.

W-mappings

The setting: $\min \left\{f(W x): A x \leq b, x \in \mathbf{Z}^{n}\right\}$
Given

- Matrices $A \in \mathbf{Z}^{m \times n}$ and $W \in \mathbf{Z}^{d \times n}$, a vector $b \in \mathbf{Z}^{m}$
- We assume to have access to a fiber oracle.

Given $y \in \mathbf{Z}^{d}$. The oracle returns $x \in \mathcal{F}=\left\{x \in \mathbf{Z}^{n}: A x \leq b\right\}$, such that $W x=y$, or states that no such x exists.

W-mappings

The setting: $\min \left\{f(W x): A x \leq b, x \in \mathbf{Z}^{n}\right\}$

Given

- Matrices $A \in \mathbf{Z}^{m \times n}$ and $W \in \mathbf{Z}^{d \times n}$, a vector $b \in \mathbf{Z}^{m}$
- We assume to have access to a fiber oracle.

Given $y \in \mathbf{Z}^{d}$. The oracle returns $x \in \mathcal{F}=\left\{x \in \mathbf{Z}^{n}: A x \leq b\right\}$, such that $W x=y$, or states that no such x exists.

- A function $f: \mathbf{Q}^{d} \rightarrow \mathbf{Q}$ presented by a integer minimization oracle.

W-mappings

The setting: $\min \left\{f(W x): A x \leq b, x \in \mathbf{Z}^{n}\right\}$

Given

- Matrices $A \in \mathbf{Z}^{m \times n}$ and $W \in \mathbf{Z}^{d \times n}$, a vector $b \in \mathbf{Z}^{m}$
- We assume to have access to a fiber oracle.

Given $y \in \mathbf{Z}^{d}$. The oracle returns $x \in \mathcal{F}=\left\{x \in \mathbf{Z}^{n}: A x \leq b\right\}$, such that $W x=y$, or states that no such x exists.

- A function $f: \mathbf{Q}^{d} \rightarrow \mathbf{Q}$ presented by a integer minimization oracle.
(Query: $\quad y^{*} \leftarrow \arg \min \{f(y): B y \leq c, y \in \Lambda\}$)

W-mappings

The setting: $\min \left\{f(W x): A x \leq b, x \in \mathbf{Z}^{n}\right\}$

Given

- Matrices $A \in \mathbf{Z}^{m \times n}$ and $W \in \mathbf{Z}^{d \times n}$, a vector $b \in \mathbf{Z}^{m}$
- We assume to have access to a fiber oracle.

Given $y \in \mathbf{Z}^{d}$. The oracle returns $x \in \mathcal{F}=\left\{x \in \mathbf{Z}^{n}: A x \leq b\right\}$, such that $W x=y$, or states that no such x exists.

- A function $f: \mathbf{Q}^{d} \rightarrow \mathbf{Q}$ presented by a integer minimization oracle.
(Query: $\quad y^{*} \leftarrow \arg \min \{f(y): B y \leq c, y \in \Lambda\}$)

Why and what?

- Why do we need these oracles?
- Under which conditions on the input is this problem tractable?

Assumptions about $\min f(W x)$ subject to $x \in \mathcal{F}$.

W is in unary representation.
We can model the Partition Problem:
For $w_{1}, \cdots, w_{n} \in \mathbf{Z}_{+}$and
$D=\frac{1}{2} \sum_{i=1}^{n} w_{i}$, solve

$$
\begin{array}{cl}
\min & \left(w^{T} x-D\right)^{2} \\
\text { s.t. } & x \in\{0,1\}^{n} .
\end{array}
$$

d is fixed

- leverage algorithms for minimization in fixed dimension.

Assumptions about $\min f(W x)$ subject to $x \in \mathcal{F}$.

W is in

We can model the Partition Problem:
For $w_{1}, \cdots, w_{n} \in \mathbf{Z}_{+}$and
$D=\frac{1}{2} \sum_{i=1}^{n} w_{i}$, solve

$$
\begin{array}{cl}
\min & \left(w^{T} x-D\right)^{2} \\
\text { s.t. } & x \in\{0,1\}^{n} .
\end{array}
$$

d is

- leverage algorithms for minimization in fixed dimension.

No access to a fiber oracle is typically hopeless.
Theorem [Lee, Onn, W. '10] There is a universal constant ρ such that no polynomial time algorithm can compute a ρn-best solution of the nonlinear optimization problem $\min \{f(W x): x \in \mathcal{F}\}$ over any independence system \mathcal{F} presented by a linear optimization oracle, not even with W a fixed integer $2 \times n$ matrix.

Assumptions about $\min f(W x)$ subject to $x \in \mathcal{F}$.

W is in unary representation.

We can model the Partition Problem:
For $w_{1}, \cdots, w_{n} \in \mathbf{Z}_{+}$and
$D=\frac{1}{2} \sum_{i=1}^{n} w_{i}$, solve

$$
\begin{array}{cl}
\min & \left(w^{T} x-D\right)^{2} \\
\text { s.t. } & x \in\{0,1\}^{n} .
\end{array}
$$

d is

- leverage algorithms for minimization in fixed dimension.

The tractability question:

Conditions on \mathcal{F} and A, b, resp. ?

No access to a fiber oracle is typically hopeless.
Theorem [Lee, Onn, W. '10] There is a universal constant ρ such that no polynomial time algorithm can compute a ρn-best solution of the nonlinear optimization problem $\min \{f(W x): x \in \mathcal{F}\}$ over any independence system \mathcal{F} presented by a linear optimization oracle, not even with W a fixed integer $2 \times n$ matrix.

W mappings with small subdeterminants

The assumptions summarized

W mappings with small subdeterminants

The assumptions summarized

- Let $A \in \mathbf{Z}^{m \times n}, W \in \mathbf{Z}^{d \times n}, b \in \mathbf{Z}^{m}$ and $f: \mathbf{R}^{d} \rightarrow \mathbf{R}$.

W mappings with small subdeterminants

The assumptions summarized

- Let $A \in \mathbf{Z}^{m \times n}, W \in \mathbf{Z}^{d \times n}, b \in \mathbf{Z}^{m}$ and $f: \mathbf{R}^{d} \rightarrow \mathbf{R}$.
- Let d be a fixed constant.

W mappings with small subdeterminants

The assumptions summarized

- Let $A \in \mathbf{Z}^{m \times n}, W \in \mathbf{Z}^{d \times n}, b \in \mathbf{Z}^{m}$ and $f: \mathbf{R}^{d} \rightarrow \mathbf{R}$.
- Let d be a fixed constant.
- Let $\boldsymbol{\Delta}$ denote the maximum sub-determinant of A and W.

W mappings with small subdeterminants

The assumptions summarized

- Let $A \in \mathbf{Z}^{m \times n}, W \in \mathbf{Z}^{d \times n}, b \in \mathbf{Z}^{m}$ and $f: \mathbf{R}^{d} \rightarrow \mathbf{R}$.
- Let d be a fixed constant.
- Let $\boldsymbol{\Delta}$ denote the maximum sub-determinant of A and W.

Theorem [Adjiashvili, Oertel, W. '14]

There is an algorithm that solves the non-linear optimization problem

$$
\min \left\{f(W x): A x \leq b, x \in \mathbf{Z}^{n}\right\}
$$

The number of calls of the optimization and fiber oracles is polynomial in n and $\boldsymbol{\Delta}$.

Special properties on \mathcal{F} make the problem tractable.

A first polynomial time algorithm.

Let $\mathcal{F}=\left\{x \in\{0,1\}^{n} \mid a^{T} x \leq a_{0}\right\}$ be a knapsack set and $W \in \mathbf{Z}^{d \times n}$ encoded in unary with d fixed.

- The dual problem: $\gamma\left(w_{0}\right):=\min \left\{a^{T} x\right.$ subject to $\left.W x=w_{0}\right\}$.
- Dynamic programming / shortest path techniques apply to the dual.
- Choose argmin $\left\{f\left(w_{0}\right)\right.$ subject to $\left.\gamma\left(w_{0}\right) \leq a_{0}\right\}$.

Special properties on \mathcal{F} make the problem tractable.

A first polynomial time algorithm.

Let $\mathcal{F}=\left\{x \in\{0,1\}^{n} \mid a^{T} x \leq a_{0}\right\}$ be a knapsack set and $W \in \mathbf{Z}^{d \times n}$ encoded in unary with d fixed.

- The dual problem: $\gamma\left(w_{0}\right):=\min \left\{a^{T} \times\right.$ subject to $\left.W x=w_{0}\right\}$.
- Dynamic programming / shortest path techniques apply to the dual.
- Choose argmin $\left\{f\left(w_{0}\right)\right.$ subject to $\left.\gamma\left(w_{0}\right) \leq a_{0}\right\}$.

Theorem (Lee, Onn, W. '07)

For every fixed m and p, there is an algorithm that, given $a_{1}, \ldots, a_{p} \in \mathbf{Z}$, $W \in\left\{a_{1}, \ldots, a_{p}\right\}^{m \times n}$, and a function $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$, finds a matroid base B minimizing $f\left(W \chi^{B}\right)$ in time polynomial in n and $\left\langle a_{1}, \ldots, a_{p}\right\rangle$.
(... can be solved using iterated matroid intersection algorithms.)

