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What and why?

MINLP model

Let P ⊆ Rn+d be a polytope and
f : Rn+d → R a nonlinear function.

min f (x , y)

s.t.

(x , y) ∈ P,

x ∈ Zd , y ∈ Rn.

What do we aim at?

Complexity results.

Algorithmic schemes
amenable to an analysis.

Why study this model?

(MILP) and (CO) are about
to become a technology.

understand specific class of
MINLPs: optimization over
continous relaxations is
“tractable”.

build a bridge to other areas
of mathematics.

The central question

Can we extend theory and
algorithms from MILP and NLO to
the mixed integer setting?
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Aspects of nonlinear discrete optimization

Convex
maximization

Polynomial
optimization

Convex minimization

Parametric non-linear optimization and W -mappings

A borderline case from the point of view of computational complexity

min f (Wx)

s.t. x ∈ P ∩ Zn

with W ∈ Zm×n where n is regarded as variable, but m as fixed.
(“Maps variable dimension to fixed dimension” [Onn, Rothblum ’05])
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The landscape of computational complexity

Variables
Objective
function Dimension two Fixed dimension Parametric

Convex max poly-time poly-time poly-time

NP-hard

Convex min poly-time poly-time poly-time

NP-hard

Polynomial poly-time FPTAS ?

NP-hard NP-hard ?
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Concave minimization or convex maximization

Observation

Let P be a rational polytope in Rn, and let f be such that for every
z̄ ∈ P ∩ Zn, the set {z ∈ P | f (z) ≥ f (z̄)} is convex. For fixed n,
min{f (x) | x ∈ P ∩ Zn} can be solved in polynomial time.

Proof

We can find the set V of the vertices of PI

(Cook, Hartman, Kannan, McDiarmid,
1992)

Let z̄ be the best vertex, and let
W := {z ∈ P | f (z) ≥ f (z̄)}
V ⊆W

As W is convex, PI = convV ⊆W

P
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State of the art for convex minimization: fixed dimension

Theorem [Lenstra ’83] [Grötschel, Lovász, Schrijver ’88]

For any fixed n ≥ 1, there exists an oracle-polynomial algorithm that, for
any convex set K ⊆ Rn with B(∗, r) ⊆ K ⊆ B(0,R) given by a weak
separation oracle, and for any rational ε > 0, either finds a point in
(K + B(0, ε)) ∩ Zn, or concludes that K ∩ Zn = ∅.

Theorem [Khachiyan, Porkolab ’00] and
improvements by [Heinz ’05], [Hildebrand, Köppe ’12] [Dadush ’13]

Let g1, . . . , gm ∈ Z[x1, . . . , xn] be quasi-convex polynomials of degree at
most δ whose coefficients have a binary encoding length of at most s.
There exists an algorithm for testing feasibility of

g1(x) ≤ 0, . . . , gm(x) ≤ 0, x ∈ Zn.

whose running time is polynomial in m, s, δ provided that n is constant.
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A general scheme for mixed integer convex minimization
[Baes, Oertel, Wagner, W.] [Yudin, Nemirovskii 79]

An augmentation oracle

For a mixed integer set F and x ∈ Rn either (a) return a point x̂ ∈ F
such that f (x̂) ≤ (1 + α)f (x) + δ or (b) assert non-existence.

Gradient Descent method (GDM) (N ∈ Z+, x0 = x̂0 ∈ F)

For k = 0, . . . ,N − 1, perform the following steps:

Determine xk+1 = xk − hk∇f (xk)

If f (xk+1) ≥ f (xk) set xk+1 = xk , ˆxk+1 = x̂k and continue.

If f (xk+1) < f (xk) query the oracle with input xk .

If the oracle output is (a), then update ˆxk+1.
If the oracle output is (b), then start gap closing :
For l ≤ f ∗ ≤ u and precision ε > 0, find x ∈ F such that

f (x)− f ∗ ≤ ε.
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Analysis and extensions [Baes, Oertel, Wagner, W.]

Theorem. For α = δ = 0 and f convex with Lipschitz-constant L:

If (GDM) does not terminate before N steps, then

f (xbest)− f ∗ ≤ L

√
δF
2

ln(N) + 2

2
√
N + 2− 2

.

The gap-closing algorithm can be implemented to run in oracle polynomial
time in ln(ε) and in ln(f (xbest)− f ∗).

Extensions

We can generalize GDM to Mirror-Descent Methods, for better
convergence properties.

Constrained problems: we need a projector and a separator from the
continuous feasible set.

We allow for α, δ > 0, without accumulation of errors during the
iterations (smallest affordable gap: (2 + α)(αf̂ ∗ + δ)).
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Implementation of the oracle: optimality conditions

The continuous case
without constraints

Theorem. Let f be
convex and continously
differentiable on its
domain. Let
x∗ ∈ dom f . Then, x∗

attains the value

min{f (x) | x ∈ dom f }

if and only if

∇f (x∗) = 0.

The unconstrained mixed integer case:
[Baes, Oertel, W.]

Theorem. Let f : Rn+d 7→ R be a continuous
convex function. Then, x∗ ∈ Zn × Rd attains
the value

min{f (x) | x ∈ dom f , x ∈ Zn × Rd}

if and only if there exist k ≤ 2n points
x1 = x?, x2, . . . , xk ∈ Zn × Rd and vectors
hi ∈ ∂f (xi ) such that the following conditions
hold:

(a) f (x1) ≤ . . . ≤ f (xk),

(b) {x | hTi (x − xi ) < 0 ∀i} ∩(Zn × Rd) = ∅,
(c) hi ∈ Rn × {0}d for i = 1, . . . , k .
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Implementation of the oracle: duality

Assumptions

Let f : Rn+d 7→ R and g : Rn+d 7→ Rm be differentiable, convex functions,
∅ 6= {x ∈ Rn+d | g(x) ≤ 0} ⊂ dom f is compact. Let g fulfill the
(mixed-integer) Slater condition.

Continuous Lagrangian duality

f ? = min
x∈Rn
{ f (x) | g(x) ≤ 0} = max

α,u∈Rm
+

{α | α ≤ f (x) + uTg(x)∀x ∈ Rn}.

Mixed integer duality [Baes, Oertel, W. 2014]

min
x∈Zn×Rd

{ f (x) |g(x) ≤ 0}

= max
α∈R

U∈R2n×m
+

{ α | ∃ π : Zn × Rd 7→ {1, . . . , 2n} s.t.

∀x ∈ Zn × Rd α ≤ f (x) + Uπ(x)g(x) or 1 ≤ Uπ(x)g(x)}.
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Behind duality: Mixed integer KKT theorem

KKT theorem under standard assumptions

x? such that g(x?) ≤ 0 attains the optimal solution if and only if there
exist hf ∈ ∂f (x?), hgi ∈ ∂gi (x?), λi ≥ 0 for all i such that

hf +
∑m

i=1 λihgi = 0 and λigi (x
?) = 0 ∀i .

Mixed integer version of KKT [Baes, Oertel, W. 2014]

x? ∈ Zn × Rd , g(x?) ≤ 0 solves mixed integer convex problem if and only
if there exist k ≤ 2n points x1 = x?, x2, . . . , xk ∈ Zn × Rd and k vectors
u1, . . . , uk ∈ Rm+1

+ with hi ,m+1 ∈ ∂f (xi ), and hi ,j ∈ ∂gj(xi ) ∀j such that:

(a) If g(xi ) ≤ 0 then f (xi ) ≥ f (x1), ui ,m+1 > 0 and ui ,jgj(xi ) = 0 ∀j ,
(b) If g(xi ) � 0 then ui ,m+1 = 0 and ui ,k(gk(xi )− gl(xi )) ≥ 0 ∀k , l ,
(c) {x |

∑m+1
j=1 ui ,jh

T
i ,j(x − xi ) < 0 for all i} ∩ (Zn × Rd) = ∅,

(d)
∑m+1

j=1 ui ,jhi ,j ∈ Rn × {0}d for i = 1, . . . , k .
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Implementation of the oracle II: [Oertel, Wagner, W.]

“MICO by MILPing”

Let K be a convex set presented
by a first order oracle.

Replace the ellispoid type
method by a polytope shrinking
algorithm.

The steps for testing K ∩ Zn = ∅:

Step 1: Let P = {x | Ax ≤ b}
be a polytope containing K .

Step 2: If Pλ ∩ Zn = ∅,
generate subproblems.

Step 3: Let x ∈ Pλ ∩ Zn.
If x 6∈ K , separate x .

The ingredients:

For convex compact G , the

centroid cG =
∫
G xdx

vol(G) .

Gλ := λ(G − cG ) + cG .

Extension of a theorem of
Grünbaum 1960 (λ = 0)

Let G be a compact convex set,
let H be a halfspace and let
0 < λ < 1. If Gλ ∩ H 6= ∅, then

vol (G ∩ H)

vol (G )
≥ (1−λ)n(

n

n + 1
)n.
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Grünbaum 1960 (λ = 0)

Let G be a compact convex set,
let H be a halfspace and let
0 < λ < 1. If Gλ ∩ H 6= ∅, then

vol (G ∩ H)

vol (G )
≥ (1−λ)n(

n

n + 1
)n.

Robert Weismantel January 2015 12 / 17



Implementation of the oracle II: [Oertel, Wagner, W.]

“MICO by MILPing”

Let K be a convex set presented
by a first order oracle.

Replace the ellispoid type
method by a polytope shrinking
algorithm.

The steps for testing K ∩ Zn = ∅:
Step 1: Let P = {x | Ax ≤ b}
be a polytope containing K .

Step 2: If Pλ ∩ Zn = ∅,
generate subproblems.

Step 3: Let x ∈ Pλ ∩ Zn.
If x 6∈ K , separate x .

The ingredients:

For convex compact G , the

centroid cG =
∫
G xdx

vol(G) .

Gλ := λ(G − cG ) + cG .

P
K

Extension of a theorem of
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Analysis of the polytope-shrinking algorithm:

Iterations k until vol(P) ≤ 1
n!

:

k ≤
n
[
log(2B) + log(n)

]
(1− λ)n( n

n+1)n
.

Good news about the computation of x ∈ Pλ ∩ Zn:

For n fixed, Pλ can be efficiently computed by solving a mixed integer
linear program in dimension n + 1:

t∗ = max t

aTi x + ω(P, ai)t ≤ bi ∀i
x ∈ Zn, t ≥ 0.

(x∗, t) feasible implies (a) x∗ ∈ P1−t and

(x∗, t) feasible implies (b) x∗ ∈ {x | x + t(P − P) ⊆ P}.
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W -mappings

The setting: min {f (Wx) : Ax ≤ b, x ∈ Zn}
Given

Matrices A ∈ Zm×n and W ∈ Zd×n, a vector b ∈ Zm

We assume to have access to a fiber oracle.

Given y ∈ Zd . The oracle returns x ∈ F = {x ∈ Zn : Ax ≤ b},
such that Wx = y , or states that no such x exists.

A function f : Qd → Q presented by a integer minimization oracle.

(Query: y∗ ← arg min{f (y) : By ≤ c , y ∈ Λ})

Why and what?

Why do we need these oracles?

Under which conditions on the input is this problem tractable?
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Assumptions about min f (Wx) subject to x ∈ F .

W is in unary representation.

We can model the Partition Problem:
For w1, · · · ,wn ∈ Z+ and
D = 1

2

∑n
i=1 wi , solve

min (wT x − D)2

s.t. x ∈ {0, 1}n.

d is fixed

leverage algorithms for
minimization in fixed dimension.

The tractability question:

Conditions on F and A, b, resp. ?

No access to a fiber oracle is
typically hopeless.

Theorem [Lee, Onn, W. ’10]
There is a universal constant ρ
such that no polynomial time
algorithm can compute a
ρn-best solution of the
nonlinear optimization problem
min {f (Wx) : x ∈ F} over any
independence system F
presented by a linear
optimization oracle, not even
with W a fixed integer 2× n
matrix.
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algorithm can compute a
ρn-best solution of the
nonlinear optimization problem
min {f (Wx) : x ∈ F} over any
independence system F
presented by a linear
optimization oracle, not even
with W a fixed integer 2× n
matrix.
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W mappings with small subdeterminants

The assumptions summarized

Let A ∈ Zm×n, W ∈ Zd×n, b ∈ Zm and f : Rd → R.

Let d be a fixed constant.

Let ∆ denote the maximum sub-determinant of A and W .

Theorem [Adjiashvili, Oertel, W. ’14]

There is an algorithm that solves the non-linear optimization problem

min {f (Wx) : Ax ≤ b, x ∈ Zn}.

The number of calls of the optimization and fiber oracles is polynomial in
n and ∆.
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Special properties on F make the problem tractable.

A first polynomial time algorithm.

Let F =
{
x ∈ {0, 1}n | aT x ≤ a0

}
be a knapsack set and W ∈ Zd×n

encoded in unary with d fixed.

The dual problem: γ(w0) := min{aT x subject to Wx = w0}.
Dynamic programming / shortest path techniques apply to the dual.

Choose argmin {f (w0) subject to γ(w0) ≤ a0}.

Theorem (Lee, Onn, W. ’07)

For every fixed m and p, there is an algorithm that, given a1, . . . , ap ∈ Z,
W ∈ {a1, . . . , ap}m×n, and a function f : Rn → R, finds a matroid base B
minimizing f (WχB) in time polynomial in n and 〈a1, . . . , ap〉.

(... can be solved using iterated matroid intersection algorithms.)
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