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Velocity
Systems of Insight

 The primary value from big data and analytics comes not from the data in its raw form, but from the 

processing and analysis of it and the insights, decisions, products, and services that emerge from 

analysis 

 Data driven decisions

 History data (systems of record)

 Current interaction (systems of engagement)

 Optimization is the science of better decisions

 Use it for Prescriptive Analytics: recommend best actions based on available data
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Irregular Operation Recovery

 Automated mass rebooking recommendations

 Customer preferences and priorities

 Alternate routes

 Clear directions for customers

“… the controlled airspace of many European countries was closed to instrument flight rules traffic, 

resulting in the largest air-traffic shut-down since World War II. The closures caused millions of 

passengers to be stranded not only in Europe, but across the world…” Wikipedia
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Beyond Smarter Planet: Smarter Comet

 Philae operations were

scheduled using IBM Decision

Optimization technology
 Key bottleneck is data transmission

 25 minutes

 Limited storage on Philae

 ESA/CNES had to quickly adjust

plan because the robot landed in 

a tilted position

 IBM Optimization was used to 

check the feasibility of adjusted

plans



© 2014 IBM Corporation6

Big Data = All Data
Not just about large volume

Volume Variety Velocity Veracity

Data at Scale

Terabytes to
petabytes of data

Data in Many 
Forms

RDBMs, objects, 
free text, 

multimedia, sensors

Data in Motion

Analysis of 
streaming data to 
enable decisions 

within fractions of a 
second.

Video, Social media 
feeds, Sensor feeds, 
etc

Data Uncertainty

Managing the 
reliability and 

predictability of 
inherently imprecise 

data types.

Measured data, 
predicted data, etc.
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Example in electricity networks

Scale (volume), e.g.

•Increasingly global  & fine-grained 

networks

•Millions of orders

•Uncertainty could lead to 

expensive stochastic models

Uncertainty, e.g.

• Wind & solar energy

• Consumer demand

• Supplier reliability, 

delays

Early Ontime Late

New data

•Voltage: renewable reverts the 

voltage curve along the line

•Energy: AC power flow models

Velocity

•Need to react quickly to 

incidents, eg wire break, or 

breaking news
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We are drowning in data, but starving for information!

 Data is growing exponentially:

o Social

o Sensors

o Enterprise

o Unstructured

 Rapid growth of data: from 

terabytes to exabytes is 

driving the need for 

automated analysis of 

massive volumes of data
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The value drivers for big data has shifted to velocity and veracity

99

Data in many formsVariety

Data at speed Velocity

Data at scaleVolume

Data as trustworthy Veracity

4 Vs of big data
2012 differentiators 2015 differentiators

Scalable / extensible 

infrastructure

Scalable storage 

infrastructures 

enable larger 

workloads

High-capacity 

warehouses support 

the variety of data

Data integration 

topped the data 

priorities of most 

organizations

Agile and flexible 

infrastructure

Big data landing 

platform expands the 

structured and 

unstructured data 

available for usage

Real-time analysis 

processing enables ‘in 

the moment’ actions

Trustworthiness is 

now the top data 

priority across majority 

of organizations

Source "Analytics: The real-world use of big data. How innovative organizations are extracting value from uncertain data." 

IBM Institute for Business Value in collaboration with the Saïd Business School, University of Oxford. October 2012. 
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 Engineering of systems of engagement requires real time decision making

 We want to provide the best possible action at each interaction

 Sub second is good enough

 Is the answer to make faster solvers? 

 Online optimization

 Not so sure.

Velocity
Real time optimization
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Example: Taxi Dispatch (real customer example, simplified here)

Real time dispatch

Car A Car B

Car A Client 1 Car B

Car A Client 1 Car B

Car A Client 1 Car BClient 2

Car A Client 1 Car BClient 2

T
im

e

Cars are assigned when customers call

For instance, closest car is selected 
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Making several decisions at the same time achieves better results

Without optimization With optimization

Car A Car B

Car A Client 1 Car B

Car A Client 1 Car B

Car A Client 1 Car BClient 2

Car A Client 1 Car BClient 2

Car A Car B

Car A Client 1 Car B

Car A Client 1 Car B

Car A Client 1 Car BClient 2

Car A Client 1 Car BClient 2

T
im

e

Making decisions one at a time leads to a myopic effect Gathering data and constraints to understand the ‘big 

picture’ creates the opportunity for better decisions

The Taxi company waits a bit before assigning cars to customers
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Delay or not?

 Delaying response can be good

 Too quick an answer : we get suboptimal resource allocation

 Too long an answer : we do not deliver a useable service

When delay is not possible?

 Pre position vehicles so that assigning the closest one yields good resource allocation on 

average

 Two steps

 Predictive analytics: analyze history to predict demand

 Compute optimal vehicle positions (set covering problem)

 We did this for ambulances at Ottawa

 We did this for police patrols
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Available 

vehicles

Emergency vehicle pre positioning

Emergency

events

history
ML, Stats

Incident

Trends

T
ra

in
in

g
 (

o
fl
in

e
)

O
n

lin
e

Incident

Trends Emergencies

forecast
Optimization

Weather, 

time of week

Avail vehicles

Vehicle

positions
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Vehicle Routing

 We are given a set of locations to visit

 Finding the shortest distance route : TSP

 Finding the shortest distance route with time windows: VRPTW

 What about finding the fastest (shortest time) route?

 Simple: divide distance by speed and use VRPTW or TSP solvers
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Average: 10 mins

Standard deviation: 15 mins

Can we use average speed?
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Can we use average speed per time of the day?
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Use Current Travel times

 IBM is a partner in an innovative transportation project for the city of Lyon in France

 Other partners provide traffic information

 IBM provides travel time forecast for the next hour

 IBM provides routes that leverage current and predicted traffic conditions:

 Time dependant VRPTW

 Solved using constraint programming (Laborie et al 2014, 2015)
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Typical round. 12 stops, 10 minutes per stops, 15.4km, 3 hours

total.
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Today, construction work on Garibaldi Street.  
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Forecasting traffic jams and computing a new fastest round. Round length is increased by 800m but it

takes the same time.  The original route would be 20 min longer and cost 8 € more.

For the city, this is one truck less in the traffic jam.
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Another round, we’re at (A), 10 more stops, 17km, 2h40 round 

left.
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Alert: an accident blocks Avenue Mermoz
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The new round avoids the forecast congested area.  

Again, the city is

happy to have one 

truck less in the 

congested area
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Visit locations

Route Optimization

Past routes

Past conditions

…
ML, Stats

Travel Time 

Predictive model

T
ra

in
in

g
 (

o
fl
in

e
)

O
n

lin
e

Predicted 

travel time
Optimization New routes

Current traffic

Travel Time 

Predictive model
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 Optimization has been used with a variety of data already beyond traditional enterprise 

transactions

 Geospatial and Time dependent data (logistics, transportation, scheduling, TSP)

 Multimedia

 Matthias Grundmann, Vivek Kwatra, Irfan Essa: Auto-Directed Video Stabilization with 

Robust L1 Optimal Camera Paths

 http://www.cc.gatech.edu/cpl/projects/videostabilization/

 http://googleresearch.blogspot.de/2011/06/auto-directed-video-stabilization-with.html

Variety

http://www.cc.gatech.edu/cpl/projects/videostabilization/
http://googleresearch.blogspot.de/2011/06/auto-directed-video-stabilization-with.html
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Optimization at scale 

 Optimization problems get larger and larger

 Two main drivers

 Traditional optimization problems, e.g. supply chain

 Companies are integrating

 Companies want to optimize the overall supply chain, directly using point of sale data to 

drive inventory optimization along the chain, and the manufacturing planning.

 Machine Learning

 Most ML algorithms are optimization problem: find the model that best fits training data

 We begin to see ML folks using mathematical programming techniques

• Boyd

• Bertsimas

Volume
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Optimization at scale 

 Optimization algorithms scale up

 Larger machines

 Shared memory parallel algorithms (multi 

threading)

 Limits of scaling up

 Sending data to a central compute machine 

introduces latency

 Memory can become a bottleneck

 Cost of machine goes up quickly

 Big data algorithms scale out

 Leverage large number of commodity 

hardware

 Move computation to where data is in a 

reliable way

• Duplicate storage

• Node failure resilience

 Hadoop/MapReduce

 Store data 3 times 

 Maps computation to data

 Reduce (aggregates) results in a meaningful 

way

Can we design scaling out optimization algorithms?
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Scaling out

 Distributing the search space: each worker gets a piece of it

 Distributed MIP

• CPLEX (2013) and Gurobi (2014) distributed mip solvers

• Shinano, Achterberg, Berthold, Heinz, Koch. ParaSCIP – a parallel extension of 

SCIP. 2010.

• Gautam Mitra, Ilan Hai, Mozafar Hajian (1997): "A distributed processing algorithm 

for solving integer programs using a cluster of workstations", Parallel Computing 23, 

733-753.

• Regin et al, Embarrasingly Parallel Search, 2013

• Matteo Fischetti, Michele Monaci, and Domenico Salvagnin, Self Split, 2013

 The above assumes the problem is duplicated. Can we split the problem data as well?

 Convex Optimization problems can be partitioned via ADMM (Boyd )

 Decomposition methods, eg Benders 

• (Nilsen 97)

• CPLEX 12.5.1 parmipopt example  (free for academics)

http://nbn-resolving.de/urn:nbn:de:0297-zib-11921
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Retail price optimization

For one product it is all about price elasticity

Price

S
a
le

s
 v

o
lu

m
e
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Cannibalization

Elasticity modeling captures many effect simultaneous and includes 

cannibalization, complementary, and competitive effects

Weekly
Circular

Temporary Price

Reductions

Gift
Cards

Trend Seasonality
Events and 

Holidays

Inventory

Home Page

Feature

Everyday

Price

In-Store

Displays

Market Data

http://www.officedepot.com/a/browse/network-hubs/N=5+536592/
http://www.officedepot.com/a/browse/network-hubs/N=5+536592/
http://www.officedepot.com/a/browse/network-hubs/N=5+536592/
http://www.officedepot.com/a/products/348037/Office-Depot-Brand-Copy-Paper-8/
http://www.officedepot.com/a/products/347005/Hammermill-Copy-Plus-MP-Paper-8/
http://www.officedepot.com/a/products/172039/Realspace-Caldina-II-Bonded-Leather-Mid/
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Identification and estimation of cross-effects is critical
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And demand for each of the 

complements will also shift…

What happens if I raise price 10% on one of my items?
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Multi-channel price elasticity analysis enables detailed 

understanding of both cross channel and competitive impact

 Online more elastic 

than stores

 Online price has 

non-neglible impact 

on store sales

 Amazon isn’t most 

important 

competitor

 Competitor 3 is 

negligible for this 

category

This is the gradient of the elasticity surface

Can be fed into a MIP
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Current prices

Price Optimization

Past sales

Past prices

…
ML, Stats

Price 

elasticity

T
ra

in
in

g
 (

o
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)

O
n

lin
e

Price 

elasticity
Predicted sales

Optimization New prices

Current prices
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Visit locations

Route Optimization

Past routes

Past conditions

…
ML, Stats

Travel Time 

Predictive model

T
ra

in
in

g
 (

o
fl
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e
)

O
n

lin
e

Predicted 

travel time
Optimization New routes

Current traffic

Travel Time 

Predictive model
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Available 

vehicles

Emergency vehicle pre positioning

Emergency

events

history
ML, Stats

Incident

Trends

T
ra

in
in

g
 (

o
fl
in

e
)

O
n

lin
e

Incident

Trends Emergencies

forecast
Optimization

Weather, 

time of week

Avail vehicles

Vehicle

positions
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Current state

(Small)

Optimization using predicted data

History

(big data) ML, Stats
Predictive 

model

T
ra

in
in

g
 (

o
ff
lin

e
)

O
n

lin
e

Predictive 

model Predicted data

(Small)
Optimization Decisions

Current state

(Small data)

This is 

uncertain 

data
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re·sil·ient1

adjective \ri-ˈzil-yənt\
a : capable of withstanding shock without permanent 
deformation or rupture
b : tending to recover from or adjust easily to 
misfortune or change

ve·rac·i·ty1

noun \və-ˈra-sə-tē\
: truth or accuracy

un·cer·tain1

adjective \ˌən-ˈsər-tən\
: not exactly known or decided : not definite or fixed
: not sure : having some doubt about something

“Resilient”
how decisions should be

“Veracity”
the data quality decision makers and 
decision software often assume

“Uncertain”
the actual data quality

Effect of data uncertainty on decision resilience

Assuming data veracity in the face of uncertainty leads to decision 
instability, as well as distrust in decision optimization technology.
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Uncertainty Toolkit: automated reformulations

Industry Solutions Joint Program

Robust / Stochastic approach 
Applicable 

model types

Resulting model 

types

Uncertainty 

characterization
Restrictions

Single-stage penalty approach

(Mulvey et al., 1995)

LP LP (or QP) Scenarios (finite) No uncertain data in objective 

function
MILP MILP (or MIQP)

Two-stage penalty approach

(Mulvey et al., 1995)

LP LP (or QP) Scenarios (finite) No uncertain data in objective 

function
MILP MILP (or MIQP)

Multistage Stochastic

(e.g. King & Wallace, 2012)

LP LP Scenarios (finite) None

MILP MILP

Safety margin approach with ellipsoidal 

uncertainty sets

(Ben-Tal & Nemirovski, 1999)

LP QCP Range No uncertain data in standalone 

parameters or 

equality constraints
MILP MIQCP

Safety margin approach with polyhedral 

uncertainty sets

(Bertsimas & Sim, 2004)

LP LP Range No uncertain data in standalone 

parameters or equality constraints
MILP MILP

Extreme Scenario approach

(Lee, 2014)

LP LP Range No uncertain data in variable 

coefficients
MILP MILP

Distributionally robust reformulation 

(Mevissen et al., 2013)

LP LP Scenarios Uncertainty in standalone 

parameters handled as penalty 

term in objective
MILP MILP
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Uncertainty Toolkit Decision Tree (automated)

Select the uncertain data item(s)

Is the uncertainty represented as 
(1) a set of scenarios, or 
(2) a data range?

Can some decisions change when you 
know the outcome of the uncertain data?

Select a risk measure to optimize:
(1) Expected value
(2) Worst-case performance
(3) Conditional Value at Risk

(2)(1)

Yes

No

Single-stage scenario-
based
• Single-stage penalty 

approach
• Distributionally

robust optimization

Can some constraints 
be violated?

No

Multi-stage scenario-based approaches
• Stochastic Constraint Programming
• Stochastic Mathematical Programming

Yes

For these constraints, do you want to use:
(1) Chance constraints (i.e. chance of violation < 5%)
(2) A violation penalr\ty?

(1)

(2)

Two-stage penalty approach

Is the uncertain data item 
a variable coefficient?Yes

Do you have correlated 
uncertain data items?

Yes

Safety margin with 
ellipsoidal uncertainty

Do you want to work with 
a budget of uncertainty?

Yes

Safety margin with 
polyhedral uncertainty

No

Extreme scenario 
approach
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Uncertainty Toolkit: automated reformulations

Industry Solutions Joint Program

Robust / Stochastic approach 
Applicable 

model types

Resulting model 

types

Uncertainty 

characterization
Restrictions

Single-stage penalty approach

(Mulvey et al., 1995)

LP LP (or QP) Scenarios (finite) No uncertain data in objective 

function
MILP MILP (or MIQP)

Two-stage penalty approach

(Mulvey et al., 1995)

LP LP (or QP) Scenarios (finite) No uncertain data in objective 

function
MILP MILP (or MIQP)

Multistage Stochastic

(e.g. King & Wallace, 2012)

LP LP Scenarios (finite) None

MILP MILP

Safety margin approach with ellipsoidal 

uncertainty sets

(Ben-Tal & Nemirovski, 1999)

LP QCP Range No uncertain data in standalone 

parameters or 

equality constraints
MILP MIQCP

Safety margin approach with polyhedral 

uncertainty sets

(Bertsimas & Sim, 2004)

LP LP Range No uncertain data in standalone 

parameters or equality constraints
MILP MILP

Extreme Scenario approach

(Lee, 2014)

LP LP Range No uncertain data in variable 

coefficients
MILP MILP

Distributionally robust reformulation 

(Mevissen et al., 2013)

LP LP Scenarios Uncertainty in standalone 

parameters handled as penalty 

term in objective
MILP MILP

Q: How do I know which of these methods to use?

A: The Uncertainty Toolkit will decide automatically based on your input 
into the Consultant’s Wizard
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5 steps to resilience with the Uncertainty Toolkit

1. Define 
decision model

2. Characterize 
uncertainty

3. Generate 
uncertain model

4. Generate 
decisions

5. Analyze 
trade-offs

• Create optimization model with IBM CPLEX Studio
• Some modeling skill required, or existing assets
• Embed in IBM Decision Optimization Center

• OR consultant’s “wizard”:  7 screens
• Defines uncertainty, scenario generation, risk measures

• Built-in automated reformulation, based on steps 1 and 2
• No modeling knowledge required
• “Robustification” (make the original model robust to change)

• Business user’s “wizard”
• Automated solution generation
• Automated scenario comparison

• Built-in visual analytics
• Analyze KPI trade-offs across multiple plans & scenarios

“Steve” the IT expert, & 
“Keith” the OR consultant

“Anne” the business user

Industry Solutions Joint 

Program - IBM Confidential
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Stable decisions, stable profits

 Examples

• Supply chain planning for a motorcycle vendor 

2% increase in profits vs. deterministic optimization

• Inventory optimization for IBM Microelectronics Division

Greater than 7x increase in feasibility vs. deterministic optimization

 Case studies

• Energy cost minimization for Cork County Council

Estimated 30% value-add in cost reduction vs. deterministic optimization

• Leakage reduction for Dublin City Council

Estimated 10 times increased stability vs. deterministic optimization

• Other benefits

• Automated toolkit reduces dependence on PhD-level experts & statistical data

• Visualize trade-off between multiple KPIs across multiple scenarios and plans
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Optimization and Big Data: Lots of opportunities!

Volume Variety Velocity Veracity

Optimation at 
Scale

Distributed 
computing

Decomposition 
methods

Data in Many 
Forms

Geospacial

Video

Data in Motion

Online optimization 
using predicted data

Data Uncertainty

Robuts optimization

Stochastic 
Programming


