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Introduction

• As a machine learner, the first thing I tell all my students is: 
 
 
                                    “Have a look at your data!” 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Introduction

• As a machine learner, the first thing I tell all my students is: 
 
 
                                    “Have a look at your data!” 
 

• Good visualizations leverage the human visual system to:


• Recognize patterns, spot trends, and identify outliers 

• Replace cognitive calculations by perceptual inferences


• Engage more diverse audiences, etc.

3



Introduction

• Creating a good visualization requires a series of nuanced judgements:


• What is the task? What type of data do I have? What visual encoding to use?
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Introduction

• Creating a good visualization requires a series of nuanced judgements:


• What is the task? What type of data do I have? What visual encoding to use? 
 

• There are some rules of thumb that can help in selecting visual encodings:


• For instance, spatial position leads to most accurate coding of numeric data 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Introduction

• Creating a good visualization requires a series of nuanced judgements:


• What is the task? What type of data do I have? What visual encoding to use? 
 

• There are some rules of thumb that can help in selecting visual encodings:


• For instance, spatial position leads to most accurate coding of numeric data 
 

• Making good visualizations requires a number of iterations
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Time series: Index chart

• Displays relative changes instead of actual values:
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Time series: Stacked graph

• Shows data in aggregate, highlighting relative changes in variables: 
 

• Cannot show negative values; hard to interpret trends on top of other curves
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Real-valued data: Scatter plot matrix

• Allows one to quickly spot correlations (if number of variables limited):
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Real-valued data: Parallel coordinates

• Each vertical line corresponds to a variable:

cylinders displacement weight horsepower acceleration mpg year

3 68 cubic inch 1613 lbs 46 hp 8 (0 to 60mph) 9 miles/gallon 70

8 455 cubic inch 5140 lbs 230 hp 25 (0 to 60mph) 47 miles/gallon 82
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Geographical data: Chloropleth map

• Visualizes data aggregated by geographic region: 
 

• Disadvantage: perception may be altered by area of geographic region
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Hierarchies: Treemap / Enclosure diagram

• Effective way to visualize tree with a single variable at each node:
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Networks: Arc diagram

• Easy to verify cliques and bridges, but has seriation problem:
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Introduction

• Nice overview of techniques is given in “A Tour of the Visualization Zoo”
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Introduction

• Nice overview of techniques is given in “A Tour of the Visualization Zoo” 

• A plethora of visualization tools / frameworks exist, for instance:


• d3.js is a popular framework for building web-based visualization


• VTK is commonly used for 3D and scientific visualization


• Tools like Matlab, R, Mathematica, and SPSS also provide various visualization tools


• SynerScope is a Dutch visual-analytics product you will hear more about soon
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Introduction

• What does a machine learner see when he looks at this?
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• What does a machine learner see when he looks at this?
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Introduction

• What does a machine learner see when he looks at this?
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Visualizations only show a few 
variables at a time!  

 
How can we visualize Big Data with 

lots of variables?



Visualizing data by constructing maps



Introduction

• Compute dissimilarity of all pairs of records in the database:

Ams 800 1 1 0

Rot 700 3 0 1

Gro 200 1 0 0

Maa 100 0 0 1

Zwo 100 1 0 1
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Introduction

• Compute dissimilarity of all pairs of records in the database:

Ams 800 1 1 0

Rot 700 3 0 1

Gro 200 1 0 0

Maa 100 0 0 1

Zwo 100 1 0 1

Ams Rot Gro Maa Zwo
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Maa 0 187
Zwo 0

21



Introduction

• Compute dissimilarity of all pairs of records in the database:


• Exact way in which dissimilarities are computed depends on problem at hand

Ams 800 1 1 0

Rot 700 3 0 1

Gro 200 1 0 0

Maa 100 0 0 1

Zwo 100 1 0 1

Ams Rot Gro Maa Zwo
Ams 0 58 147 178 82
Rot 0 202 146 128
Gro 0 270 85
Maa 0 187
Zwo 0
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Introduction

• Build map in which each point represents a database record, and distances 
between points reflect similarities in the data:

Ams Rot Gro Maa Zwo
Ams 0 58 147 178 82
Rot 0 202 146 128
Gro 0 270 85
Maa 0 187
Zwo 0
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Introduction

• Build map in which each point represents a database record, and distances 
between points reflect similarities in the data:

Ams Rot Gro Maa Zwo
Ams 0 58 147 178 82
Rot 0 202 146 128
Gro 0 270 85
Maa 0 187
Zwo 0

Amsterdam

Rotterdam

Maastricht

Groningen

Zwolle
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How to build a map from a distance matrix?



Principal components analysis

• Principal components analysis (PCA) maps the data onto a linear subspace, 
such that the variance of the projected data is maximized
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Principal components analysis

• Principal components analysis (PCA) maps the data onto a linear subspace, 
such that the variance of the projected data is maximized  

• So PCA performs the following maximization:

27

max

kwk2=1
var(wTX)



• Principal components analysis (PCA) maps the data onto a linear subspace, 
such that the variance of the projected data is maximized

Principal components analysis

w

T
x
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Principal components analysis

• The objective is to maximize variance: 
 
 

max

kwk2=1
var(wTX)
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Principal components analysis

• The objective is to maximize variance:


• Assuming zero-mean data: 
 
 

max

kwk2=1
var(wTX)

var(wTX) = [wTXXTw] = [wTCw]

30



Principal components analysis

• The objective is to maximize variance:


• Assuming zero-mean data: 
 


• Enforce constraint using Lagrange multiplier: 
 
 

max

kwk2=1
var(wTX) = max

w,�
wTCw � �(1�wTw)

max

kwk2=1
var(wTX)

var(wTX) = [wTXXTw] = [wTCw]
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Principal components analysis

• The objective is to maximize variance:


• Assuming zero-mean data: 
 


• Enforce constraint using Lagrange multiplier: 

• Set gradient with respect to      to zero: 
 
 

max

kwk2=1
var(wTX) = max

w,�
wTCw � �(1�wTw)

max

kwk2=1
var(wTX)

Cw � �w = 0

Cw = �w

var(wTX) = [wTXXTw] = [wTCw]

w

32



Classical (multi-dimensional) scaling

• PCA is identical to the following classical scaling algorithm:


• Obtain a (squared) Euclidean distance matrix for your data
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Classical (multi-dimensional) scaling

• PCA is identical to the following classical scaling algorithm:


• Obtain a (squared) Euclidean distance matrix for your data


• Perform a “centering” operation that essentially computes the inner product 
matrix of the original data (note that                                                      )

34

kx� yk2 = kxk2 + kyk2 � 2x>
y



Classical (multi-dimensional) scaling

• PCA is identical to the following classical scaling algorithm:


• Obtain a (squared) Euclidean distance matrix for your data


• Perform a “centering” operation that essentially computes the inner product 
matrix of the original data (note that                                                      )


• Compute the principal eigenvectors of the resulting matrix

35
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Classical (multi-dimensional) scaling

• PCA is identical to the following classical scaling algorithm:


• Obtain a (squared) Euclidean distance matrix for your data


• Perform a “centering” operation that essentially computes the inner product 
matrix of the original data (note that                                                      )


• Compute the principal eigenvectors of the resulting matrix 

• These eigenvectors are identical to the projected data computed by PCA:


• Identity is due to a relation between eigenvectors of inner and outer products

36
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y



Principal components analysis
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Principal components analysis
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What distances to preserve?

• PCA is mainly concerned with preserving large pairwise distances in the map
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What distances to preserve?

• PCA is mainly concerned with preserving large pairwise distances in the map


• Large pairwise distances, however, are relatively unimportant in visualizations


• Do we really care exactly how dissimilar zeros and ones are?
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t-Distributed Stochastic Neighbor Embedding

• Compute “local” pairwise similarities based on pairwise distances:

pij =
exp(�kxi � xjk2/2�2

)P
k

P
l 6=k exp(�kxk � xlk2/2�2

)

Data
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t-Distributed Stochastic Neighbor Embedding

• Compute “local” pairwise similarities based on pairwise distances:
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t-Distributed Stochastic Neighbor Embedding

• Compute “local” pairwise similarities based on pairwise distances:

pij =
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)

Data
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t-Distributed Stochastic Neighbor Embedding

• Compute “local” pairwise similarities based on pairwise distances:

pij =
exp(�kxi � xjk2/2�2

)P
k

P
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)

Data
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t-Distributed Stochastic Neighbor Embedding

• Compute “local” pairwise similarities based on pairwise distances:

pij =
exp(�kxi � xjk2/2�2

)P
k

P
l 6=k exp(�kxk � xlk2/2�2

)

Data
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t-Distributed Stochastic Neighbor Embedding

• Measure pairwise similarities between corresponding points in the map:

qij =
(1 + �yi � yj�2)�1

�
k

�
l �=k(1 + �yk � yl�2)�1

Map
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t-Distributed Stochastic Neighbor Embedding

• Measure pairwise similarities between corresponding points in the map:
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t-Distributed Stochastic Neighbor Embedding
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t-Distributed Stochastic Neighbor Embedding

• Measure pairwise similarities between corresponding points in the map:

qij =
(1 + �yi � yj�2)�1

�
k
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Map
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t-Distributed Stochastic Neighbor Embedding

• Move points around to minimize: KL(P ||Q) =
�

i

�

j �=i

pij log
pij

qij

qij =
(1 + �yi � yj�2)�1

�
k

�
l �=k(1 + �yk � yl�2)�1

Map
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t-Distributed Stochastic Neighbor Embedding

• Kullback-Leibler divergence: KL(P ||Q) =
�

i

�

j �=i

pij log
pij

qij
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t-Distributed Stochastic Neighbor Embedding

• Kullback-Leibler divergence:


• Large        modeled by small       ? Big penalty!

KL(P ||Q) =
�

i

�

j �=i

pij log
pij

qij

qijpij
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t-Distributed Stochastic Neighbor Embedding

• Kullback-Leibler divergence:


• Large        modeled by small       ? Big penalty!


• Small        modeled by large       ? Small penalty!

KL(P ||Q) =
�

i

�

j �=i

pij log
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t-Distributed Stochastic Neighbor Embedding

• Kullback-Leibler divergence:


• Large        modeled by small       ? Big penalty!


• Small        modeled by large       ? Small penalty!


• Hence, t-SNE mainly preserves local similarity structure of the data

KL(P ||Q) =
�

i

�

j �=i

pij log
pij

qij

qij

qij

pij

pij
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Why a Student-t distribution?

• Why do we define map similarities as                                                  ?qij / (1 + kyi � yjk2)�1
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Why a Student-t distribution?

• Why do we define map similarities as                                                  ?


• Suppose data is intrinsically high-dimensional

qij / (1 + kyi � yjk2)�1
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Why a Student-t distribution?

• Why do we define map similarities as                                                  ?


• Suppose data is intrinsically high-dimensional


• We try to model the local structure of this data in the map

qij / (1 + kyi � yjk2)�1
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Why a Student-t distribution?

• Why do we define map similarities as                                                  ?


• Suppose data is intrinsically high-dimensional


• We try to model the local structure of this data in the map


• Result: dissimilar points have to be modeled as too far apart in the map!

qij / (1 + kyi � yjk2)�1
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Visualizing mass spectrometry data

* Figure adopted from: J. Fonville et al., Anal. Chem. 85(3), 2013.

129 Results will be presented for a range of biological samples to
130 illustrate its generic applicability, and we demonstrate how our
131 approach can be routinely applied to existing and legacy data sets,
132 including formalin fixed samples and samples acquired with fast
133 MSI methodology.33−35

134■ MATERIALS AND METHODS

135Data Sets. For the formalin-fixed rat brain sample, the data

136acquisition and processing have been previously described;15,36

137the experimental and processing details for three consecutive

Figure 2. RGB color-coding of hyperspectral modeling results. (a) Schematic of the anatomy for the rat brain that was subjected to MALDI MSI after
formalin fixation; scale bar = 2mm. Key: CB = cerebellum; CC = corpus callosum; CTX = cerebral cortex; DCN= deep cerebellar nuclei; F = fornix; HP
= hippocampus; HY = hypothalamus; M = medulla; MD = midbrain; OC = optic chiasm; P = pons; PG = pituitary gland; S = septum; TH = thalamus;
3V = third ventricle; 4V = fourth ventricle. (b) Three randomly chosen single m/z images (m/z 791.4, 839.6, and 865.6). (c) An overlay of the three
images in b is shown, through combining the individual red, green, and blue intensities for each pixel as additive colors (white pixels consist of high levels
of red, green, and blue).(d) PCA space: the location of a pixel (each pixel is represented by a dot) on principal component 1 (PC 1), PC 2 and PC 3
determines the intensity for red, green and blue (RGB), respectively. (e) The pixels contained in the box in the PCA scores plot in d are shown in color.
(f) The image after color-coding the pixels with the RGB-scheme shown in d. (g) SOM space: a unique color for each SOM unit is assigned with red,
green and blue representing the location along the three dimensions of the 3D SOMmap (20× 10× 5). (h) The pixels that were mapped in the 3× 3×
1 square section of the SOMmap highlighted in g can be shown in the original image with the same color-coding. (i) The complete image with SOM-
based RGB color-coding. (j) t-SNE space: the scatter plot of pixels in the t-SNE model shows clear clustering patterns, and pixels are RGB color-coded
based on their positions on the three axes. (k) The cluster selected with the box in j is shown as colored pixels in the image. (l) The image after color-
coding the pixels with RGB values determined by the t-SNE manifold learning method.

Analytical Chemistry Article

dx.doi.org/10.1021/ac302330a | Anal. Chem. XXXX, XXX, XXX−XXXC

129 Results will be presented for a range of biological samples to
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132 including formalin fixed samples and samples acquired with fast
133 MSI methodology.33−35
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135Data Sets. For the formalin-fixed rat brain sample, the data

136acquisition and processing have been previously described;15,36

137the experimental and processing details for three consecutive
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formalin fixation; scale bar = 2mm. Key: CB = cerebellum; CC = corpus callosum; CTX = cerebral cortex; DCN= deep cerebellar nuclei; F = fornix; HP
= hippocampus; HY = hypothalamus; M = medulla; MD = midbrain; OC = optic chiasm; P = pons; PG = pituitary gland; S = septum; TH = thalamus;
3V = third ventricle; 4V = fourth ventricle. (b) Three randomly chosen single m/z images (m/z 791.4, 839.6, and 865.6). (c) An overlay of the three
images in b is shown, through combining the individual red, green, and blue intensities for each pixel as additive colors (white pixels consist of high levels
of red, green, and blue).(d) PCA space: the location of a pixel (each pixel is represented by a dot) on principal component 1 (PC 1), PC 2 and PC 3
determines the intensity for red, green and blue (RGB), respectively. (e) The pixels contained in the box in the PCA scores plot in d are shown in color.
(f) The image after color-coding the pixels with the RGB-scheme shown in d. (g) SOM space: a unique color for each SOM unit is assigned with red,
green and blue representing the location along the three dimensions of the 3D SOMmap (20× 10× 5). (h) The pixels that were mapped in the 3× 3×
1 square section of the SOMmap highlighted in g can be shown in the original image with the same color-coding. (i) The complete image with SOM-
based RGB color-coding. (j) t-SNE space: the scatter plot of pixels in the t-SNE model shows clear clustering patterns, and pixels are RGB color-coded
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PCA t-SNE
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A mass spectrum is a plot of the ion 
signal as a function of the mass-to-
charge ratio. It helps identify the amount 
and type of chemicals present in a 
sample.



Visualizing gene expression data

* Joint work with the LUMC and the Allen Brain Institute.
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Visualizing gene expression data

• Visualizing human embryo data and yeast metabolic cycle data:

recognized in the initial study (black data points in
Figure 4c). Together, these analyses indicated that
t-SNE maps provide an effective visualization of gene ex-
pression data and allow the identification of groups of
genes with correlated expression profiles.

Comparison of PCA projections and t-SNE maps

We compared t-SNE mappings to PCA (Figure 1c and d).
Inspection of a plot of the first two principal components
(PCs) of Data set 1 revealed an overall similarity with the
t-SNE map (Figure 1c). The first PC separated genes that
were expressed at the earliest time points and then
down-regulated from genes that were initially low and

then up-regulated during the developmental time course,
whereas the second PC appeared to reflect the time at
which each gene underwent its expression transition.
Despite this overall similarity, however, PCA provided less
resolution than t-SNE and failed to produce the clear visu-
alization of expression behaviour that the t-SNE
mappings offered. In the case of Data set 2, the first two
PCs produced a ring-like structure similar to the one in
our t-SNE mapping (Figure 1d). As for the t-SNE plot,
the three main periodic behaviours were apparent.
However, it proved difficult to extract information about
the deeper substructure of the data suggesting that t-SNE
mappings perform better than PCA.

(a) (b)

(c) (d)
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Figure 1. t-SNE mappings and PCA of two high-dimensional gene expression data sets. (a and b) t-SNE maps of 2148 probe sets identified
as differentially expressed between six stages of human embryogenesis (10) (a); and of 3656 probe sets with periodic behaviour over 36 cycles
in the yeast metabolic cycle described by Tu et al. (12) (b). Selected groups of neighbouring data points are highlighted and the expression
behaviour (plotted as z-scores) of the selected genes over all conditions shown in the corresponding colours. S9–S14: carnegie stages 9–14;
T0–T36: time points 0–36. (c and d) Plots of the values of the first and second principal components of the same probe sets used to produce the
t-SNE maps in (a and b).
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 * Figure adopted from: N. Bushati et al., Nucleic Acids Res. 39(17), 2011.
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Human embryo data


Two groups: one set of genes 
gets up-regulated and one set of 
genes gets down-regulated. (6D)

Yeast metabolic cycle data


Cyclic behavior causes ring-like 
structure. (36D)



Visualizing flowcytometry data

• Flowcytometry data (= blood cell measurements) of leukemic and healthy kids:

Healthy Healthy Leukemia

* Joint work with SickKids Hospital Toronto.
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COFFEE!



Visualizing movies

• Netflix has a large collection of user-movie ratings stored in a rating matrix

movies

us
er

s
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Visualizing movies

• Netflix has a large collection of user-movie ratings stored in a rating matrix


• Decompose the rating matrix to obtain user features and movie features:

=

movies

us
er

s

us
er

s

movies

x
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Indiana Jones, Final Fantasy, 
Raiders of the Lost Ark, Star Wars 

Friends

Star Trek



What about Big Data?

• All the approaches I presented so far scale quadratically (or worse):


• How do you make maps of data with lots of instances / records?


• Trick 1: Construct sparse matrix (approximate) input similarities


• Trick 2: Approximate interactions between points in map during learning
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Computing high-dimensional similarities efficiently



Finding nearest neighbors

• What is the most common value in the input similarity matrix P?
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Finding nearest neighbors

• What is the most common value in the input similarity matrix P? Infinitesimal!
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Finding nearest neighbors

• What is the most common value in the input similarity matrix P? Infinitesimal!


• Good approximation: only compute         for pairs of near neighbors


• Finding near neighbors (approximately) can be performed very efficiently:


• Using a trick called locality-sensitive hashing


• Using clever data structures such as vantage-point trees

74
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Locality-sensitive hashing

• LSH uses hashing functions that take “location” of object in consideration:
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Locality-sensitive hashing

• LSH uses hashing functions that take “location” of object in consideration: 

• Example of a locality-sensitive hashing function for points in a space:


• Project the point onto a random subspace; divide result into 4 buckets (2 bits)
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Locality-sensitive hashing

• Mathematically, we could express this locality sensitive hash function as:

h(x) =

8
>><

>>:

0 if w

>
x  �⌧

1 if �⌧ < w

>
x  0

2 if 0 < w

>
x  ⌧

3 if w

>
x > ⌧
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Locality-sensitive hashing

• Mathematically, we could express this locality sensitive hash function as:

h(x) =

8
>><

>>:

0 if w

>
x  �⌧

1 if �⌧ < w

>
x  0

2 if 0 < w

>
x  ⌧

3 if w

>
x > ⌧

random  
projection 78



Locality-sensitive hashing

• Mathematically, we could express this locality sensitive hash function as:

h(x) =

8
>><

>>:

0 if w

>
x  �⌧

1 if �⌧ < w

>
x  0

2 if 0 < w

>
x  ⌧

3 if w

>
x > ⌧

random  
projection

threshold 
parameter 79



Locality-sensitive hashing

• Retrieval of nearest neighbors of a query point q using LSH works as follows:

Motivation Space Partitioning Locality-Sensitive Hashing References

lsh design

Algorithm with One Projection

I initialization:
1. create hash table and

projection (lsh)
function

2. insert all data points

I query:
1. compute

corresponding hash
bin of query point

2. retrieve all entries of
hash bin ! nearest
neighbors

Nearest neighbor search in high dimensions Ingo Bressler, Matthias Hausburg, Ronald Richter
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Locality-sensitive hashing

• Retrieval of nearest neighbors of a query point q using LSH works as follows:


• Hash all data points using 
locality-sensitive hash

Motivation Space Partitioning Locality-Sensitive Hashing References

lsh design

Algorithm with One Projection

I initialization:
1. create hash table and

projection (lsh)
function

2. insert all data points

I query:
1. compute

corresponding hash
bin of query point

2. retrieve all entries of
hash bin ! nearest
neighbors

Nearest neighbor search in high dimensions Ingo Bressler, Matthias Hausburg, Ronald Richter
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Locality-sensitive hashing

• Retrieval of nearest neighbors of a query point q using LSH works as follows:


• Hash all data points using 
locality-sensitive hash


• Compute locality-sensitive 
hash of query point

Motivation Space Partitioning Locality-Sensitive Hashing References

lsh design

Algorithm with One Projection

I initialization:
1. create hash table and

projection (lsh)
function

2. insert all data points

I query:
1. compute

corresponding hash
bin of query point

2. retrieve all entries of
hash bin ! nearest
neighbors

Nearest neighbor search in high dimensions Ingo Bressler, Matthias Hausburg, Ronald Richter
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Locality-sensitive hashing

• Retrieval of nearest neighbors of a query point q using LSH works as follows:


• Hash all data points using 
locality-sensitive hash


• Compute locality-sensitive 
hash of query point


• All data points in the bucket 
are candidate near neighbors

Motivation Space Partitioning Locality-Sensitive Hashing References

lsh design

Algorithm with One Projection

I initialization:
1. create hash table and

projection (lsh)
function

2. insert all data points

I query:
1. compute

corresponding hash
bin of query point

2. retrieve all entries of
hash bin ! nearest
neighbors

Nearest neighbor search in high dimensions Ingo Bressler, Matthias Hausburg, Ronald Richter

83



Locality-sensitive hashing

• Retrieval of nearest neighbors of a query point q using LSH works as follows:


• Hash all data points using 
locality-sensitive hash


• Compute locality-sensitive 
hash of query point


• All data points in the bucket 
are candidate near neighbors


• Compute distances to candidate 
points to find true nearest neighbors

Motivation Space Partitioning Locality-Sensitive Hashing References

lsh design

Algorithm with One Projection

I initialization:
1. create hash table and

projection (lsh)
function

2. insert all data points

I query:
1. compute

corresponding hash
bin of query point

2. retrieve all entries of
hash bin ! nearest
neighbors

Nearest neighbor search in high dimensions Ingo Bressler, Matthias Hausburg, Ronald Richter
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Locality-sensitive hashing

• LSH projections may be “unlucky” in two main ways:
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Locality-sensitive hashing

• LSH projections may be “unlucky” in two main ways:

Motivation Space Partitioning Locality-Sensitive Hashing References

lsh design

Problems with One Projection

I problem 1:

I ”unlucky” projection

I distance information lost

I all points are hashed to
the same bin

I problem 2:

I ”unlucky” quantization

I aliasing e↵ect

I close points are hashed
to di↵erent bins

Nearest neighbor search in high dimensions Ingo Bressler, Matthias Hausburg, Ronald Richter

“Collision”: Distant points  
hashed in the same bucket
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Locality-sensitive hashing

• LSH projections may be “unlucky” in two main ways:

Motivation Space Partitioning Locality-Sensitive Hashing References

lsh design

Problems with One Projection

I problem 1:

I ”unlucky” projection

I distance information lost

I all points are hashed to
the same bin

I problem 2:

I ”unlucky” quantization

I aliasing e↵ect

I close points are hashed
to di↵erent bins

Nearest neighbor search in high dimensions Ingo Bressler, Matthias Hausburg, Ronald Richter

Motivation Space Partitioning Locality-Sensitive Hashing References

lsh design

Problems with One Projection

I problem 1:

I ”unlucky” projection

I distance information lost

I all points are hashed to
the same bin

I problem 2:

I ”unlucky” quantization

I aliasing e↵ect

I close points are hashed
to di↵erent bins

Nearest neighbor search in high dimensions Ingo Bressler, Matthias Hausburg, Ronald Richter

“Collision”: Distant points  
hashed in the same bucket

“Split”: Nearby points 
hashed in different buckets
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Locality-sensitive hashing

• Using multiple projections in an LSH resolves “collisions”:

Motivation Space Partitioning Locality-Sensitive Hashing References

lsh design

Solution to ”unlucky” Projection

I use set of hash tables
with di↵erent lsh
functions

I functions are randomly
created ! projection
lines are uniformly
distributed in space

I combine lsh functions to
a vector

I close points hash to
equal vectors

Nearest neighbor search in high dimensions Ingo Bressler, Matthias Hausburg, Ronald Richter
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Locality-sensitive hashing

• Using multiple projections in an LSH resolves “collisions”: 
 

• The LSH is given by a concatenation of all individual buckets

Motivation Space Partitioning Locality-Sensitive Hashing References

lsh design

Solution to ”unlucky” Projection

I use set of hash tables
with di↵erent lsh
functions

I functions are randomly
created ! projection
lines are uniformly
distributed in space

I combine lsh functions to
a vector

I close points hash to
equal vectors

Nearest neighbor search in high dimensions Ingo Bressler, Matthias Hausburg, Ronald Richter
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Locality-sensitive hashing

• Using multiple separate hash tables when doing LSH resolves “splits”:

Motivation Space Partitioning Locality-Sensitive Hashing References

lsh design

Solution to ”unlucky” Quantization

I use several independent
sets of hash tables

I if vectors of close points
match in any set of hash
tables, then they are near
neighbors

Nearest neighbor search in high dimensions Ingo Bressler, Matthias Hausburg, Ronald Richter

Motivation Space Partitioning Locality-Sensitive Hashing References

lsh design

Solution to ”unlucky” Quantization

I use several independent
sets of hash tables

I if vectors of close points
match in any set of hash
tables, then they are near
neighbors

Nearest neighbor search in high dimensions Ingo Bressler, Matthias Hausburg, Ronald Richter

+

90



Locality-sensitive hashing

• Using multiple separate hash tables when doing LSH resolves “splits”: 
 

• Points are candidate neighbors if candidate in any of the hash tables

Motivation Space Partitioning Locality-Sensitive Hashing References

lsh design

Solution to ”unlucky” Quantization

I use several independent
sets of hash tables

I if vectors of close points
match in any set of hash
tables, then they are near
neighbors

Nearest neighbor search in high dimensions Ingo Bressler, Matthias Hausburg, Ronald Richter

Motivation Space Partitioning Locality-Sensitive Hashing References

lsh design

Solution to ”unlucky” Quantization

I use several independent
sets of hash tables

I if vectors of close points
match in any set of hash
tables, then they are near
neighbors

Nearest neighbor search in high dimensions Ingo Bressler, Matthias Hausburg, Ronald Richter
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Locality-sensitive hashing

• Efficient algorithm to compute a sparse P-matrix:


• Load all data in a locality-sensitive hash


• For each data point, retrieve the candidate near neighbors from the LSH


• For these candidates, compute the P-value using a Gaussian kernel
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Constructing maps efficiently



Gradient interpretation

• We can interpret building a t-SNE map as a simulation of an N-body system:

A
B

C

D

E

F
G

H I

@C

@yi
= 4

X

j 6=i

(pij � qij)(1 + kyi � yjk2)�1(yi � yj)
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Gradient interpretation

• We can interpret building a t-SNE map as a simulation of an N-body system:

A
B

C

D

E

F
G

H I

@C

@yi
= 4

X

j 6=i

(pij � qij)(1 + kyi � yjk2)�1(yi � yj)

spring
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Gradient interpretation

• We can interpret building a t-SNE map as a simulation of an N-body system:

A
B

C

D

E

F
G

H I

@C

@yi
= 4

X

j 6=i

(pij � qij)(1 + kyi � yjk2)�1(yi � yj)

exertion / compression
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A
B

C

D

E

F
G

H I

• We can interpret building a t-SNE map as a simulation of an N-body system:

Gradient interpretation

@C

@yi
= 4

X

j 6=i

(pij � qij)(1 + kyi � yjk2)�1(yi � yj)
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Barnes-Hut approximation

• Many of the pairwise interactions between points are very similar:

A
B

C

D

E

F
G

H I
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Barnes-Hut approximation

• Approximate such similar interactions by a single interaction:

A
B

C

D

E

F
G

H I
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Barnes-Hut approximation

• Approximate such similar interactions by a single interaction:

A
B

C

D

E

F
G

H I

3x
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Barnes-Hut-SNE

• Split up the t-SNE gradient into two main parts: 
 

• Compute                                     exactly (possible because P-values are sparse)


• Approximate                                   and      with two Barnes-Hut algorithms

@C

@yi
= 4(Fattr � Frep) = 4

0

@
X

j 6=i

pijqijZ(yi � yj)�
X

j 6=i

q2ijZ(yi � yj)

1

A

Z

X

j 6=i

pijqijZ(yi � yj)

X

j 6=i

q2ijZ
2(yi � yj)
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Barnes-Hut-SNE

A
B

C

D

E

F
G

H I

A B C D E F G H I

?
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Barnes-Hut-SNE
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< ✓
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Barnes-Hut-SNE
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Barnes-Hut-SNE
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Barnes-Hut-SNE
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Barnes-Hut-SNE
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* Word map made by Joseph Turian at University of Montreal.



Conclusions

• Visualizing high-dimensional data in maps may lead to insight into “Big Data”
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Conclusions

• Visualizing high-dimensional data in maps may lead to insight into “Big Data”


• t-SNE is an effective and efficient algorithm to make such maps
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Conclusions

• Visualizing high-dimensional data in maps may lead to insight into “Big Data”


• t-SNE is an effective and efficient algorithm to make such maps


• t-SNE has already been successfully applied in a range of domains:


• Bioinformatics, computer security, climate research, cancer research, etc.
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Try it out yourself! Code and papers are available on http://lvdmaaten.github.io/tsne  
Shorter version of this talk is available on: http://www.youtube.com/user/GoogleTechTalks/videos

QUESTIONS?


