Robert Weismantel

MINLPs with few integer variables

ETH Zürich

January 2015

Robert Weismantel

January 2015 1 / 17

What and why?

MINLP model

Let $P \subseteq \mathbf{R}^{n+d}$ be a polytope and $f : \mathbf{R}^{n+d} \to \mathbf{R}$ a nonlinear function. min f(x, y)s.t.

$$(x, y) \in P,$$

 $x \in \mathbf{Z}^d, y \in \mathbf{R}^n.$

What and why?

MINLP model

Let $P \subseteq \mathbf{R}^{n+d}$ be a polytope and $f : \mathbf{R}^{n+d} \to \mathbf{R}$ a nonlinear function.

min f(x, y)s.t. $(x, y) \in P$,

 $x \in \mathbf{Z}^d, y \in \mathbf{R}^n.$

Why study this model?

- (MILP) and (CO) are about to become a technology.
- understand specific class of MINLPs: optimization over continous relaxations is "tractable".
- build a bridge to other areas of mathematics.

The central question

Can we extend theory and algorithms from MILP and NLO to the mixed integer setting?

What and why?

MINLP model

Let $P \subseteq \mathbf{R}^{n+d}$ be a polytope and $f : \mathbf{R}^{n+d} \to \mathbf{R}$ a nonlinear function.

min f(x, y)s.t. $(x, y) \in P$,

$$x \in \mathbf{Z}^d, y \in \mathbf{R}^n.$$

What do we aim at?

- Complexity results.
- Algorithmic schemes amenable to an analysis.

Why study this model?

- (MILP) and (CO) are about to become a technology.
- understand specific class of MINLPs: optimization over continous relaxations is "tractable".
- build a bridge to other areas of mathematics.

The central question

Can we extend theory and algorithms from MILP and NLO to the mixed integer setting?

Aspects of nonlinear discrete optimization

Parametric non-linear optimization and W-mappings

A borderline case from the point of view of computational complexity

min f(Wx)s.t. $x \in P \cap \mathbf{Z}^n$

with $W \in \mathbf{Z}^{m \times n}$ where *n* is regarded as variable, but *m* as fixed. ("Maps variable dimension to fixed dimension" [Onn, Rothblum '05])

Objective function	Variables		
	Dimension two	Fixed dimension	Parametric
Convex max	poly-time	poly-time	poly-time NP-hard
Convex min	poly-time	poly-time	poly-time NP-hard
Polynomial	poly-time NP-hard	FPTAS NP-hard	? ?

Concave minimization or convex maximization

Observation

Let *P* be a rational polytope in \mathbb{R}^n , and let *f* be such that for every $\overline{z} \in P \cap \mathbb{Z}^n$, the set $\{z \in P \mid f(z) \ge f(\overline{z})\}$ is convex. For fixed *n*, $\min\{f(x) \mid x \in P \cap \mathbb{Z}^n\}$ can be solved in polynomial time.

Concave minimization or convex maximization

Observation

Let *P* be a rational polytope in \mathbb{R}^n , and let *f* be such that for every $\overline{z} \in P \cap \mathbb{Z}^n$, the set $\{z \in P \mid f(z) \ge f(\overline{z})\}$ is convex. For fixed *n*, $\min\{f(x) \mid x \in P \cap \mathbb{Z}^n\}$ can be solved in polynomial time.

Proof

 We can find the set V of the vertices of P₁ (Cook, Hartman, Kannan, McDiarmid, 1992)

Concave minimization or convex maximization

Observation

Let *P* be a rational polytope in \mathbb{R}^n , and let *f* be such that for every $\overline{z} \in P \cap \mathbb{Z}^n$, the set $\{z \in P \mid f(z) \ge f(\overline{z})\}$ is convex. For fixed *n*, $\min\{f(x) \mid x \in P \cap \mathbb{Z}^n\}$ can be solved in polynomial time.

Proof

- We can find the set V of the vertices of P₁ (Cook, Hartman, Kannan, McDiarmid, 1992)
- Let \overline{z} be the best vertex, and let $W := \{z \in P \mid f(z) \ge f(\overline{z})\}$
- $V \subseteq W$
- As W is convex, $P_I = \operatorname{conv} V \subseteq W$

Theorem [Lenstra '83] [Grötschel, Lovász, Schrijver '88]

For any fixed $n \ge 1$, there exists an oracle-polynomial algorithm that, for any convex set $K \subseteq \mathbb{R}^n$ with $B(*, r) \subseteq K \subseteq B(0, R)$ given by a weak separation oracle, and for any rational $\varepsilon > 0$, either finds a point in $(K + B(0, \varepsilon)) \cap \mathbb{Z}^n$, or concludes that $K \cap \mathbb{Z}^n = \emptyset$.

Theorem [Khachiyan, Porkolab '00] and improvements by [Heinz '05], [Hildebrand, Köppe '12] [Dadush '13]

Let $g_1, \ldots, g_m \in \mathbb{Z}[x_1, \ldots, x_n]$ be quasi-convex polynomials of degree at most δ whose coefficients have a binary encoding length of at most s. There exists an algorithm for testing feasibility of

$$g_1(x) \leq 0,\ldots,g_m(x) \leq 0, x \in \mathbf{Z}^n.$$

whose running time is polynomial in m, s, δ provided that n is constant.

A general scheme for mixed integer convex minimization [Baes, Oertel, Wagner, W.] [Yudin, Nemirovskii 79]

An augmentation oracle

For a mixed integer set \mathcal{F} and $x \in \mathbb{R}^n$ either (a) return a point $\hat{x} \in \mathcal{F}$ such that $f(\hat{x}) \leq (1 + \alpha)f(x) + \delta$ or (b) assert non-existence.

Gradient Descent method (GDM) ($N \in \mathbf{Z}_+$, $x_0 = \hat{x_0} \in \mathcal{F}$)

For k = 0, ..., N - 1, perform the following steps:

- **Determine** $x_{k+1} = x_k h_k \nabla f(x_k)$
- If $f(x_{k+1}) \ge f(x_k)$ set $x_{k+1} = x_k$, $\hat{x_{k+1}} = \hat{x_k}$ and continue.
- If $f(x_{k+1}) < f(x_k)$ query the oracle with input x_k .
 - If the oracle output is (a), then update x_{k+1} .
 - If the oracle output is (b), then start gap closing : For $l \le f^* \le u$ and precision $\epsilon > 0$, find $x \in \mathcal{F}$ such that

$$f(x) - f^* \leq \epsilon.$$

Analysis and extensions [Baes, Oertel, Wagner, W.]

Theorem. For $\alpha = \delta = 0$ and f convex with Lipschitz-constant L:

If (GDM) does not terminate before N steps, then

$$f(x_{best}) - f^* \leq L\sqrt{rac{\delta_{\mathcal{F}}}{2}} \quad rac{ln(N) + 2}{2\sqrt{N+2} - 2}$$

The gap-closing algorithm can be implemented to run in oracle polynomial time in $ln(\epsilon)$ and in $ln(f(x_{best}) - f^*)$.

Extensions

- We can generalize GDM to Mirror-Descent Methods, for better convergence properties.
- Constrained problems: we need a projector and a separator from the continuous feasible set.
- We allow for $\alpha, \delta > 0$, without accumulation of errors during the iterations (smallest affordable gap: $(2 + \alpha)(\alpha \hat{f}^* + \delta))$.

The continuous case without constraints

Theorem. Let f be convex and continously differentiable on its domain. Let $x^* \in \text{dom } f$. Then, x^* attains the value

```
\min\{f(x) \mid x \in \operatorname{dom} f\}
```

if and only if

 $\nabla f(x^*) = 0.$

Implementation of the oracle: optimality conditions

The continuous case without constraints

Theorem. Let f be convex and continously differentiable on its domain. Let $x^* \in \text{dom } f$. Then, x^* attains the value

 $\min\{f(x) \mid x \in \operatorname{dom} f\}$

if and only if

 $\nabla f(x^*) = 0.$

The unconstrained mixed integer case: [Baes, Oertel, W.]

Theorem. Let $f : \mathbf{R}^{n+d} \mapsto \mathbf{R}$ be a continuous convex function. Then, $x^* \in \mathbf{Z}^n \times \mathbf{R}^d$ attains the value

 $\min\{f(x) \mid x \in \text{dom } f, x \in \mathbf{Z}^n \times \mathbf{R}^d\}$

if and only if there exist $k \leq 2^n$ points $x_1 = x^*, x_2, \ldots, x_k \in \mathbb{Z}^n \times \mathbb{R}^d$ and vectors $h_i \in \partial f(x_i)$ such that the following conditions hold:

(a) $f(x_1) \leq \ldots \leq f(x_k)$, (b) $\{x \mid h_i^T(x - x_i) < 0 \forall i\} \cap (\mathbb{Z}^n \times \mathbb{R}^d) = \emptyset$, (c) $h_i \in \mathbb{R}^n \times \{0\}^d$ for $i = 1, \ldots, k$.

Assumptions

Let $f : \mathbf{R}^{n+d} \mapsto \mathbf{R}$ and $g : \mathbf{R}^{n+d} \mapsto \mathbf{R}^m$ be differentiable, convex functions, $\emptyset \neq \{x \in \mathbf{R}^{n+d} \mid g(x) \le 0\} \subset \text{ dom } f \text{ is compact. Let } g \text{ fulfill the } (mixed-integer) Slater condition.}$

Continuous Lagrangian duality

$$f^{\star} = \min_{x \in \mathbf{R}^n} \{ f(x) \mid g(x) \le 0 \} = \max_{\alpha, u \in \mathbf{R}^m_+} \{ \alpha \mid \alpha \le f(x) + u^T g(x) \forall x \in \mathbf{R}^n \}.$$

Assumptions

Let $f : \mathbf{R}^{n+d} \mapsto \mathbf{R}$ and $g : \mathbf{R}^{n+d} \mapsto \mathbf{R}^m$ be differentiable, convex functions, $\emptyset \neq \{x \in \mathbf{R}^{n+d} \mid g(x) \le 0\} \subset \text{ dom } f \text{ is compact. Let } g \text{ fulfill the } (mixed-integer) Slater condition.}$

Continuous Lagrangian duality

$$f^{\star} = \min_{x \in \mathbf{R}^n} \{ f(x) \mid g(x) \le 0 \} = \max_{\alpha, u \in \mathbf{R}^m_+} \{ \alpha \mid \alpha \le f(x) + u^T g(x) \forall x \in \mathbf{R}^n \}.$$

Mixed integer duality [Baes, Oertel, W. 2014]

$$\min_{\substack{x \in \mathbf{Z}^n \times \mathbf{R}^d \\ u \in \mathbf{R}_+^{2^n \times m}}} \{ \alpha \mid \exists \ \pi : \mathbf{Z}^n \times \mathbf{R}^d \mapsto \{1, \dots, 2^n\} \text{ s.t.} \\ \forall x \in \mathbf{Z}^n \times \mathbf{R}^d \ \alpha \le f(x) + U_{\pi(x)}g(x) \text{ or } 1 \le U_{\pi(x)}g(x) \}.$$

Behind duality: Mixed integer KKT theorem

KKT theorem under standard assumptions

 x^* such that $g(x^*) \leq 0$ attains the optimal solution if and only if there exist $h_f \in \partial f(x^*)$, $h_{g_i} \in \partial g_i(x^*)$, $\lambda_i \geq 0$ for all i such that $h_f + \sum_{i=1}^m \lambda_i h_{g_i} = 0$ and $\lambda_i g_i(x^*) = 0 \ \forall i$.

Mixed integer version of KKT [Baes, Oertel, W. 2014]

 $\begin{aligned} \mathbf{x}^{\star} \in \mathbf{Z}^{n} \times \mathbf{R}^{d}, \ g(\mathbf{x}^{\star}) &\leq 0 \text{ solves mixed integer convex problem if and only} \\ \text{if there exist } k &\leq 2^{n} \text{ points } x_{1} = \mathbf{x}^{\star}, x_{2}, \dots, x_{k} \in \mathbf{Z}^{n} \times \mathbf{R}^{d} \text{ and } k \text{ vectors} \\ u_{1}, \dots, u_{k} \in \mathbf{R}^{m+1}_{+} \text{ with } h_{i,m+1} \in \partial f(x_{i}), \text{ and } h_{i,j} \in \partial g_{j}(x_{i}) \forall j \text{ such that:} \\ \text{(a) If } g(x_{i}) &\leq 0 \text{ then } f(x_{i}) \geq f(x_{1}), \ u_{i,m+1} > 0 \text{ and } u_{i,j}g_{j}(x_{i}) = 0 \forall j, \\ \text{(b) If } g(x_{i}) &\leq 0 \text{ then } u_{i,m+1} = 0 \text{ and } u_{i,k}(g_{k}(x_{i}) - g_{l}(x_{i})) \geq 0 \forall k, l, \\ \text{(c) } \{x \mid \sum_{j=1}^{m+1} u_{i,j}h_{i,j}^{T}(x - x_{i}) < 0 \text{ for all } i\} \cap (\mathbf{Z}^{n} \times \mathbf{R}^{d}) = \emptyset, \\ \text{(d) } \sum_{j=1}^{m+1} u_{i,j}h_{i,j} \in \mathbf{R}^{n} \times \{0\}^{d} \text{ for } i = 1, \dots, k. \end{aligned}$

"MICO by MILPing"

• Let *K* be a convex set presented by a first order oracle.

"MICO by MILPing"

- Let *K* be a convex set presented by a first order oracle.
- Replace the ellispoid type method by a polytope shrinking algorithm.

The ingredients:

•
$$G_{\lambda} := \lambda (G - c_G) + c_G$$
.

"MICO by MILPing"

- Let *K* be a convex set presented by a first order oracle.
- Replace the ellispoid type method by a polytope shrinking algorithm.

The steps for testing $K \cap \mathbf{Z}^n = \emptyset$:

 Step 1: Let P = {x | Ax ≤ b} be a polytope containing K.

The ingredients:

•
$$G_{\lambda} := \lambda(G - c_G) + c_G$$
.

"MICO by MILPing"

- Let *K* be a convex set presented by a first order oracle.
- Replace the ellispoid type method by a polytope shrinking algorithm.

The steps for testing $K \cap \mathbf{Z}^n = \emptyset$:

- Step 1: Let P = {x | Ax ≤ b} be a polytope containing K.
- Step 2: If P_λ ∩ Zⁿ = Ø, generate subproblems.

The ingredients:

•
$$G_{\lambda} := \lambda(G - c_G) + c_G$$
.

"MICO by MILPing"

- Let *K* be a convex set presented by a first order oracle.
- Replace the ellispoid type method by a polytope shrinking algorithm.

The steps for testing $K \cap \mathbf{Z}^n = \emptyset$:

- Step 1: Let P = {x | Ax ≤ b} be a polytope containing K.
- Step 2: If P_λ ∩ Zⁿ = Ø, generate subproblems.
- Step 3: Let $x \in P_{\lambda} \cap \mathbb{Z}^{n}$. If $x \notin K$, separate x.

The ingredients:

•
$$G_{\lambda} := \lambda (G - c_G) + c_G$$
.

"MICO by MILPing"

- Let *K* be a convex set presented by a first order oracle.
- Replace the ellispoid type method by a polytope shrinking algorithm.

The ingredients:

• For convex compact G, the centroid $c_G = \frac{\int_G x dx}{vol(G)}$.

•
$$G_{\lambda} := \lambda (G - c_G) + c_G$$
.

The steps for testing $K \cap \mathbf{Z}^n = \emptyset$:

- Step 1: Let P = {x | Ax ≤ b} be a polytope containing K.
- Step 2: If P_λ ∩ Zⁿ = Ø, generate subproblems.
- Step 3: Let $x \in P_{\lambda} \cap \mathbb{Z}^{n}$. If $x \notin K$, separate x.

Extension of a theorem of Grünbaum 1960 ($\lambda = 0$)

Let *G* be a compact convex set, let *H* be a halfspace and let $0 < \lambda < 1$. If $G_{\lambda} \cap H \neq \emptyset$, then

$$\frac{\text{vol } (G \cap H)}{\text{vol } (G)} \ge (1\!-\!\lambda)^n (\frac{n}{n+1})^n.$$

Image: A match a ma

Analysis of the polytope-shrinking algorithm:

Iterations k until
$$\operatorname{vol}(P) \leq \frac{1}{n!}$$
:

$$k \leq \frac{n[\log(2B) + \log(n)]}{(1-\lambda)^n(\frac{n}{n+1})^n}.$$

Analysis of the polytope-shrinking algorithm:

Iterations k until
$$\operatorname{vol}(P) \leq \frac{1}{n!}$$
:
 $k \leq \frac{n[\log(2B) + \log(n)]}{(1 - \lambda)^n (\frac{n}{n+1})^n}.$

Good news about the computation of $x \in P_{\lambda} \cap \mathbf{Z}^n$:

 For n fixed, P_λ can be efficiently computed by solving a mixed integer linear program in dimension n + 1:

$$\begin{aligned} \mathbf{t}^* &= \max \mathbf{t} \\ \mathbf{a}_i^T \mathbf{x} + \omega(\mathbf{P}, \mathbf{a}_i) \mathbf{t} \le \mathbf{b}_i \ \forall i \\ \mathbf{x} \in \mathbf{Z}^n, \ \mathbf{t} \ge \mathbf{0}. \end{aligned}$$

- (x^*, t) feasible implies (a) $x^* \in P_{1-t}$ and
- (x^*, t) feasible implies (b) $x^* \in \{x \mid x + t(P P) \subseteq P\}$.

The setting: min $\{f(Wx) : Ax \leq b, x \in \mathbb{Z}^n\}$

Given

Robert Weismantel

E ▶ ◀ ≣ ▶ ≣ → ා ৭.৫ January 2015 14 / 17

<ロト </p>

The setting: min $\{f(Wx) : Ax \leq b, x \in \mathbb{Z}^n\}$

Given

• Matrices $A \in \mathbf{Z}^{m \times n}$ and $W \in \mathbf{Z}^{d \times n}$, a vector $b \in \mathbf{Z}^m$

The setting: min $\{f(Wx) : Ax \leq b, x \in \mathbb{Z}^n\}$

Given

- Matrices $A \in \mathbf{Z}^{m imes n}$ and $W \in \mathbf{Z}^{d imes n}$, a vector $b \in \mathbf{Z}^m$
- We assume to have access to a fiber oracle.

The setting: min {f(Wx) : $Ax \leq b, x \in \mathbb{Z}^n$ }

Given

- Matrices $A \in \mathbf{Z}^{m \times n}$ and $W \in \mathbf{Z}^{d \times n}$, a vector $b \in \mathbf{Z}^m$
- We assume to have access to a fiber oracle.

Given $y \in \mathbf{Z}^d$. The oracle returns $x \in \mathcal{F} = \{x \in \mathbf{Z}^n : Ax \le b\}$, such that Wx = y, or states that no such x exists.

The setting: min {f(Wx) : $Ax \leq b, x \in \mathbb{Z}^n$ }

Given

- Matrices $A \in \mathbf{Z}^{m \times n}$ and $W \in \mathbf{Z}^{d \times n}$, a vector $b \in \mathbf{Z}^m$
- We assume to have access to a fiber oracle.

Given $y \in \mathbf{Z}^d$. The oracle returns $x \in \mathcal{F} = \{x \in \mathbf{Z}^n : Ax \le b\}$, such that Wx = y, or states that no such x exists.

• A function $f : \mathbf{Q}^d \to \mathbf{Q}$ presented by a integer minimization oracle.

The setting: min {f(Wx) : $Ax \leq b, x \in \mathbb{Z}^n$ }

Given

- Matrices $A \in \mathbf{Z}^{m imes n}$ and $W \in \mathbf{Z}^{d imes n}$, a vector $b \in \mathbf{Z}^m$
- We assume to have access to a fiber oracle.

Given $y \in \mathbf{Z}^d$. The oracle returns $x \in \mathcal{F} = \{x \in \mathbf{Z}^n : Ax \le b\}$, such that Wx = y, or states that no such x exists.

A function f : Q^d → Q presented by a integer minimization oracle.
 (Query: y* ← arg min{f(y) : By ≤ c, y ∈ Λ})

The setting: min {f(Wx) : $Ax \leq b, x \in \mathbb{Z}^n$ }

Given

- Matrices $A \in \mathbf{Z}^{m imes n}$ and $W \in \mathbf{Z}^{d imes n}$, a vector $b \in \mathbf{Z}^m$
- We assume to have access to a fiber oracle.

Given $y \in \mathbf{Z}^d$. The oracle returns $x \in \mathcal{F} = \{x \in \mathbf{Z}^n : Ax \le b\}$, such that Wx = y, or states that no such x exists.

A function f : Q^d → Q presented by a integer minimization oracle.
 (Query: y* ← arg min{f(y) : By ≤ c, y ∈ Λ})

Why and what?

- Why do we need these oracles?
- Under which conditions on the input is this problem tractable?

W is in unary representation.

We can model the Partition Problem: For $w_1, \dots, w_n \in \mathbb{Z}_+$ and $D = \frac{1}{2} \sum_{i=1}^n w_i$, solve min $(w^T x - D)^2$ s.t. $x \in \{0, 1\}^n$.

d is fixed

 leverage algorithms for minimization in fixed dimension.

W is in unary representation.

We can model the Partition Problem: For $w_1, \dots, w_n \in \mathbf{Z}_+$ and $D = \frac{1}{2} \sum_{i=1}^n w_i$, solve min $(w^T x - D)^2$ s.t. $x \in \{0, 1\}^n$.

d is fixed

 leverage algorithms for minimization in fixed dimension.

No access to a fiber oracle is typically hopeless.

Theorem [Lee, Onn, W. '10] There is a universal constant ρ such that no polynomial time algorithm can compute a *on*-best solution of the nonlinear optimization problem min { f(Wx) : $x \in \mathcal{F}$ } over any independence system \mathcal{F} presented by a linear optimization oracle, not even with W a fixed integer $2 \times n$ matrix.

< ロ > < 同 > < 三 > < 三

W is in unary representation.

We can model the Partition Problem: For $w_1, \dots, w_n \in \mathbf{Z}_+$ and $D = \frac{1}{2} \sum_{i=1}^n w_i$, solve min $(w^T x - D)^2$ s.t. $x \in \{0, 1\}^n$.

d is fixed

 leverage algorithms for minimization in fixed dimension.

The tractability question:

Conditions on \mathcal{F} and A, b, resp. ?

No access to a fiber oracle is typically hopeless.

Theorem [Lee, Onn, W. '10] There is a universal constant ρ such that no polynomial time algorithm can compute a *on*-best solution of the nonlinear optimization problem min { f(Wx) : $x \in \mathcal{F}$ } over any independence system \mathcal{F} presented by a linear optimization oracle, not even with W a fixed integer $2 \times n$ matrix.

< ロ > < 同 > < 三 > < 三

Robert Weismantel

W mappings with small subdeterminants

The assumptions summarized

• Let $A \in \mathbb{Z}^{m \times n}$, $W \in \mathbb{Z}^{d \times n}$, $b \in \mathbb{Z}^m$ and $f : \mathbb{R}^d \to \mathbb{R}$.

- Let $A \in \mathbb{Z}^{m \times n}$, $W \in \mathbb{Z}^{d \times n}$, $b \in \mathbb{Z}^m$ and $f : \mathbb{R}^d \to \mathbb{R}$.
- Let *d* be a fixed constant.

- Let $A \in \mathbf{Z}^{m \times n}$, $W \in \mathbf{Z}^{d \times n}$, $b \in \mathbf{Z}^m$ and $f : \mathbf{R}^d \to \mathbf{R}$.
- Let *d* be a fixed constant.
- Let Δ denote the maximum sub-determinant of A and W.

- Let $A \in \mathbf{Z}^{m \times n}$, $W \in \mathbf{Z}^{d \times n}$, $b \in \mathbf{Z}^m$ and $f : \mathbf{R}^d \to \mathbf{R}$.
- Let *d* be a fixed constant.
- Let Δ denote the maximum sub-determinant of A and W.

Theorem [Adjiashvili, Oertel, W. '14]

There is an algorithm that solves the non-linear optimization problem

$$\min \{f(Wx) : Ax \leq b, x \in \mathbf{Z}^n\}.$$

The number of calls of the optimization and fiber oracles is polynomial in n and Δ .

A first polynomial time algorithm.

Let $\mathcal{F} = \{x \in \{0,1\}^n \mid a^T x \leq a_0\}$ be a knapsack set and $W \in \mathbb{Z}^{d \times n}$ encoded in unary with d fixed.

- The dual problem: $\gamma(w_0) := \min\{a^T x \text{ subject to } W x = w_0\}.$
- Dynamic programming / shortest path techniques apply to the dual.
- Choose argmin $\{f(w_0) \text{ subject to } \gamma(w_0) \leq a_0\}$.

A first polynomial time algorithm.

Let $\mathcal{F} = \{x \in \{0,1\}^n \mid a^T x \leq a_0\}$ be a knapsack set and $W \in \mathbb{Z}^{d \times n}$ encoded in unary with d fixed.

- The dual problem: $\gamma(w_0) := \min\{a^T x \text{ subject to } W x = w_0\}.$
- Dynamic programming / shortest path techniques apply to the dual.
- Choose argmin $\{f(w_0) \text{ subject to } \gamma(w_0) \leq a_0\}$.

Theorem (Lee, Onn, W. '07)

For every fixed *m* and *p*, there is an algorithm that, given $a_1, \ldots, a_p \in \mathbb{Z}$, $W \in \{a_1, \ldots, a_p\}^{m \times n}$, and a function $f \colon \mathbb{R}^n \to \mathbb{R}$, finds a matroid base *B* minimizing $f(W\chi^B)$ in time polynomial in *n* and $\langle a_1, \ldots, a_p \rangle$.

(... can be solved using iterated matroid intersection algorithms.)

イロト 不得下 イヨト イヨト 二日