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A Generalization of Optimization

max fg (x) 0 c 0B

reX

® Expected reward fo(Xi) = B [Ry| Xy, 0)
® Represent knowledge about model via

® Set membership e, CO

® Probability distribution 6 ~ p,(-)

Learning to Optimize Luntern 2015



Example: Multi-Armed Bandit Problem

Learning to Optimize Luntern 2015



Example: Multi-Armed Bandit Problem

® Action/arm X={1,...,n}

Learning to Optimize Luntern 2015



Example: Multi-Armed Bandit Problem

® Action/arm X =1{1,...,n}
® Mean rewards with independent priors

N

fo(x) = 0s 0~ po(0) = | | p5(62)

r=1
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® Action/arm X =1{1,...,n}
® Mean rewards with independent priors

fo(x) = 0z 0~ po(0) = | [ v5(62)

® Feedback/reward R; =Y; = fo(X:) + Wy
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® Action/arm X =1{1,...,n}
® Mean rewards with independent priors

fo(x) = 0z 0~ po(0) = | [ v5(62)

® Feedback/reward R; =Y; = fo(X:) + Wy
® Discounted objective addressed by Gittin’s Index Theorem
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Example: Linear Program

® Linear program folx)=0"z

X={z:Ax < b}

® (Gaussian Prior 0 ~ N(u,X)

® Noisy feedback / reward R =Y, =0'X,+ W,
Wi ~ N(07 02)

natural objectives are intractable
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® Simulations
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over models action action

minimizing expected regret maximizes expected reward

® Emphasis has been on “large” T

® Popular approaches to heuristic design

[Lai-Robbins, 1985; Dani-Hayes-Kakade, 2008;
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Heuristics

® (Comparisons via
® Simulations
® Theoretical objectives such as expected regret

E [Regret(T E E {max fo(x f@(Xt)}
t=1 / \ \
expectation for optimal for selected
over models action action

minimizing expected regret maximizes expected reward

® Emphasis has been on “large” T

® Popular approaches to heuristic design

[Lai-Robbins, 1985; Dani-Hayes-Kakade, 2008;
® Up p er—COHﬁdenC@_boundS Rusmevichientong-Tsitsiklis, 2010; etc.]

® Thompson sampling Thompson, 1933)
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Upper-Confidence-Bound Algorithms (UCB)

® Confidence set ©,

® Set of “statistically plausible” models
® Updated based on observations

® Upper confidence bounds U;(z) = max fo(x)

® Optimistic optimization X; € arg max U ()

® Bayes-UCB
® Maintain probability distribution p;(df) =P |0 € db|F;_1]
® Sclect level set as confidence set
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Thompson Sampling ('TS)

® Maintain probability distribution p:(df) =P |6 € dO|F,]
® Sample model 6; ~ p;

® Optimize sample X; € arg max fo, (x)
e

sample each action with the probability that it is optimal
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Regret Bounds

® UCB
® Finite indep. X [Auer et al, 2002]
. [Dani-Hayes-Kakade, 2008; Rusmevichientong-Tsitsiklis, 2010;
® Linecar Abbasi-Yadkori et al, 2011]
® (Generalized linear  [Fitippi et al, 2010}
® TS
® Finite X, Bernoulli [agrawal-Goyal, 2012
® |.inear [Agrawal-Goyal, 2012]

UCB Regret Bounds == TS E[Regret] Bounds

[Russo-Van Roy, 2013]

® The role of confidence sets
® UCB: algorithm design and analysis
® TS: analysis only
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[ .inear Bandit Simulations
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[_inear Bandit Simulations
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Computational Considerations

TS 1s often tractable when Bayes-UCB 1s not
® (Consider LP

folx) =0z 0~ N(p,%)
X={z:A2<b} R =Y,=0'X,+W,
Wt ™~ N(Ov 0-2)

® TS 1s computationally etficient
Bayes-UCB 1s computationally intractable

® Computationally tractable version of UCB
® Regret scaled by a factor of d  (Dani-Hayes-Kakade, 2008)
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Summary of TS versus UCB

® TS outperforms Bayes-UCB designed for analysis
® TS slightly underperforms well-tuned Bayes-UCB
® TS often tractable when Bayes-UCB not

® TS outperforms non-Bayes-UCB designed for tractability
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General Bound

® Bound via general notion of function class complexity

E |Regret(T (\/ dp(T)log (N(T)) T) [Russo-Van Roy, 2013]
T—2-scale eluder dimension T~ 2-covering number
of function class of function class

® (N i1s representative of supervised learning concepts
® ED 1s new and necessary

® Specializes to various model classes
® [.inear bandits: recovers best previous bounds
® Generalized linear bandits: slight improvement
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Troubling Example: Sparse Linear Bandit

® A l-sparse case

N d
1
folx) =0"x X = {az c 4 O’E e ||xo m}

R =Y = fo(X3)
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Troubling Example: Sparse Linear Bandit

® A l-sparse case

fo(x) =0"x X = {az c 4

Learning to Optimize

R =Y = fo(X3)
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0 ~ unif ({6 € {0,1}%: [|0]|o = 1})
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Troubling Example: Sparse Linear Bandit

® A l-sparse case

(

N d
1
fo(x)=0"x X = {az € < O’E e ||xo m}

\\

Ry =Y = fo(X4)
0 ~ unif ({6 € {0,1}%: [|0]|o = 1})

® UCB/TS require 2(d) samples to 1dentify
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Troubling Example: Sparse Linear Bandit

® A l-sparse case

(

N d
1
fo(x)=0"x X = {az € < O’E e ||xo m}

\\

Ry =Y = fo(X4)
0 ~ unif ({6 € {0,1}%: [|0]|o = 1})

® UCB/TS require 2(d) samples to 1dentify
® UCB/TS rule out one action per period

® Easy to design algorithms for which log,(d) suffice
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Troubling Example: Assortment Optimization

® A simple context

N customer types

Many products, each geared for a particular type
Action: recommend assortment of size M
Customer purchases at most one product per period
Learn about customer through repeated interactions

® UCB/TS focus on a single customer type

® Diversitying can reduce regret by a factor of M
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Information-Directed Sampling (IDS)

® Information ratio (IR)

U, — (E [fo(X™) — fH(Xt>|Ft—1])2 _ (expected ]reg]fet)2
t I(X*,Yy) mutual information

® Mutual information measures information gain

(X7, Y:) = E[H(X7) = Heqr (X7)|Fy—]

® Entropy H,(X ") measures degree of uncertainty

® [DS: select action distribution that minimizes ¥,
® Trades off between expected regret and information gain
® Support 1s of cardinality at most 2
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E[Regret(T)] S \/ETH(X*)T [Russo-Van Roy, 2014]
T
Ur = t_zl E[,]

® For IDS:
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Relation to TS and Regret Bound

® A regret bound that applies to all algorithms

E [Regret (T)] S \I/T H (X * )T [Russo-Van Roy, 2014]

® For IDS:
o U, <|X|/2 always
® U, < d/2 for d-dimensional linear bandit
® 1/2 with full feedback

® Grew out of information-theoretic analysis of TS
[Russo-Van Roy, 2014]
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® Tractable implementations for several cases
® Beta-Bernouli bandit (independent arms)
® (Gaussian bandit (independent arms)
® [.inear bandit (mean-based IDS)

® UCB/TS do well 1n these cases

® New algorithms needed for other cases
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[.inear Bandit Simulation
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Summary on IDS

® IDS addresses cases where UCB/TS miserably fails

® DS accomplishes this by measuring information gain

® DS performs as well or better than UCB/TS 1n several
cases where all are tractable

® New algorithms are needed to implement IDS in other
cases, especially those in which UCB/TS miserably fail
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