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Dynamic pricing

A firm sells a single product in discrete time periods t = 1, . . . ,T .

Each period t: (i) choose selling price pt ;
(ii) observe demand

dt = θ1 + θ2pt + εt ,

where θ = (θ1, θ2) are unknown parameters in known set Θ,
εt unobservable random disturbance term;
(iii) collect revenue ptdt .

Which non-anticipating prices p1, . . . , pT maximize cumulative

expected revenue minθ∈Θ E
[∑T

t=1 ptdt
]
?

Intractable problem
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Myopic pricing

An intuitive solution

Choose arbitrary initial prices p1 6= p2.

For each t ≥ 2:
(i) determine LS estimate θ̂t of θ, based on available sales data;
(ii) set

pt+1 = arg max
p

p · (θ̂t1 + θ̂t2p)

perceived optimal decision

‘Always choose the perceived optimal action’.
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Convergence

Does θ̂t converge to θ as t →∞?

No

It seems that θ̂t always converges, but w.p. zero to the true θ.
Open problem.

Caused by the prevalence of indeterminate equilibria:
Parameter estimates such that the true expected demand at the myopic
optimal price equals the predicted expected demand.
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Indeterminate equilibria

If θ̂ suff. close to θ, then arg max
p

p · (θ̂1 + θ̂2p) = −θ̂1/(2θ̂2).

Then:

‘True’ expected demand: θ1 + θ2
−θ̂1

2θ̂2

. (1)

‘Predicted’ expected demand: θ̂1 + θ̂2
−θ̂1

2θ̂2

. (2)

If (1) equals (2), then θ̂ is an IE.
Model output ‘confirms” correctness of the (incorrect) estimates.
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Indeterminate equilibria: example



Back to original problem

Which non-anticipating prices p1, . . . , pT maximize

min
θ∈Θ

E
[ T∑
t=1

ptdt
]
,

or, equivalently, minimize the Regret(T )

max
θ∈Θ

E
[
T ·max

p
p · (θ1 + θ2p)−

T∑
t=1

ptdt
]

Exact solution intractable

Myopic pricing not optimal

Let’s find asymptotically optimal policies: smallest growth rate of
Regret(T ) in T .
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Asymptotically optimal policy

Important observation: Variation in controls ⇒ better estimates.

∣∣∣∣∣∣θ̂t − θ∣∣∣∣∣∣2 = O

(
log t

tVar(p1, . . . , pt)

)
a.s.

To ensure convergence of θ̂t , some amount of experimentation is necessary.
But, not too much.



Asymptotically optimal policy

Important observation: Variation in controls ⇒ better estimates.

∣∣∣∣∣∣θ̂t − θ∣∣∣∣∣∣2 = O

(
log t

tVar(p1, . . . , pt)

)
a.s.

To ensure convergence of θ̂t , some amount of experimentation is necessary.

But, not too much.



Asymptotically optimal policy

Important observation: Variation in controls ⇒ better estimates.

∣∣∣∣∣∣θ̂t − θ∣∣∣∣∣∣2 = O

(
log t

tVar(p1, . . . , pt)

)
a.s.

To ensure convergence of θ̂t , some amount of experimentation is necessary.
But, not too much.



‘Controlled Variance pricing’

Choose arbitrary initial prices p1 6= p2.

For each t ≥ 2:
(i) determine LS estimate θ̂t of θ, based on available sales data;
(ii) set

pt+1 = arg max
p

p · (θ̂t1 + θ̂t2p)

perceived optimal decision

s.t. t · Var(p1, . . . , pt+1) ≥ f (t), ‘information constraint’

for some increasing f : N→ (0,∞).

‘Always choose the perceived optimal action that induces sufficient
experimentation’.
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‘Controlled Variance pricing’ - performance

Regret(T ) = O
(
f (T ) +

∑T
t=1

log t
f (t)

)
.

f balances between exploration and exploitation.

Optimal f gives Regret(T ) = O(
√
T logT ), and no policy beats

√
T .

Thus, you can characterize asymptotically optimal amount of
experimentation.
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Extension: multiple products

K products: price vector pt = (pt(1), . . . , pt(K ))>,

demand vector dt = θ

(
1
pt

)
+ ε, matrix θ, noise-vector ε.

Convergence rates of LS-estimator:∣∣∣∣∣∣θ̂t − θ
∣∣∣∣∣∣2 = O

(
log t

λmin(t)

)
a.s.,

where λmin(t) is the smallest eigenvalue of the information matrix

t∑
i=1

(
1 p>i
pi pip

>
i

)
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Extension: multiple products

Same type of policy:

pt+1 = arg max
p

p>θ̂t

(
1
p

)

perceived optimal decision

s.t. λmin(t + 1) ≥ f (t), ‘information constraint’

for some increasing f : N→ (0,∞).

Problem: λmin(t + 1) is a complicated object.

Convertible to non-convex but tractable quadratic constraint.

Regret(T ) = O
(
f (T ) +

∑T
t=1

log t
f (t)

)
,

optimal f gives Regret(T ) = O(
√
T logT ).
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Many more extensions

Non-linear demand functions, non-parametric estimation

Time-varying markets (how much data to use for inference?)

Strategic customer behavior (can you detect this from data?)

Competition (repeated games with incomplete information? Mean
field games with learning?)

Very fruitful interaction between theory and practice
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More general...

Dynamic pricing is example of discrete-choice problems:

Decision maker chooses attributes and/or availability of alternatives

Customers choose according to probabilistic choice-model

Decision maker aims to optimize some objective function while
learning about choice-behavior

Many applications, expands the scope enormously

Open PhD Position:
http://www.utwente.nl/ewi/sor/about/staff/boer/
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- Is closer to practice
- Brings many nice theoretical challenges
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