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Predictability and stability is critical for the well functioning 
of social systems. 

Producers and consumers need reliable prices in order to plan their activities. 

Reliable driving patterns are important for  proper delivery of goods, proper 
planning of roads by traffic engineers, transportation of passengers, etc.. 

Reliable demand and supply  is important in health delivery systems, in the 
provision of new technology, etc. etc.. 

Stability means that in every period of play, once the period’s outcome is 
observed, the players have no incentives to deviate from the plans that lead to 
the outcome, (with hindsight knowledge of the outcome, they would have no 
regret over their choices).  This is stability within a period, which does not 
imply that the play is constant over different periods. 
 
When such hindsight stability fails, in situations where players are able to 
revise their choices, the period’s outcome may become chaotic.  For example, 
consider the game of driving during the rush hour. 
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Part A: Motivation and Review, Kalai, Econometrica (2004)  
 
Review hindsight stability in one shot games with independent types,  

Part C: Learning and hindsight Stability.  

This presentation 

Part B: Markov perfect equilibrium in an imagined-continuum 
model of a repeated population game: A simple 𝜖𝜖-fully rational 
equilibrium, in a game which is too complex to play otherwise  

Part D: Price stability in a repeated Cournot game. 

New material,  Kalai and Shmaya (2013 and 2014) 
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Part A: Motivation and Review, Kalai, Econometrica (2004)  
 
Review hindsight stability in one shot games with independent types,  

This presentation 

Example: hindsight instability in small vs large coordination game 



Example 

Players: i = 1,2,…,n;   each chooses an action: 𝑎𝑎𝑖𝑖 = PC   or   𝑎𝑎𝑖𝑖= M   

Player’s types: iid  Pr(𝑡𝑡𝑖𝑖 = PC) = Pr(𝑡𝑡𝑖𝑖 = M) = .50 

Individual’s payoff: 𝑢𝑢𝑖𝑖= prop𝑗𝑗≠𝑖𝑖  (𝑎𝑎𝑗𝑗=𝑎𝑎𝑖𝑖)1/3 + 0.2δ𝑎𝑎𝑖𝑖=𝑡𝑡𝑖𝑖, 

Choose your favorite computer (ai= ti) is a 𝑁𝑁𝑎𝑎𝑁𝑁𝑁 equilibrium.  
It is “asymptotically hindsight stable” (as the number of players increases). 

Even more, it is “asymptotically structurally robust”: it remains an equilibrium 
in all extensive-game alterations that (1) start with the same initial information, (2) 
preserve the players’ strategic possibilities and (3) do not alter the players’ payoffs. 

and, more generally, under general dynamic play: revision of choices, 
information leakage, cheap talk, delegation possibilities, and more.. 

 i.e., (the proportion of opponents he matches)1/3  
     + 0.2 if he chooses his computer type (0 otherwise). 
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Simultaneous-move Computer choice game: independent types 

For example, it survives under sequential play (no herding), 



Modelling Partially-specified games 

Students choosing computers on the web 
Instructions: “Go to web site xyz before Friday and click in your 
choice PC or M.”    Types, choices, and payoffs as before. 

Need to know: who are the players? the order of play?  monitoring? 
communications? commitments? delegations? revisions?... Impossible 

But under structural robustness: any equilibrium of the one-shot 
simultaneous-move game, (e.g., choose your favorite computer) remains 
equilibrium no matter how you answer the above. 

          Price formation in   
Shapley Shubik market games 

Hindsight stability →  price stability 

6 



All Nash equilibria  
are asymptotically  
hindsight stable 

many players, 
semi-anonymity,  
continuity & 
Independent types 

All Nash equilibria  
are asymptotically  
structurally robust 7 

Price stability 
in market 
games  

Kalai Econometrica (2004): In n-player one-shot 
simultaneous-move Bayesian games with independent types: 
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Hindsight stability fails with correlated types 
Computer choice game with correlated types. 
Players: i = 1,2,…,n, each chooses PC or M. 

Unknown state of nature: the computer with better overall features is: 
 

                                           s = PC  or  s = M  with prob .50 , .50 . 

Payoffs: as before. 

Equilibrium: everybody chooses her favorite computer. 
It is not hindsight stable when n is large. 

8 

Player types: iid conditional on s:  Pr 𝑡𝑡𝑖𝑖 = 𝑁𝑁 = 0.7 , Pr 𝑡𝑡𝑖𝑖 = 𝑁𝑁𝑐𝑐 = 0.3 .  

But notice: after the one-shot play they all know the state of 
nature and now their types are (conditionally) independent. 
This suggests the study taken next 

What happens with hindsight stability in large 
 

repeated games with correlated types?     

will be used 
repeatedly   
in the 
following 
slides 
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A Bayesian repeated game with 
1. a large but unknown number of players 𝑛𝑛, who  
2. have fixed types, correlated through an unknown 

state of nature 𝑁𝑁, and  
3. have imperfect monitoring. 

The Model 

The Players need priors over: 
• The number of players. 
• The state of the nature. 
• The types of the players. 
Prior to every period the players must update their beliefs over: 
• The number of players. 
• The state of nature. 
• The types of the players. 
• The history of actions selected in all previous periods. 
 

The model and equilibrium presented next eliminate these. 

Computing standard Bayesian best response is too demanding. 
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A Bayesian repeated game with 
1. a large but unknown number of players 𝑛𝑛, who  
2. have fixed types, correlated through an unknown 

state of nature 𝑁𝑁, and  
3. have imperfect monitoring. 

The Model 

The Players need priors over: 
• The number of players. 
• The state of the nature. 
• The types of the players. 
Prior to every period the players must update their beliefs over: 
• The number of players. 
• The state of nature. 
• The types of the players. 
• The history of actions selected in all previous periods. 
 

The model and equilibrium presented next eliminate these. 

Computing standard Bayesian best response is too demanding. 

In our imagined continuum model, each individual 
player thinks of himself as negligible in a game with 
a continuum of players;  
but as game theorists we perform a correct 
probabilistic analysis of what really happens with 
such 𝒏𝒏 players. 
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A Bayesian repeated game with 
1. a large but unknown number of players 𝑛𝑛, who  
2. have fixed types, correlated through an unknown 

state of nature 𝑁𝑁, and  
3. have imperfect monitoring. 

The Model In our imagined continuum model, each individual 
player thinks of himself as negligible in a game with 
a continuum of players;  
but as game theorists we perform a correct 
probabilistic analysis of what really happens with 
such 𝒏𝒏 players. 
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A Bayesian repeated game with 
1. a large but unknown number of players 𝑛𝑛, who  
2. have fixed types, correlated through an unknown 

state of nature 𝑁𝑁, and  
3. have imperfect monitoring. 

The Model In our imagined continuum model, each individual 
player thinks of himself as negligible in a game with 
a continuum of players;  
but as game theorists we perform a correct 
probabilistic analysis of what really happens with 
such 𝒏𝒏 players. 

 Repeated computer choice game with correlated types. 

We restrict ourselves to anonymous and symmetric 
games of proportions.     
A repeated illustrative example will be: 
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One (unknown) state of nature 𝑁𝑁,  
𝜃𝜃0(𝑁𝑁) is the known prior prob that the state is 𝑁𝑁.  

Prior probabilities: 

Players’ privately known types are distributed by a 
conditional iid,  
𝜏𝜏𝑁𝑁(t) is the prob of a player being of type t when the state is s. 

𝜏𝜏PC(𝑡𝑡 = PC) = .7 and 𝜏𝜏PC(𝑡𝑡 = M) = .3:  
when the state is PC, independently of the others every player has prob 
of 0.7 to be a PC type and 0.3 to be a M type. 
 

Symmetrically,  𝜏𝜏M(t=M) = .7 and 𝜏𝜏M(𝑡𝑡 = PC) = .3  

𝜃𝜃0(𝑆𝑆 = PC) = 𝜃𝜃0(𝑆𝑆 = M) =1/2,  
each computer is equally likely to have the better overall features 
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Actions available to every player are denoted by 𝑎𝑎𝜖𝜖𝜖𝜖         

The Stage Game,  

 a = PC or a =M, chooses PC or chooses M.  

𝑒𝑒𝑘𝑘(𝑡𝑡,𝑎𝑎) is the empirical proportion of players who 
are of type t and choose the action a. 

𝑒𝑒𝑘𝑘(PC, PC) the proportion of players who like PC and chose PC, 
𝑒𝑒𝑘𝑘(PC, M)  the proportion of players who like PC but chose M, etc. 

played in periods k = 0,1,2,…: 

A random outcome 𝑥𝑥, is chosen with prob χs,e(𝑥𝑥) and 
made public at the end of the period. 

𝑢𝑢(𝑡𝑡,𝑎𝑎, 𝑥𝑥) is the period payoff of a player of type 𝑡𝑡 who 
took the action 𝑎𝑎 in a period with the outcome 𝑥𝑥. 

A sample with replacement of J computer users is taken  𝒙𝒙 =  𝑥𝑥(PC) 
is the sample proportion of PC users.   𝑥𝑥(M) ≡ 1 − 𝑥𝑥(PC). 

𝑢𝑢 = (the proportion of users in the sample that his choice matches)1/3  
     + 0.2 if his choice is the same as his type, 𝑎𝑎 = 𝑡𝑡. 
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Infinitely repeated with discounting. 

The repetition/payoff structure 

Finitely repeated with the average of the periods payoffs. 

Any function that is continuous and strictly monotonic 
in the periods payoffs. Will elaborate. 

The repeated computer choice game is infinitely repeated with individual 
discount parameters. 

Can be: 

The Repeated game 



16 

Strategies and equilibrium terminology 

A common strategy F is a symmetric profile in which 
all the players play F. 

F is Markov, if it depends only on the player’s type and 
the “public-belief” over the unknown state, will elaborate. 

In the imagined play path, periods’ random empirical 
distributions of types & actions are replaced by their 
deterministic conditional expectations.  The only 
uncertainty is about the unknown state 𝑁𝑁. 

We restrict the players to simplified symmetric equilibrium 
that does not depend on 𝑛𝑛, but we do a full Bayesian 
asymptotic analysis of such 𝑛𝑛 players, as 𝑛𝑛 → ∞. 
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A Markov strategy is a function F:∆ 𝑆𝑆 × T → ∆ 𝜖𝜖   
𝐹𝐹𝜃𝜃,𝑡𝑡(𝑎𝑎) is the probability of choosing the action 𝑎𝑎 by a 
player of type 𝑡𝑡 in periods in which the Markov state is 𝜃𝜃, 
where 𝜃𝜃 is the prob distribution that describes the public 
belief about the unknown state 𝑁𝑁, to be described. 

An 𝜶𝜶 threshold strategy : With prob 1: 
 

Choose your type of computer 𝑡𝑡 in periods with 
𝛼𝛼 < 𝜃𝜃 t   , 

choose the other computer 𝑡𝑡𝑐𝑐  in periods with  

𝜃𝜃 t ≤ 𝛼𝛼 
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 The public beliefs (in the imagined game) about 𝑁𝑁 under a 
common strategy 𝐹𝐹 

The initial public belief is 𝜃𝜃0 .   

Continuing inductively, in a period that starts with the 
imagined public belief 𝜃𝜃:  

dθ 𝑡𝑡,𝑎𝑎 = 𝜏𝜏𝑁𝑁(t) ∙ 𝐹𝐹𝜃𝜃,𝑡𝑡(𝑎𝑎),   and  

1. to every state 𝑁𝑁 associate the (imagined)   
     deterministic empirical distribution 

𝜃𝜃�θ,x(𝑁𝑁) ≡
𝜃𝜃(𝑠𝑠)∙χ𝑠𝑠,𝑑𝑑𝜃𝜃

(x)
∑ 𝜃𝜃(𝑠𝑠′)χ𝑠𝑠′,𝑑𝑑𝜃𝜃(x)s’

 

2. after observing the period outcome 𝑥𝑥, compute the  
    posterior public belief by Bayes rule  

the expected 
values from the 
continuum game. 
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Suppose a period’s prior public belief is  𝜃𝜃 𝑁𝑁 = PC = .6, 𝜃𝜃 s=M = .4 and that 
under 𝐹𝐹𝜃𝜃,𝑡𝑡 each player chooses his computer type with probability 1.    

         For s=PC 
𝑑𝑑𝜃𝜃 PC , PC = .7 ∙ 1 = .7 
𝑑𝑑𝜃𝜃 PC , M   = .7 ∙ 0 = .0 
𝑑𝑑𝜃𝜃 M, PC    = .3 ∙ 0 = 0 
𝑑𝑑𝜃𝜃 M, M      = .3 ∙ 1 = .3 

1. The imagined empirical distribution 𝑑𝑑𝜃𝜃(𝑡𝑡, 𝑎𝑎) is 

         For s=M 
𝑑𝑑𝜃𝜃 PC , PC = .3 ∙ 1 = .3 
𝑑𝑑𝜃𝜃 PC , M   = .3 ∙ 0 = .0 
𝑑𝑑𝜃𝜃 M, PC    = .7 ∙ 0 = 0 
𝑑𝑑𝜃𝜃 M, M      = .7 ∙ 1 = .7 

0.4 ∙ B20,0.3 11
0.6 ∙ B20,0.7 11 + 0.4 ∙ B20,0.3 11 = 0.11 

2. Suppose that in J=20 observations there were 11 PC 
users, then the posterior public belief is : 

𝐵𝐵20,0.7(11) is 
binomial prob of 
11 successes in 
20 trials with 
success prob 0.7 

�̂�𝜃θ,11/20 𝑁𝑁 = PC = 
0.6 ∙ B20,0.7 11

0.6 ∙ B20,0.7 11 + 0.4 ∙ B20,0.3 11 = 0.89 

�̂�𝜃θ,11/20 𝑁𝑁 = M = 

Recall, the period 
outcome x(PC) is 
the proportion of 
PC  users in a 
sample with 
replacement of J 
computer users 
from the 
population. 
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Private beliefs in a period with public belief 𝜃𝜃 of a player 
of type 𝑡𝑡 is 

𝜃𝜃 𝑡𝑡 (𝑁𝑁) ≡
𝜃𝜃(𝑁𝑁) ∙ 𝜏𝜏𝑁𝑁(t)

∑ 𝜃𝜃(𝑁𝑁′) ∙ 𝜏𝜏𝑁𝑁′(t)𝑠𝑠`
 

     𝑢𝑢𝐹𝐹 (𝜃𝜃, 𝑡𝑡,𝑎𝑎) ≡� �𝜃𝜃 𝑡𝑡 (𝑁𝑁) ∙ χ𝑠𝑠,𝑑𝑑𝜃𝜃(x)
𝑠𝑠

 𝑢𝑢(𝑡𝑡,𝑎𝑎, 𝑥𝑥) 
𝑥𝑥

 

The probability that 
the player assigns to 
the outcome x Computed with the public belief 𝜃𝜃, not with 𝜃𝜃 𝑡𝑡  , 

because the strategies of the players are 
conditioned on the public belief, 𝜃𝜃.  
Recall: dθ 𝑡𝑡, 𝑎𝑎 = 𝜏𝜏𝑁𝑁(t) ∙ 𝐹𝐹𝜃𝜃,𝑡𝑡(𝑎𝑎),  

Period expected payoff (in the imagined game) of a type 
𝑡𝑡 who chooses the action 𝑎𝑎 when the common strategy is 
F and the public belief is 𝜃𝜃 

The probability that the player assigns to the 
outcome x, for a given s, 
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Definition: A common strategy F  is a Markov equilibrium (in 
the imagined game) if for every public belief 𝜃𝜃𝜖𝜖∆(𝑆𝑆) and 
every type 𝑡𝑡𝜖𝜖𝜖𝜖, if 𝐹𝐹𝜃𝜃,𝑡𝑡(𝑎𝑎) > 0, then 𝑎𝑎 maximizes 𝑢𝑢𝐹𝐹  (𝜃𝜃, 𝑡𝑡,𝑎𝑎). 

Kalai & Shmaya (2013) defines equilibrium (in the imagined 
game) more generally, without the Markov property and 
myopicity, and show that: 
 

• Myopicity is a result (not an assumption): every 
equilibrium (in the imagined game) is myopic. 

 
 

• When the number of players is large: 
 

   1. Period probabilities in the imagined game are    
       approximately the same as the real probabilities. 

 

   2. Equilibria in the imagined game are standard 𝜺𝜺 - Nash   
       equilibria in the real n-person game. 
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Due to myopicity: 
 

• Markov equilibrium is applicable to other repetition / 
payoff structures. 

 

• It is applicable to games with new players entering and 
players exiting the game at different periods, provided 
that all players know the current period belief about the 
unknown state.  For example, with overlapping 
generations, we get learning and stability across 
generations of players. 
 

• Existence is a simple matter since it has to be shown 
only for  the stage games. 

Definition: A common strategy F  is a Markov equilibrium (in 
the imagined game) if for every public belief 𝜃𝜃𝜖𝜖∆(𝑆𝑆) and 
every type 𝑡𝑡𝜖𝜖𝜖𝜖, if 𝐹𝐹𝜃𝜃,𝑡𝑡(𝑎𝑎) > 0, then 𝑎𝑎 maximizes 𝑢𝑢𝐹𝐹  (𝜃𝜃, 𝑡𝑡,𝑎𝑎). 
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Information about the number of players 
 
The players need no such information. 
 
The game theorist must only know that the number is 
sufficiently large, but does not have to know its precise value.  

Definition: A common strategy F  is a Markov equilibrium (in 
the imagined game) if for every public belief 𝜃𝜃𝜖𝜖∆(𝑆𝑆) and 
every type 𝑡𝑡𝜖𝜖𝜖𝜖, if 𝐹𝐹𝜃𝜃,𝑡𝑡(𝑎𝑎) > 0, then 𝑎𝑎 maximizes 𝑢𝑢𝐹𝐹  (𝜃𝜃, 𝑡𝑡,𝑎𝑎). 
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For the common strategy G in which every player chooses her favorite 
computer, define 𝜶𝜶 = θ(PC) at which 𝑢𝑢𝐺𝐺  𝜃𝜃, PC, PC = 𝑢𝑢𝐺𝐺  𝜃𝜃, PC, M , 
 

𝜶𝜶 is the tipping value: when everybody chooses her favorite 
computer, how low must the prior on  𝑺𝑺 = PC  be to make PC types 
choose M.  
 

  𝜶𝜶 < ½;     it is the same for PC and for M.  
 
The common 𝜶𝜶 threshold strategy is a Markov equilibrium. 
 

• It is trivial to check: direct from the definition. 
 

• It is easy to play: start by choosing your computer type, continue by 
updating the public belief and following the threshold rule. 
 

• Coordination: from some time on they will all use the same computer. 
 

• It is a real 𝜀𝜀 Nash equilibrium if the number of players is large. 
 

• If in addition the sample size is large, they will all be using   
    the better computer from the second period on. 
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Hindsight Stability 
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Definition (Kalai 2004): consider a common Markov 
strategy F.  Period 𝒌𝒌 is asymptotically hindsight stable up 
to (ε,ρ) if with sufficiently many players,   

Definition of asymptotic Hindsight Stability 

Definition: u has Lipschitz constant 𝐿𝐿 if  for all 𝑎𝑎, 𝑥𝑥 and 𝑥𝑥’ : 

after observing the outcome of the k-th period, 
by a unilateral revision of his action some player 
can improve his period payoff by more than 𝜺𝜺 

≤ 𝝆𝝆 Pr 

𝑢𝑢 𝑡𝑡,𝑎𝑎, 𝑥𝑥 − 𝑢𝑢(𝑡𝑡,𝑎𝑎, 𝑥𝑥′) < 𝐿𝐿 ∙ 𝑑𝑑(𝑥𝑥, 𝑥𝑥′) 

The real probability, computed by the game 
theorist for the real n-person process.  
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Hindsight Stability Theorem 

Theorem: For every ϵ, ρ > 0 there is an integer K such 
that in every Markov equilibrium F and every d > 0, all 
periods except at most K are asymptotically hindsight 
stable up to  

[ 𝑑𝑑 + 2𝑄𝑄𝐺𝐺(𝑑𝑑 𝐿𝐿)⁄ + 𝜖𝜖  , 2𝑄𝑄𝐺𝐺(𝑑𝑑 𝐿𝐿) + 𝜌𝜌⁄  ] . 

The lack of concentration of the worst possible uncertainty in the publicly 
reported outcome: The measure of the set of outcomes x that cannot fit 
into a ball of diameter < d/L  in the worst case (over all 𝑁𝑁 and 𝑒𝑒). 

Corrolary: If the public signal has standard deviation σ. 
Then for every ε >0 there is a finite integer K such that in 
every imagined Markov equilibrium F all but at most K 
periods are asymptotically hindsight stable up to:  

                          [2𝜀𝜀 + 8 𝐿𝐿𝜎𝜎
𝜀𝜀

2
, 𝜀𝜀 + 8 𝐿𝐿𝜎𝜎

𝜀𝜀

2
]  
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• Reducing the uncertainty in the publicly observed outcomes 
(bigger sample size 𝐽𝐽 in our example) improves  hindsight 
stability. 

• But with substantial uncertainty in the observed outcomes, 
hindsight instability is unavoidable, regardless of the number 
of players.  

For any 𝜖𝜖,𝜌𝜌 > 0, in all but a finite number of periods the equilibrium 
is asymptotically hindsight stable up to  
 

                                     2𝜖𝜖 + 1
𝐽𝐽𝜖𝜖2

  ,  1
𝐽𝐽𝜖𝜖2

+ ρ  .   

Recall,  𝐽𝐽 = sample size when sampling for the proportion of PC users. 

With the 𝜶𝜶 threshold equilibrium in the rpt computer choice game, 
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Rough intuition about the proof 

Consider first the |T| imagined processes, in which the t-types hold deterministic 
beliefs about the probabilities of the period empirical distributions of types and 
actions, dθ 𝑡𝑡, 𝑎𝑎 . 

• Merging, under the automatic grain of truth, implies that with high 
probability, except for a finite number of  learning periods, the forecasted 
probabilities over the outcome of the periods are appx accurate. 
(Fudenberg-Levin, Sorin, Kalai-Lehrer), i.e., the same as would be 
forecasted with knowledge of the unknown state. 

• High concentration (small variance in our example) of the outcome 
distribution, combined with the fact that the empirical distributions in the 
imagined processes are deterministic conditional on the states, implies 
that with high probability at the non-learning periods they predict the 
realized period outcomes (not just its probability). 

So in the imagined processes, in all non-learning periods players will have no 
regret over their chosen actions, thus hindsight stability holds.  
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Remarks: 
 
1. Hindsight stability is a result of “no further learning” from 

some time on. Similar to multi arm bandit problems, the players do 
not necessarily learn the real state of nature, or even learn to play 
“as if” they know it.  
 

2. On the rate of getting to stability: We know from Sorin (1999) that 
the number of chaotic periods is monotone in the size of the grain of 
truth, which is bounded below in our population game.  Thus the 
number of chaotic periods is bounded above. 

Building on Kalai (2005), Kalai and Shmaya (2013) show that when the 
number of players is large and outcome probabilities are continuous, real 
probabilities of period events are approximated well by the probabilities in 
the imagined process. Thus appx hindsight stability holds with (real) high 
probability in the non-learning periods. 

So in the imagined processes, in all non-learning periods players will have no 
regret over their chosen actions, thus hindsight stability holds.  
But what about in the real process, in which the players observe the randomly 
realized real outcomes? 
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Price Stability in Repeated Cournot Game 
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𝑖𝑖 = 1,2, … ,𝑛𝑛,  producers 
𝑘𝑘 = 0,1,2, …,  periods 
𝑎𝑎𝑖𝑖𝑘𝑘 =  0  𝑜𝑜𝑜𝑜 1  possible production levels of  𝑖𝑖 in period 𝑘𝑘. 

 𝑃𝑃𝑘𝑘= 1
2
− 𝜖𝜖𝑘𝑘 + 𝜖𝜖, period-k price, 

    the publicly announced outcome xk in the model.   
 

       𝜖𝜖𝑘𝑘 = average (per producer) production,  
 

       𝜖𝜖 ~ 𝑁𝑁 0,𝜎𝜎   is a random uncertainty, iid across periods  
           (e.g., information shock, noisy traders, …). 

Implicitly:There are 𝑛𝑛 
buyers. At price x 
each demands: 
   ½ − 𝑥𝑥 + 𝜖𝜖 

Production possibilities and prices: 
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𝑁𝑁 =  easy  or  difficult ,  equally-likely unknown state of fundamentals. 

Per-unit production cost: 0 for efficient  types and 1/8 for inefficient  types.   

𝑡𝑡𝑖𝑖  privately known, fixed producer types, generated by conditional iid’s:                   

The play: In every period, based on her starting info, each producer 
chooses a production level, the realized price 𝑃𝑃𝑘𝑘 becomes publicly known. 

Period payoffs: 
 

For players who produce 0 it is 0. 
 

For players who produced 1, depending on type   = �
𝑃𝑃𝑘𝑘 

, if  𝑒𝑒𝑒𝑒𝑒𝑒

𝑃𝑃𝑘𝑘 –
1
8 ,  if  𝑖𝑖𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒

 

    Pr 𝑡𝑡𝑖𝑖 = 𝑒𝑒𝑒𝑒𝑒𝑒  𝑁𝑁 = 𝑑𝑑𝑖𝑖𝑒𝑒𝑒𝑒 = ¼  
 Pr 𝑡𝑡𝑖𝑖 = 𝑖𝑖𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒  𝑁𝑁 = 𝑑𝑑𝑖𝑖𝑒𝑒𝑒𝑒 = ¾ 

Pr 𝑡𝑡𝑖𝑖 = 𝑒𝑒𝑒𝑒𝑒𝑒  𝑁𝑁 = 𝑒𝑒𝑎𝑎𝑁𝑁𝑒𝑒 = ¾ 
Pr 𝑡𝑡𝑖𝑖 = 𝑖𝑖𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒 𝑁𝑁 = 𝑒𝑒𝑎𝑎𝑁𝑁𝑒𝑒 = ¼ 

Prior probabilities: 



A Unique Markov Equilibrium in period k 

Let 𝜃𝜃𝐾𝐾 = 𝜃𝜃𝐾𝐾 (easy) denote the prior public belief prob that the product is 
easy to produce.   Recall  𝜃𝜃0 = 1/2 . 

Regim 1  𝜃𝜃𝑘𝑘 ≥
7+ 33
16

≈ 0.8 : The inefficient types are idle,  
               the efficient types produce w.p. 𝑝𝑝 = (4𝜃𝜃𝑘𝑘 + 2)/(8𝜃𝜃𝑘𝑘 + 1) 

Regim 2   35− 649
64

< 𝜃𝜃𝑘𝑘 < 7+ 33
16

  : there are unique 0 < 𝑞𝑞 < 𝑝𝑝 < 1 
              the inefficient players produce wp 𝑞𝑞 and the efficient ones wp 𝑝𝑝.  

Regim 3  0.15 ≈ 35− 649
64

≥ 𝜃𝜃𝑘𝑘 : all the efficient ones produce,  
               the ineff ones produce wp 𝑞𝑞 = (3 − 6𝜃𝜃𝑘𝑘)/(18 − 16 𝜃𝜃𝑘𝑘) . 
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The unique Markov equilibrium of the repeated game 
 

    Start in Regime 2, keep updating and playing the corresponding regimes. 

Assymptotic Price stability in all but a finite number of chaotic learning 
periods, with sufficiently many players,  
 

  
 
 

at the equilibrium price some player  can 
improve his payoff by more than 𝟏𝟏𝟏𝟏𝝈𝝈𝟐𝟐/𝟑𝟑 ≤ 𝟗𝟗𝝈𝝈𝟐𝟐/𝟑𝟑 Pr 
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A Unique Compressed Markov Equilibrium 

Let 𝜃𝜃𝐾𝐾 denote the Bayesian updated prob, prior to the start of period k 
(based on the history of prices), that the state 𝑁𝑁 = 𝑒𝑒𝑎𝑎𝑁𝑁𝑒𝑒.   Recall  𝜃𝜃0 = 1/2 . 

Regim 1  𝜃𝜃𝑘𝑘 ≥
7+ 33
16

≈ 0.8 : The inefficient types are idle,  
               the efficient types produce w.p. 𝑝𝑝 = (4𝜃𝜃𝑘𝑘 + 2)/(8𝜃𝜃𝑘𝑘 + 1) 

Regim 2   35− 649
64

< 𝜃𝜃𝑘𝑘 < 7+ 33
16

  : there are unique 0 < 𝑞𝑞 < 𝑝𝑝 < 1 
              the inefficient players produce wp 𝑞𝑞 and the efficient ones wp 𝑝𝑝.  

Regim 3  0.15 ≈ 35− 649
64

≥ 𝜃𝜃𝑘𝑘 : all the efficient ones produce,  
               the ineff ones produce wp 𝑞𝑞 = (3 − 6𝜃𝜃𝑘𝑘)/(18 − 16 𝜃𝜃𝑘𝑘) . 

The unique Markov equilibrium of the repeated game 
 

    Start in Regime 2, keep updating and playing the corresponding regimes. 

Assymptotic Price stability in all but a finite number of chaotic learning 
periods, with sufficiently many players,   
 

  
 
 

at the equilibrium price some player  can 
improve his payoff by more than 𝟏𝟏𝟏𝟏𝝈𝝈𝟐𝟐/𝟑𝟑 ≤ 𝟗𝟗𝝈𝝈𝟐𝟐/𝟑𝟑 Pr 
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Summary 

• An important property for equilibrium in strategic interaction.  
          Examples: Partially-specified games played on the web. 
                            Price stability in market games. 

• In Markov equilibrium of large Bayesian repeated games, with the 
exception of a finite number of chaotic learning periods, all periods are 
asymptotically hindsight stable.  True even if the player types are 
correlated through unknown fundamentals. 

Methodological contribution:  
 

Imagined continuum model: 
• A hybrid of the continuum and asymptotic models of large games. 
• A well defined probability space for Bayesian analysis. 
•   Avoids problematic computational issues of standard Bayesian  
    equilibrium. 
•   Equilibrium strategies are independent of the number of players. 
•   Allows the existence of Markov equilibria. 
•   Easy to compute ε Nash equilibrium (ε best response) with many 
players. 

Conceptual contribution: 
 

Hindsight stability 
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To reduce the number of unstable periods: 

The number of unstable chaotic periods may be reduced by improving the 
information of the players in at least two ways: 

First, we know from Sorin 1999, that the number of learning periods, 
in which stability is violated, depends on the accuracy of the players’ 
initial beliefs about the unknown fundamental. i.,e, the size of the 
grain of truth.  Thus,   

• starting with better public information about unknown fundamentals 
is likely to reduce the number of unstable periods. 

The other source of instability is the lack of predictability of the periods’ 
publically announced outcome.  For example small sample size in the 
computer choice game, noise traders and unpredictable shocks to 
demand in the repeated production game .  Thus 

 less random uncertainty in the publically reported period outcomes 
is likely to reduce the number of unstable periods.  
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To reduce the number of unstable periods: 

The number of unstable chaotic periods may be reduced by improving the 
information of the players in at least two ways: 

First, we know from Sorin 1999, that the number of learning periods, 
in which stability is violated, depends on the accuracy of the players’ 
initial beliefs about the unknown fundamental. i.,e, the size of the 
grain of truth.  Thus,   

• starting with better public information about unknown fundamentals 
is likely to reduce the number of unstable periods. 

The other source of instability is the lack of predictability of the periods’ 
publically announced outcome.  For example small sample size in the 
computer choice game, uncertainty traders and unpredictable shocks to 
demand in the repeated production game .  Thus 

 less random uncertainty in the publically reported period outcomes 
is likely to reduce the number of unstable periods.  
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A question for future research: 
 

What happens if the fundamental state changes, 
slowly, and you only observe random outcomes that 
depend on the changing state? 

Need a mathematical theorem on Bayesian learning 
(merging), in a hidden but slowly changing Markov 
chain. 
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Thank you! 
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