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Upper-Confidence-Bound Algorithms (UCB)

• Confidence set
• Set of “statistically plausible” models
• Updated based on observations

• Upper confidence bounds

• Optimistic optimization
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Regret Bounds
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• Finite indep.  
• Linear
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• Finite X, Bernoulli
• Linear

9

[Auer et al, 2002] 
[Dani-Hayes-Kakade, 2008; Rusmevichientong-Tsitsiklis, 2010;	

Abbasi-Yadkori et al, 2011] 

[Agrawal-Goyal, 2012] 

[Filippi et al, 2010] 

UCB Regret Bounds          TS E[Regret] Bounds
[Russo-Van Roy, 2013] 

• The role of confidence sets
• UCB: algorithm design and analysis
• TS: analysis only

X

[Agrawal-Goyal, 2012] 
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Bayes-UCB [Srinivas et al, 2012] 
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• TS is often tractable when Bayes-UCB is not
• Consider LP

• TS is computationally efficient
• Bayes-UCB is computationally intractable

• Computationally tractable version of UCB
• Regret scaled by a factor of d

11
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Summary of TS versus UCB

• TS outperforms Bayes-UCB designed for analysis

• TS slightly underperforms well-tuned Bayes-UCB

• TS often tractable when Bayes-UCB not

• TS outperforms non-Bayes-UCB designed for tractability

12
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General Bound

• Bound via general notion of function class complexity

• CN is representative of supervised learning concepts
• ED is new and necessary

• Specializes to various model classes
• Linear bandits: recovers best previous bounds
• Generalized linear bandits: slight improvement
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Troubling Example: Sparse Linear Bandit

• A 1-sparse case
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Troubling Example: Assortment Optimization

• A simple context
• N customer types
• Many products, each geared for a particular type
• Action: recommend assortment of size M
• Customer purchases at most one product per period
• Learn about customer through repeated interactions

• UCB/TS focus on a single customer type

• Diversifying can reduce regret by a factor of M
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Information-Directed Sampling (IDS)

• Information ratio (IR)

• Mutual information measures information gain

• Entropy              measures degree of uncertainty

• IDS: select action distribution that minimizes 
• Trades off between expected regret and information gain
• Support is of cardinality at most 2
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Relation to TS and Regret Bound

• A regret bound that applies to all algorithms

• For IDS:
•                     always
•                  for d-dimensional linear bandit
•         with full feedback

• Grew out of information-theoretic analysis of TS
17
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• New algorithms needed for other cases
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Linear Bandit Simulation
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Summary on IDS

• IDS addresses cases where UCB/TS miserably fails

• IDS accomplishes this by measuring information gain

• IDS performs as well or better than UCB/TS in several 
cases where all are tractable

• New algorithms are needed to implement IDS in other 
cases, especially those in which UCB/TS miserably fail
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