
Learning to Optimize	

Exploration and Generalization

!
!

Benjamin Van Roy	

!

work done with Dan Russo

Learning to Optimize Luntern 2015	

Learning to Optimize

2

system

Learning to Optimize Luntern 2015	

Learning to Optimize

2

system
Xt

action

Learning to Optimize Luntern 2015	

Learning to Optimize

2

system
Xt

action

Yt

feedback

Learning to Optimize Luntern 2015	

Learning to Optimize

2

system
Xt

action

Yt

feedback

reward
Rt = R(Yt)

Learning to Optimize Luntern 2015	

Learning to Optimize

2

system
Xt

action

Yt

feedback

exploration versus exploitation

reward
Rt = R(Yt)

Learning to Optimize Luntern 2015	

A Generalization of Optimization

3

max

x2X
f(x)

Learning to Optimize Luntern 2015	

A Generalization of Optimization

3

max

x2X
f

✓

(x) ✓ 2 ⇥

Learning to Optimize Luntern 2015	

A Generalization of Optimization

• Expected reward

3

max

x2X
f

✓

(x) ✓ 2 ⇥

f✓(Xt) = E [Rt|Xt, ✓]

Learning to Optimize Luntern 2015	

A Generalization of Optimization

• Expected reward

• Represent knowledge about model via

3

max

x2X
f

✓

(x) ✓ 2 ⇥

f✓(Xt) = E [Rt|Xt, ✓]

Learning to Optimize Luntern 2015	

A Generalization of Optimization

• Expected reward

• Represent knowledge about model via

• Set membership

3

max

x2X
f

✓

(x) ✓ 2 ⇥

✓ 2 ⇥t ✓ ⇥

f✓(Xt) = E [Rt|Xt, ✓]

Learning to Optimize Luntern 2015	

A Generalization of Optimization

• Expected reward

• Represent knowledge about model via

• Set membership

• Probability distribution

3

max

x2X
f

✓

(x) ✓ 2 ⇥

✓ 2 ⇥t ✓ ⇥

✓ ⇠ pt(·)

f✓(Xt) = E [Rt|Xt, ✓]

Learning to Optimize Luntern 2015	

Example: Multi-Armed Bandit Problem

4

choice

payoff

Learning to Optimize Luntern 2015	

Example: Multi-Armed Bandit Problem

• Action/arm

4

choice

payoff

X = {1, . . . , n}

Learning to Optimize Luntern 2015	

Example: Multi-Armed Bandit Problem

• Action/arm
• Mean rewards with independent priors

4

choice

payoff

X = {1, . . . , n}

f

✓

(x) = ✓

x

✓ ⇠ p0(✓) =
NY

x=1

px0(✓x)

Learning to Optimize Luntern 2015	

Example: Multi-Armed Bandit Problem

• Action/arm
• Mean rewards with independent priors

• Feedback/reward

4

choice

payoff

X = {1, . . . , n}

f

✓

(x) = ✓

x

Rt = Yt = f✓(Xt) +Wt

✓ ⇠ p0(✓) =
NY

x=1

px0(✓x)

Learning to Optimize Luntern 2015	

Example: Multi-Armed Bandit Problem

• Action/arm
• Mean rewards with independent priors

• Feedback/reward
• Discounted objective addressed by Gittin’s Index Theorem

4

choice

payoff

X = {1, . . . , n}

f

✓

(x) = ✓

x

Rt = Yt = f✓(Xt) +Wt

✓ ⇠ p0(✓) =
NY

x=1

px0(✓x)

Learning to Optimize Luntern 2015	

Example: Linear Program

5

Learning to Optimize Luntern 2015	

Example: Linear Program

• Linear program

5

f✓(x) = ✓

>
x

X = {x : Ax b}

Learning to Optimize Luntern 2015	

Example: Linear Program

• Linear program

• Gaussian Prior

5

✓ ⇠ N(µ,⌃)

f✓(x) = ✓

>
x

X = {x : Ax b}

Learning to Optimize Luntern 2015	

Example: Linear Program

• Linear program

• Gaussian Prior

• Noisy feedback / reward

5

✓ ⇠ N(µ,⌃)

Wt ⇠ N(0,�2)

Rt = Yt = ✓>Xt +Wt

f✓(x) = ✓

>
x

X = {x : Ax b}

Learning to Optimize Luntern 2015	

Example: Linear Program

• Linear program

• Gaussian Prior

• Noisy feedback / reward

5

natural objectives are intractable

✓ ⇠ N(µ,⌃)

Wt ⇠ N(0,�2)

Rt = Yt = ✓>Xt +Wt

f✓(x) = ✓

>
x

X = {x : Ax b}

Learning to Optimize Luntern 2015	

Heuristics

6

Learning to Optimize Luntern 2015	

Heuristics

• Comparisons via

6

Learning to Optimize Luntern 2015	

Heuristics

• Comparisons via
• Simulations

6

Learning to Optimize Luntern 2015	

Heuristics

• Comparisons via
• Simulations
• Theoretical objectives such as expected regret

6

E [Regret(T)] =

TX

t=1

E

h
max

x

f

✓

(x)� f

✓

(X

t

)

i

Learning to Optimize Luntern 2015	

Heuristics

• Comparisons via
• Simulations
• Theoretical objectives such as expected regret

6

for optimal	

action

E [Regret(T)] =

TX

t=1

E

h
max

x

f

✓

(x)� f

✓

(X

t

)

i

Learning to Optimize Luntern 2015	

Heuristics

• Comparisons via
• Simulations
• Theoretical objectives such as expected regret

6

for optimal	

action

for selected	

action

E [Regret(T)] =

TX

t=1

E

h
max

x

f

✓

(x)� f

✓

(X

t

)

i

Learning to Optimize Luntern 2015	

Heuristics

• Comparisons via
• Simulations
• Theoretical objectives such as expected regret

6

for optimal	

action

for selected	

action

expectation	

over models

E [Regret(T)] =

TX

t=1

E

h
max

x

f

✓

(x)� f

✓

(X

t

)

i

Learning to Optimize Luntern 2015	

Heuristics

• Comparisons via
• Simulations
• Theoretical objectives such as expected regret

6

for optimal	

action

for selected	

action

expectation	

over models

E [Regret(T)] =

TX

t=1

E

h
max

x

f

✓

(x)� f

✓

(X

t

)

i

minimizing expected regret maximizes expected reward

Learning to Optimize Luntern 2015	

Heuristics

• Comparisons via
• Simulations
• Theoretical objectives such as expected regret

• Emphasis has been on “large” T

6

for optimal	

action

for selected	

action

expectation	

over models

E [Regret(T)] =

TX

t=1

E

h
max

x

f

✓

(x)� f

✓

(X

t

)

i

minimizing expected regret maximizes expected reward

Learning to Optimize Luntern 2015	

Heuristics

• Comparisons via
• Simulations
• Theoretical objectives such as expected regret

• Emphasis has been on “large” T
• Popular approaches to heuristic design

6

for optimal	

action

for selected	

action

expectation	

over models

E [Regret(T)] =

TX

t=1

E

h
max

x

f

✓

(x)� f

✓

(X

t

)

i

minimizing expected regret maximizes expected reward

Learning to Optimize Luntern 2015	

Heuristics

• Comparisons via
• Simulations
• Theoretical objectives such as expected regret

• Emphasis has been on “large” T
• Popular approaches to heuristic design

• Upper-confidence-bounds

6

for optimal	

action

for selected	

action

expectation	

over models

E [Regret(T)] =

TX

t=1

E

h
max

x

f

✓

(x)� f

✓

(X

t

)

i

minimizing expected regret maximizes expected reward

[Lai-Robbins, 1985; Dani-Hayes-Kakade, 2008; 	

Rusmevichientong-Tsitsiklis, 2010; etc.]

Learning to Optimize Luntern 2015	

Heuristics

• Comparisons via
• Simulations
• Theoretical objectives such as expected regret

• Emphasis has been on “large” T
• Popular approaches to heuristic design

• Upper-confidence-bounds
• Thompson sampling

6

for optimal	

action

for selected	

action

expectation	

over models

E [Regret(T)] =

TX

t=1

E

h
max

x

f

✓

(x)� f

✓

(X

t

)

i

minimizing expected regret maximizes expected reward

[Lai-Robbins, 1985; Dani-Hayes-Kakade, 2008; 	

Rusmevichientong-Tsitsiklis, 2010; etc.]

[Thompson, 1933]

Learning to Optimize Luntern 2015	

Upper-Confidence-Bound Algorithms (UCB)

7

Learning to Optimize Luntern 2015	

Upper-Confidence-Bound Algorithms (UCB)

• Confidence set

7

⇥t

Learning to Optimize Luntern 2015	

Upper-Confidence-Bound Algorithms (UCB)

• Confidence set
• Set of “statistically plausible” models

7

⇥t

Learning to Optimize Luntern 2015	

Upper-Confidence-Bound Algorithms (UCB)

• Confidence set
• Set of “statistically plausible” models
• Updated based on observations

7

⇥t

Learning to Optimize Luntern 2015	

Upper-Confidence-Bound Algorithms (UCB)

• Confidence set
• Set of “statistically plausible” models
• Updated based on observations

• Upper confidence bounds

7

⇥t

Ut(x) = max

✓2⇥t

f✓(x)

Learning to Optimize Luntern 2015	

Upper-Confidence-Bound Algorithms (UCB)

• Confidence set
• Set of “statistically plausible” models
• Updated based on observations

• Upper confidence bounds

• Optimistic optimization

7

⇥t

Ut(x) = max

✓2⇥t

f✓(x)

X

t

2 argmax

x2X
U

t

(x)

Learning to Optimize Luntern 2015	

Upper-Confidence-Bound Algorithms (UCB)

• Confidence set
• Set of “statistically plausible” models
• Updated based on observations

• Upper confidence bounds

• Optimistic optimization

• Bayes-UCB

7

⇥t

Ut(x) = max

✓2⇥t

f✓(x)

X

t

2 argmax

x2X
U

t

(x)

Learning to Optimize Luntern 2015	

Upper-Confidence-Bound Algorithms (UCB)

• Confidence set
• Set of “statistically plausible” models
• Updated based on observations

• Upper confidence bounds

• Optimistic optimization

• Bayes-UCB
• Maintain probability distribution

7

⇥t

Ut(x) = max

✓2⇥t

f✓(x)

X

t

2 argmax

x2X
U

t

(x)

pt(d✓) = P [✓ 2 d✓|Ft�1]

Learning to Optimize Luntern 2015	

Upper-Confidence-Bound Algorithms (UCB)

• Confidence set
• Set of “statistically plausible” models
• Updated based on observations

• Upper confidence bounds

• Optimistic optimization

• Bayes-UCB
• Maintain probability distribution
• Select level set as confidence set

7

⇥t

Ut(x) = max

✓2⇥t

f✓(x)

X

t

2 argmax

x2X
U

t

(x)

pt(d✓) = P [✓ 2 d✓|Ft�1]

Learning to Optimize Luntern 2015	

Thompson Sampling (TS)

8

Learning to Optimize Luntern 2015	

Thompson Sampling (TS)

• Maintain probability distribution

8

pt(d✓) = P [✓ 2 d✓|Ft]

Learning to Optimize Luntern 2015	

Thompson Sampling (TS)

• Maintain probability distribution

• Sample model

8

pt(d✓) = P [✓ 2 d✓|Ft]

✓t ⇠ pt

Learning to Optimize Luntern 2015	

Thompson Sampling (TS)

• Maintain probability distribution

• Sample model

• Optimize sample

8

pt(d✓) = P [✓ 2 d✓|Ft]

✓t ⇠ pt

X

t

2 argmax

x2X
f

✓t(x)

Learning to Optimize Luntern 2015	

Thompson Sampling (TS)

• Maintain probability distribution

• Sample model

• Optimize sample

8

pt(d✓) = P [✓ 2 d✓|Ft]

✓t ⇠ pt

X

t

2 argmax

x2X
f

✓t(x)

sample each action with the probability that it is optimal

Learning to Optimize Luntern 2015	

Regret Bounds

9

Learning to Optimize Luntern 2015	

Regret Bounds
• UCB

• Finite indep.

9

[Auer et al, 2002] X

Learning to Optimize Luntern 2015	

Regret Bounds
• UCB

• Finite indep.
• Linear

9

[Auer et al, 2002]
[Dani-Hayes-Kakade, 2008; Rusmevichientong-Tsitsiklis, 2010;	

Abbasi-Yadkori et al, 2011]

X

Learning to Optimize Luntern 2015	

Regret Bounds
• UCB

• Finite indep.
• Linear
• Generalized linear

9

[Auer et al, 2002]
[Dani-Hayes-Kakade, 2008; Rusmevichientong-Tsitsiklis, 2010;	

Abbasi-Yadkori et al, 2011]

[Filippi et al, 2010]

X

Learning to Optimize Luntern 2015	

Regret Bounds
• UCB

• Finite indep.
• Linear
• Generalized linear

• TS

9

[Auer et al, 2002]
[Dani-Hayes-Kakade, 2008; Rusmevichientong-Tsitsiklis, 2010;	

Abbasi-Yadkori et al, 2011]

[Filippi et al, 2010]

X

Learning to Optimize Luntern 2015	

Regret Bounds
• UCB

• Finite indep.
• Linear
• Generalized linear

• TS
• Finite X, Bernoulli

9

[Auer et al, 2002]
[Dani-Hayes-Kakade, 2008; Rusmevichientong-Tsitsiklis, 2010;	

Abbasi-Yadkori et al, 2011]

[Agrawal-Goyal, 2012]

[Filippi et al, 2010]

X

Learning to Optimize Luntern 2015	

Regret Bounds
• UCB

• Finite indep.
• Linear
• Generalized linear

• TS
• Finite X, Bernoulli
• Linear

9

[Auer et al, 2002]
[Dani-Hayes-Kakade, 2008; Rusmevichientong-Tsitsiklis, 2010;	

Abbasi-Yadkori et al, 2011]

[Agrawal-Goyal, 2012]

[Filippi et al, 2010]

X

[Agrawal-Goyal, 2012]

Learning to Optimize Luntern 2015	

Regret Bounds
• UCB

• Finite indep.
• Linear
• Generalized linear

• TS
• Finite X, Bernoulli
• Linear

9

[Auer et al, 2002]
[Dani-Hayes-Kakade, 2008; Rusmevichientong-Tsitsiklis, 2010;	

Abbasi-Yadkori et al, 2011]

[Agrawal-Goyal, 2012]

[Filippi et al, 2010]

UCB Regret Bounds TS E[Regret] Bounds
[Russo-Van Roy, 2013]

X

[Agrawal-Goyal, 2012]

Learning to Optimize Luntern 2015	

Regret Bounds
• UCB

• Finite indep.
• Linear
• Generalized linear

• TS
• Finite X, Bernoulli
• Linear

9

[Auer et al, 2002]
[Dani-Hayes-Kakade, 2008; Rusmevichientong-Tsitsiklis, 2010;	

Abbasi-Yadkori et al, 2011]

[Agrawal-Goyal, 2012]

[Filippi et al, 2010]

UCB Regret Bounds TS E[Regret] Bounds
[Russo-Van Roy, 2013]

• The role of confidence sets

X

[Agrawal-Goyal, 2012]

Learning to Optimize Luntern 2015	

Regret Bounds
• UCB

• Finite indep.
• Linear
• Generalized linear

• TS
• Finite X, Bernoulli
• Linear

9

[Auer et al, 2002]
[Dani-Hayes-Kakade, 2008; Rusmevichientong-Tsitsiklis, 2010;	

Abbasi-Yadkori et al, 2011]

[Agrawal-Goyal, 2012]

[Filippi et al, 2010]

UCB Regret Bounds TS E[Regret] Bounds
[Russo-Van Roy, 2013]

• The role of confidence sets
• UCB: algorithm design and analysis
• TS: analysis only

X

[Agrawal-Goyal, 2012]

Learning to Optimize Luntern 2015	

Linear Bandit Simulations

10

f✓(x) = ✓

>
x

X = {z1, . . . , zn}

Learning to Optimize Luntern 2015	

Linear Bandit Simulations

10

f✓(x) = ✓

>
x

100 200 300 400 500 600 700 800 900 10000

0.5

1

1.5

2

2.5

3

A
ve

ra
ge

 In
sta

nt
an

eo
us

 R
eg

re
t

Time Period

Bayes-UCB [Abbasi-Yadkori et al, 2011]

Bayes-UCB [Srinivas et al, 2012]

X = {z1, . . . , zn}

Learning to Optimize Luntern 2015	

Linear Bandit Simulations

10

f✓(x) = ✓

>
x

100 200 300 400 500 600 700 800 900 10000

0.5

1

1.5

2

2.5

3

A
ve

ra
ge

 In
sta

nt
an

eo
us

 R
eg

re
t

Time Period

Bayes-UCB [Abbasi-Yadkori et al, 2011]

Bayes-UCB [Srinivas et al, 2012]

TS

X = {z1, . . . , zn}

Learning to Optimize Luntern 2015	

Linear Bandit Simulations

10

f✓(x) = ✓

>
x

100 200 300 400 500 600 700 800 900 10000

0.5

1

1.5

2

2.5

3

A
ve

ra
ge

 In
sta

nt
an

eo
us

 R
eg

re
t

Time Period

Bayes-UCB [Abbasi-Yadkori et al, 2011]

Bayes-UCB [Srinivas et al, 2012]

TS

Bayes-UCB-tuned

X = {z1, . . . , zn}

Learning to Optimize Luntern 2015	

Computational Considerations

11

Learning to Optimize Luntern 2015	

Computational Considerations

• TS is often tractable when Bayes-UCB is not

11

Learning to Optimize Luntern 2015	

Computational Considerations

• TS is often tractable when Bayes-UCB is not
• Consider LP

11

f✓(x) = ✓

>
x

X = {x : Ax b}
✓ ⇠ N(µ,⌃)

Wt ⇠ N(0,�2)

Rt = Yt = ✓>Xt +Wt

Learning to Optimize Luntern 2015	

Computational Considerations

• TS is often tractable when Bayes-UCB is not
• Consider LP

• TS is computationally efficient

11

f✓(x) = ✓

>
x

X = {x : Ax b}
✓ ⇠ N(µ,⌃)

Wt ⇠ N(0,�2)

Rt = Yt = ✓>Xt +Wt

Learning to Optimize Luntern 2015	

Computational Considerations

• TS is often tractable when Bayes-UCB is not
• Consider LP

• TS is computationally efficient
• Bayes-UCB is computationally intractable

11

f✓(x) = ✓

>
x

X = {x : Ax b}
✓ ⇠ N(µ,⌃)

Wt ⇠ N(0,�2)

Rt = Yt = ✓>Xt +Wt

Learning to Optimize Luntern 2015	

Computational Considerations

• TS is often tractable when Bayes-UCB is not
• Consider LP

• TS is computationally efficient
• Bayes-UCB is computationally intractable

• Computationally tractable version of UCB
• Regret scaled by a factor of d

11

[Dani-Hayes-Kakade, 2008]

f✓(x) = ✓

>
x

X = {x : Ax b}
✓ ⇠ N(µ,⌃)

Wt ⇠ N(0,�2)

Rt = Yt = ✓>Xt +Wt

Learning to Optimize Luntern 2015	

Summary of TS versus UCB

12

Learning to Optimize Luntern 2015	

Summary of TS versus UCB

• TS outperforms Bayes-UCB designed for analysis

12

Learning to Optimize Luntern 2015	

Summary of TS versus UCB

• TS outperforms Bayes-UCB designed for analysis

• TS slightly underperforms well-tuned Bayes-UCB

12

Learning to Optimize Luntern 2015	

Summary of TS versus UCB

• TS outperforms Bayes-UCB designed for analysis

• TS slightly underperforms well-tuned Bayes-UCB

• TS often tractable when Bayes-UCB not

12

Learning to Optimize Luntern 2015	

Summary of TS versus UCB

• TS outperforms Bayes-UCB designed for analysis

• TS slightly underperforms well-tuned Bayes-UCB

• TS often tractable when Bayes-UCB not

• TS outperforms non-Bayes-UCB designed for tractability

12

Learning to Optimize Luntern 2015	

General Bound

13

Learning to Optimize Luntern 2015	

General Bound

• Bound via general notion of function class complexity

13

Learning to Optimize Luntern 2015	

General Bound

• Bound via general notion of function class complexity

13

E [Regret(T)] ˜O
⇣p

dE(T) log (N(T))T
⌘

[Russo-Van Roy, 2013]

T�2
-scale eluder dimension

of function class

T�2
-covering number

of function class

Learning to Optimize Luntern 2015	

General Bound

• Bound via general notion of function class complexity

• CN is representative of supervised learning concepts

13

E [Regret(T)] ˜O
⇣p

dE(T) log (N(T))T
⌘

[Russo-Van Roy, 2013]

T�2
-scale eluder dimension

of function class

T�2
-covering number

of function class

Learning to Optimize Luntern 2015	

General Bound

• Bound via general notion of function class complexity

• CN is representative of supervised learning concepts
• ED is new and necessary

13

E [Regret(T)] ˜O
⇣p

dE(T) log (N(T))T
⌘

[Russo-Van Roy, 2013]

T�2
-scale eluder dimension

of function class

T�2
-covering number

of function class

Learning to Optimize Luntern 2015	

General Bound

• Bound via general notion of function class complexity

• CN is representative of supervised learning concepts
• ED is new and necessary

• Specializes to various model classes

13

E [Regret(T)] ˜O
⇣p

dE(T) log (N(T))T
⌘

[Russo-Van Roy, 2013]

T�2
-scale eluder dimension

of function class

T�2
-covering number

of function class

Learning to Optimize Luntern 2015	

General Bound

• Bound via general notion of function class complexity

• CN is representative of supervised learning concepts
• ED is new and necessary

• Specializes to various model classes
• Linear bandits: recovers best previous bounds

13

E [Regret(T)] ˜O
⇣p

dE(T) log (N(T))T
⌘

[Russo-Van Roy, 2013]

T�2
-scale eluder dimension

of function class

T�2
-covering number

of function class

Learning to Optimize Luntern 2015	

General Bound

• Bound via general notion of function class complexity

• CN is representative of supervised learning concepts
• ED is new and necessary

• Specializes to various model classes
• Linear bandits: recovers best previous bounds
• Generalized linear bandits: slight improvement

13

E [Regret(T)] ˜O
⇣p

dE(T) log (N(T))T
⌘

[Russo-Van Roy, 2013]

T�2
-scale eluder dimension

of function class

T�2
-covering number

of function class

Learning to Optimize Luntern 2015	

Troubling Example: Sparse Linear Bandit

14

Learning to Optimize Luntern 2015	

Troubling Example: Sparse Linear Bandit

• A 1-sparse case

14

Learning to Optimize Luntern 2015	

Troubling Example: Sparse Linear Bandit

• A 1-sparse case

14

f✓(x) = ✓

>
x

Learning to Optimize Luntern 2015	

Troubling Example: Sparse Linear Bandit

• A 1-sparse case

14

f✓(x) = ✓

>
x

X =

(
x 2

⇢
0,

1

m

�d

: kxk0 = m

)

Learning to Optimize Luntern 2015	

Troubling Example: Sparse Linear Bandit

• A 1-sparse case

14

Rt = Yt = f✓(Xt)

f✓(x) = ✓

>
x

X =

(
x 2

⇢
0,

1

m

�d

: kxk0 = m

)

Learning to Optimize Luntern 2015	

Troubling Example: Sparse Linear Bandit

• A 1-sparse case

14

Rt = Yt = f✓(Xt)

✓ ⇠ unif
��

✓ 2 {0, 1}d : k✓k0 = 1
 �

f✓(x) = ✓

>
x

X =

(
x 2

⇢
0,

1

m

�d

: kxk0 = m

)

Learning to Optimize Luntern 2015	

Troubling Example: Sparse Linear Bandit

• A 1-sparse case

• UCB/TS require samples to identify

14

Rt = Yt = f✓(Xt)

✓ ⇠ unif
��

✓ 2 {0, 1}d : k✓k0 = 1
 �

⌦(d)

f✓(x) = ✓

>
x

X =

(
x 2

⇢
0,

1

m

�d

: kxk0 = m

)

Learning to Optimize Luntern 2015	

Troubling Example: Sparse Linear Bandit

• A 1-sparse case

• UCB/TS require samples to identify
• UCB/TS rule out one action per period

14

Rt = Yt = f✓(Xt)

✓ ⇠ unif
��

✓ 2 {0, 1}d : k✓k0 = 1
 �

⌦(d)

f✓(x) = ✓

>
x

X =

(
x 2

⇢
0,

1

m

�d

: kxk0 = m

)

Learning to Optimize Luntern 2015	

Troubling Example: Sparse Linear Bandit

• A 1-sparse case

• UCB/TS require samples to identify
• UCB/TS rule out one action per period

• Easy to design algorithms for which suffice

14

Rt = Yt = f✓(Xt)

✓ ⇠ unif
��

✓ 2 {0, 1}d : k✓k0 = 1
 �

⌦(d)

log2(d)

f✓(x) = ✓

>
x

X =

(
x 2

⇢
0,

1

m

�d

: kxk0 = m

)

Learning to Optimize Luntern 2015	

Troubling Example: Assortment Optimization

15

Learning to Optimize Luntern 2015	

Troubling Example: Assortment Optimization

• A simple context

15

Learning to Optimize Luntern 2015	

Troubling Example: Assortment Optimization

• A simple context
• N customer types

15

Learning to Optimize Luntern 2015	

Troubling Example: Assortment Optimization

• A simple context
• N customer types
• Many products, each geared for a particular type

15

Learning to Optimize Luntern 2015	

Troubling Example: Assortment Optimization

• A simple context
• N customer types
• Many products, each geared for a particular type
• Action: recommend assortment of size M

15

Learning to Optimize Luntern 2015	

Troubling Example: Assortment Optimization

• A simple context
• N customer types
• Many products, each geared for a particular type
• Action: recommend assortment of size M
• Customer purchases at most one product per period

15

Learning to Optimize Luntern 2015	

Troubling Example: Assortment Optimization

• A simple context
• N customer types
• Many products, each geared for a particular type
• Action: recommend assortment of size M
• Customer purchases at most one product per period
• Learn about customer through repeated interactions

15

Learning to Optimize Luntern 2015	

Troubling Example: Assortment Optimization

• A simple context
• N customer types
• Many products, each geared for a particular type
• Action: recommend assortment of size M
• Customer purchases at most one product per period
• Learn about customer through repeated interactions

• UCB/TS focus on a single customer type

15

Learning to Optimize Luntern 2015	

Troubling Example: Assortment Optimization

• A simple context
• N customer types
• Many products, each geared for a particular type
• Action: recommend assortment of size M
• Customer purchases at most one product per period
• Learn about customer through repeated interactions

• UCB/TS focus on a single customer type

• Diversifying can reduce regret by a factor of M

15

Learning to Optimize Luntern 2015	

Information-Directed Sampling (IDS)

16

Learning to Optimize Luntern 2015	

Information-Directed Sampling (IDS)

• Information ratio (IR)

16

 t =
(E [f✓(X⇤

)� f✓(Xt)|Ft�1])
2

It(X⇤, Yt)
=

(expected regret)

2

mutual information

Learning to Optimize Luntern 2015	

Information-Directed Sampling (IDS)

• Information ratio (IR)

• Mutual information measures information gain

16

It(X
⇤, Yt) = E [Ht(X

⇤)�Ht+1(X
⇤)|Ft�1]

 t =
(E [f✓(X⇤

)� f✓(Xt)|Ft�1])
2

It(X⇤, Yt)
=

(expected regret)

2

mutual information

Learning to Optimize Luntern 2015	

Information-Directed Sampling (IDS)

• Information ratio (IR)

• Mutual information measures information gain

• Entropy measures degree of uncertainty

16

It(X
⇤, Yt) = E [Ht(X

⇤)�Ht+1(X
⇤)|Ft�1]

Ht(X
⇤)

 t =
(E [f✓(X⇤

)� f✓(Xt)|Ft�1])
2

It(X⇤, Yt)
=

(expected regret)

2

mutual information

Learning to Optimize Luntern 2015	

Information-Directed Sampling (IDS)

• Information ratio (IR)

• Mutual information measures information gain

• Entropy measures degree of uncertainty

• IDS: select action distribution that minimizes

16

It(X
⇤, Yt) = E [Ht(X

⇤)�Ht+1(X
⇤)|Ft�1]

Ht(X
⇤)

 t

 t =
(E [f✓(X⇤

)� f✓(Xt)|Ft�1])
2

It(X⇤, Yt)
=

(expected regret)

2

mutual information

Learning to Optimize Luntern 2015	

Information-Directed Sampling (IDS)

• Information ratio (IR)

• Mutual information measures information gain

• Entropy measures degree of uncertainty

• IDS: select action distribution that minimizes
• Trades off between expected regret and information gain

16

It(X
⇤, Yt) = E [Ht(X

⇤)�Ht+1(X
⇤)|Ft�1]

Ht(X
⇤)

 t

 t =
(E [f✓(X⇤

)� f✓(Xt)|Ft�1])
2

It(X⇤, Yt)
=

(expected regret)

2

mutual information

Learning to Optimize Luntern 2015	

Information-Directed Sampling (IDS)

• Information ratio (IR)

• Mutual information measures information gain

• Entropy measures degree of uncertainty

• IDS: select action distribution that minimizes
• Trades off between expected regret and information gain
• Support is of cardinality at most 2

16

It(X
⇤, Yt) = E [Ht(X

⇤)�Ht+1(X
⇤)|Ft�1]

Ht(X
⇤)

 t

 t =
(E [f✓(X⇤

)� f✓(Xt)|Ft�1])
2

It(X⇤, Yt)
=

(expected regret)

2

mutual information

Learning to Optimize Luntern 2015	

Relation to TS and Regret Bound

17

Learning to Optimize Luntern 2015	

Relation to TS and Regret Bound

• A regret bound that applies to all algorithms

17

[Russo-Van Roy, 2014]

 T =
1

T

TX

t=1

E[t]

E[Regret(T)]
q
 TH(X⇤)T

Learning to Optimize Luntern 2015	

Relation to TS and Regret Bound

• A regret bound that applies to all algorithms

• For IDS:

17

[Russo-Van Roy, 2014]

 T =
1

T

TX

t=1

E[t]

E[Regret(T)]
q
 TH(X⇤)T

Learning to Optimize Luntern 2015	

Relation to TS and Regret Bound

• A regret bound that applies to all algorithms

• For IDS:
• always

17

 t |X|/2

[Russo-Van Roy, 2014]

 T =
1

T

TX

t=1

E[t]

E[Regret(T)]
q
 TH(X⇤)T

Learning to Optimize Luntern 2015	

Relation to TS and Regret Bound

• A regret bound that applies to all algorithms

• For IDS:
• always
• for d-dimensional linear bandit

17

 t |X|/2
 t d/2

[Russo-Van Roy, 2014]

 T =
1

T

TX

t=1

E[t]

E[Regret(T)]
q
 TH(X⇤)T

Learning to Optimize Luntern 2015	

Relation to TS and Regret Bound

• A regret bound that applies to all algorithms

• For IDS:
• always
• for d-dimensional linear bandit
• with full feedback

17

 t |X|/2
 t d/2
1/2

[Russo-Van Roy, 2014]

 T =
1

T

TX

t=1

E[t]

E[Regret(T)]
q
 TH(X⇤)T

Learning to Optimize Luntern 2015	

Relation to TS and Regret Bound

• A regret bound that applies to all algorithms

• For IDS:
• always
• for d-dimensional linear bandit
• with full feedback

• Grew out of information-theoretic analysis of TS
17

 t |X|/2
 t d/2
1/2

[Russo-Van Roy, 2014]

[Russo-Van Roy, 2014]

 T =
1

T

TX

t=1

E[t]

E[Regret(T)]
q
 TH(X⇤)T

Learning to Optimize Luntern 2015	

Computational Considerations

18

Learning to Optimize Luntern 2015	

Computational Considerations

• Tractable implementations for several cases

18

Learning to Optimize Luntern 2015	

Computational Considerations

• Tractable implementations for several cases
• Beta-Bernouli bandit (independent arms)

18

Learning to Optimize Luntern 2015	

Computational Considerations

• Tractable implementations for several cases
• Beta-Bernouli bandit (independent arms)
• Gaussian bandit (independent arms)

18

Learning to Optimize Luntern 2015	

Computational Considerations

• Tractable implementations for several cases
• Beta-Bernouli bandit (independent arms)
• Gaussian bandit (independent arms)
• Linear bandit (mean-based IDS)

18

Learning to Optimize Luntern 2015	

Computational Considerations

• Tractable implementations for several cases
• Beta-Bernouli bandit (independent arms)
• Gaussian bandit (independent arms)
• Linear bandit (mean-based IDS)

• UCB/TS do well in these cases

18

Learning to Optimize Luntern 2015	

Computational Considerations

• Tractable implementations for several cases
• Beta-Bernouli bandit (independent arms)
• Gaussian bandit (independent arms)
• Linear bandit (mean-based IDS)

• UCB/TS do well in these cases

• New algorithms needed for other cases

18

Learning to Optimize Luntern 2015	

Linear Bandit Simulation

19

0 50 100 150 200 2500

0.2

0.4

0.6

0.8

1

1.2
Av

er
ag

e
In

st
an

ta
ne

ou
s

R
eg

re
t

Time Period

Bayes-UCB [Srinivas et al, 2012]
M-IDS

Learning to Optimize Luntern 2015	

Linear Bandit Simulation

19

0 50 100 150 200 2500

0.2

0.4

0.6

0.8

1

1.2
Av

er
ag

e
In

st
an

ta
ne

ou
s

R
eg

re
t

Time Period

Bayes-UCB [Srinivas et al, 2012]

TS

Bayes-UCB-tuned
M-IDS

Learning to Optimize Luntern 2015	

Summary on IDS

20

Learning to Optimize Luntern 2015	

Summary on IDS

• IDS addresses cases where UCB/TS miserably fails

20

Learning to Optimize Luntern 2015	

Summary on IDS

• IDS addresses cases where UCB/TS miserably fails

• IDS accomplishes this by measuring information gain

20

Learning to Optimize Luntern 2015	

Summary on IDS

• IDS addresses cases where UCB/TS miserably fails

• IDS accomplishes this by measuring information gain

• IDS performs as well or better than UCB/TS in several
cases where all are tractable

20

Learning to Optimize Luntern 2015	

Summary on IDS

• IDS addresses cases where UCB/TS miserably fails

• IDS accomplishes this by measuring information gain

• IDS performs as well or better than UCB/TS in several
cases where all are tractable

• New algorithms are needed to implement IDS in other
cases, especially those in which UCB/TS miserably fail

20

