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• Unknown MDP
• Finite horizon, state space, action space
• Initial state s0

• Time-inhomogenous transition and rewards distributions
• Rewards in [0,1]

• Policy
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Reinforcement Learning Algorithms

• Episodic learning

• Reinforcement learning algorithm
• Given observations made through episode
• Select policy
• Apply actions
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• Theory of “efficient RL exploration”
• Focus on tabula rasa case (no generalization)
• Focus on regret bounds, not empirical performance
• Algorithms serve as constructive proofs
• Interesting insights

• Exploration in practice
• Generalization is critical

• Parameterized value functions or policies
• Inefficient exploration schemes

• Dithering: Boltzmann,   -greedy
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open issue: how to explore efficiently	

alongside effective generalization methods
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UCRL2	

[Jaksch-Ortner-Auer, 2010]

• To select
• At each (s,a), construct confidence sets for

• transition probability vector
• mean reward

• Solve optimistic MDP

• Regret bound

• “Near-optimal reinforcement learning”
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[Osband-Russo-VanRoy, 2014]

11



Learning to Optimize Lunteren 2015	


Why does UCRL2 perform so poorly?

12



Learning to Optimize Lunteren 2015	


Why does UCRL2 perform so poorly?

12

r̂(s, a)

r̂(s0, a0)



Learning to Optimize Lunteren 2015	


Why does UCRL2 perform so poorly?

12

CLT

r̂(s, a)

r̂(s0, a0)



Learning to Optimize Lunteren 2015	


Why does UCRL2 perform so poorly?

12

CLTUCRL2

r̂(s, a)

r̂(s0, a0)



Learning to Optimize Lunteren 2015	


Why does UCRL2 perform so poorly?

12

CLTUCRL2

UCRL2 decouples 
confidence sets

r̂(s, a)

r̂(s0, a0)



Learning to Optimize Lunteren 2015	


Why does UCRL2 perform so poorly?

• Theory: “Thompson sampling approximates Bayes-UCB”

12

CLTUCRL2

UCRL2 decouples 
confidence sets

r̂(s, a)

r̂(s0, a0)



Learning to Optimize Lunteren 2015	


Why does UCRL2 perform so poorly?

• Theory: “Thompson sampling approximates Bayes-UCB”

• “Bayes-UCRL2” should work much better than UCRL2

12

CLTUCRL2

UCRL2 decouples 
confidence sets

r̂(s, a)

r̂(s0, a0)



Learning to Optimize Lunteren 2015	


Why does UCRL2 perform so poorly?

• Theory: “Thompson sampling approximates Bayes-UCB”

• “Bayes-UCRL2” should work much better than UCRL2
• But this is computationally intractable

12

CLTUCRL2

UCRL2 decouples 
confidence sets

r̂(s, a)

r̂(s0, a0)



Learning to Optimize Lunteren 2015	


Why does UCRL2 perform so poorly?

• Theory: “Thompson sampling approximates Bayes-UCB”

• “Bayes-UCRL2” should work much better than UCRL2
• But this is computationally intractable
• PSRL approximates this
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PSRL	

[Strens, 2000]

• To select
• Sample a statistically plausible MDP

• Optimize sampled MDP

• Regret bound [Osband-Russo-VanRoy, 2014]
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Beyond Tabula Rasa RL

• Curse of dimensionality

• Need to generalize
• Parameterized policies
• Parameterized value functions

• Simple case: linear combination of features
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Value Function Randomization

• To select
• Sample statistically plausible parameters
• Use greedy policy

• How to sample?
• Randomized least-squares value iteration
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A Simple Example

18

• Deterministic MDP
• Start at state 1
• Actions: left or right
• Horizon = 50 periods
• Receive reward 1 only if at state 50

• What is the optimal strategy?

•         spans a random affine subspace that contains        
and constant functions

x=0$ x=1$ x=2$ x=3$ x=N)2$ x=N)1$1 2 3 4 50
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Agnostic Learning
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Understanding RLSVI: Tabula Rasa Case
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Understanding RLSVI: Tabula Rasa Case

• Assume unknown deterministic rewards
• PSRL value computation

22

RLSVI ⇡ PSRL

rh(x, a)

ˆQh(s, a) r̃h(s, a) +
X

s0

p̃ss0(a)max

↵
ˆQh+1(s

0,↵)



Learning to Optimize Lunteren 2015	


Understanding RLSVI: Tabula Rasa Case

• Assume unknown deterministic rewards
• PSRL value computation

22

RLSVI ⇡ PSRL

rh(x, a)

ˆQh(s, a) rh(s, a) +
X

s0

pss0(a)max

↵
ˆQh+1(s

0,↵) + noise



Learning to Optimize Lunteren 2015	


Understanding RLSVI: Tabula Rasa Case
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• PSRL value computation
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• PSRL value computation

• RLSVI value computation with

22

RLSVI ⇡ PSRL

� = 0

rh(x, a)

ˆQh(s, a) r0h(s, a) +
X

s0

p0ss0(a)max

↵
ˆQh+1(s

0,↵) + noise

0

ˆQh(s, a) rh(s, a) +
X

s0

pss0(a)max

↵
ˆQh+1(s

0,↵) + noise



Learning to Optimize Lunteren 2015	


Understanding RLSVI: Tabula Rasa Case

• Assume unknown deterministic rewards
• PSRL value computation

• RLSVI value computation with

• For PSRL with uniform prior
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RLSVI ⇡ PSRL
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