Dynamic pricing and learning

Arnoud den Boer

University of Twente

Lunteren, January 13, 2015
Learning in sequential decision problems

OPTIMIZATION

Determine optimal decision
Learning in sequential decision problems

OPTIMIZATION
Determine optimal decision

STATISTICS
Estimate unknown parameters
Learning in sequential decision problems

OPTIMIZATION
Determine optimal decision

Estimate unknown parameters

STATISTICS DATA
Learning in sequential decision problems

OPTIMIZATION

Determine optimal decision

- Estimate unknown parameters
- Generate new data

STATISTICS → **DATA**
Learning in sequential decision problems

OPTIMIZATION
Determine optimal decision

STATISTICS
Estimate unknown parameters

DATA
Generate new data
Dynamic pricing

- A firm sells a single product in discrete time periods $t = 1, \ldots, T$.
Dynamic pricing

- A firm sells a single product in discrete time periods \(t = 1, \ldots, T \).
- Each period \(t \): (i) choose selling price \(p_t \);
 (ii) observe demand

\[
d_t = \theta_1 + \theta_2 p_t + \epsilon_t,
\]

where \(\theta = (\theta_1, \theta_2) \) are unknown parameters in known set \(\Theta \),
\(\epsilon_t \) unobservable random disturbance term;
(iii) collect revenue \(p_t d_t \).

Which non-anticipating prices \(p_1, \ldots, p_T \) maximize cumulative expected revenue

\[
\min_{\theta \in \Theta} E \left[\sum_{t=1}^{T} p_t d_t \right]
\]

Intractable problem
A firm sells a single product in discrete time periods $t = 1, \ldots, T$.

Each period t: (i) choose selling price p_t;
(ii) observe demand

$$d_t = \theta_1 + \theta_2 p_t + \epsilon_t,$$

where $\theta = (\theta_1, \theta_2)$ are unknown parameters in known set Θ, ϵ_t unobservable random disturbance term;
(iii) collect revenue $p_t d_t$.

Which non-anticipating prices p_1, \ldots, p_T maximize cumulative expected revenue $\min_{\theta \in \Theta} E \left[\sum_{t=1}^{T} p_t d_t \right]$?
Dynamic pricing

- A firm sells a single product in discrete time periods \(t = 1, \ldots, T \).
- Each period \(t \): (i) choose selling price \(p_t \); (ii) observe demand
 \[
 d_t = \theta_1 + \theta_2 p_t + \epsilon_t,
 \]
 where \(\theta = (\theta_1, \theta_2) \) are unknown parameters in known set \(\Theta \), \(\epsilon_t \) unobservable random disturbance term; (iii) collect revenue \(p_t d_t \).
- Which non-anticipating prices \(p_1, \ldots, p_T \) maximize cumulative expected revenue \(\min_{\theta \in \Theta} \mathbb{E} \left[\sum_{t=1}^{T} p_t d_t \right] \)?

Intractable problem
Myopic pricing

An intuitive solution

- Choose arbitrary initial prices $p_1 \neq p_2$.
- For each $t \geq 2$:
 (i) determine LS estimate $\hat{\theta}_t$ of θ, based on available sales data;
 (ii) set

$$p_{t+1} = \arg \max_p p \cdot (\hat{\theta}_{t1} + \hat{\theta}_{t2}p)$$
Myopic pricing

An intuitive solution

- Choose arbitrary initial prices $p_1 \neq p_2$.
- For each $t \geq 2$:
 (i) determine LS estimate $\hat{\theta}_t$ of θ, based on available sales data;
 (ii) set

$$p_{t+1} = \arg \max_p p \cdot (\hat{\theta}_{t1} + \hat{\theta}_{t2} p)$$

perceived optimal decision
An intuitive solution

- Choose arbitrary initial prices \(p_1 \neq p_2 \).
- For each \(t \geq 2 \):
 (i) determine LS estimate \(\hat{\theta}_t \) of \(\theta \), based on available sales data;
 (ii) set

\[
p_{t+1} = \arg \max_p \ p \cdot (\hat{\theta}_{t1} + \hat{\theta}_{t2}p)
\]

perceived optimal decision

- ‘Always choose the perceived optimal action’.
Does $\hat{\theta}_t$ converge to θ as $t \to \infty$?
Does $\hat{\theta}_t$ converge to θ as $t \to \infty$?

No

It seems that $\hat{\theta}_t$ always converges, but w.p. zero to the true θ. Open problem.
Convergence

Does $\hat{\theta}_t$ converge to θ as $t \to \infty$?

No

It seems that $\hat{\theta}_t$ always converges, but w.p. zero to the true θ.
Open problem.

Caused by the prevalence of indeterminate equilibria:
Parameter estimates such that the true expected demand at the myopic optimal price equals the predicted expected demand.
If $\hat{\theta}$ suff. close to θ, then $\arg\max_p p \cdot (\hat{\theta}_1 + \hat{\theta}_2 p) = -\hat{\theta}_1/(2\hat{\theta}_2)$.

Then:

'True' expected demand: $\theta_1 + \theta_2 -\frac{\hat{\theta}_1}{2\hat{\theta}_2}$. \hspace{1cm} (1)

'Predicted' expected demand: $\hat{\theta}_1 + \hat{\theta}_2 -\frac{\hat{\theta}_1}{2\hat{\theta}_2}$. \hspace{1cm} (2)

If (1) equals (2), then $\hat{\theta}$ is an IE.

Model output 'confirms' correctness of the (incorrect) estimates.
Indeterminate equilibria

If $\hat{\theta}$ suff. close to θ, then $\arg\max_{p} p \cdot (\hat{\theta}_1 + \hat{\theta}_2 p) = -\hat{\theta}_1 / (2\hat{\theta}_2)$.

Then:

‘True’ expected demand: $\theta_1 + \theta_2 \frac{-\hat{\theta}_1}{2\hat{\theta}_2}$. \hspace{1cm} (1)

‘Predicted’ expected demand: $\hat{\theta}_1 + \hat{\theta}_2 \frac{-\hat{\theta}_1}{2\hat{\theta}_2}$. \hspace{1cm} (2)

If (1) equals (2), then $\hat{\theta}$ is an IE.
Model output ‘confirms’ correctness of the (incorrect) estimates.
Indeterminate equilibria: example

Indeterminate Equilibria - Dynamic Pricing

Plot showing the relationship between two variables, a_1 and a_2, with data points and a trend line.
Back to original problem

Which non-anticipating prices p_1, \ldots, p_T maximize

$$\min_{\theta \in \Theta} \mathbb{E} \left[\sum_{t=1}^{T} p_t d_t \right],$$

or, equivalently, minimize the Regret(T)

$$\max_{\theta \in \Theta} \mathbb{E} \left[T \cdot \max_p p \cdot (\theta_1 + \theta_2 p) - \sum_{t=1}^{T} p_t d_t \right]$$
Back to original problem

Which non-anticipating prices p_1, \ldots, p_T maximize

$$\min_{\theta \in \Theta} \mathbb{E}\left[\sum_{t=1}^{T} p_t d_t \right],$$

or, equivalently, minimize the Regret(T)

$$\max_{\theta \in \Theta} \mathbb{E}\left[T \cdot \max_{p} p \cdot (\theta_1 + \theta_2 p) - \sum_{t=1}^{T} p_t d_t \right]$$

- Exact solution intractable
Back to original problem

Which non-anticipating prices p_1, \ldots, p_T maximize

$$\min_{\theta \in \Theta} \mathbb{E}\left[\sum_{t=1}^{T} p_t d_t \right],$$

or, equivalently, minimize the Regret(T)

$$\max_{\theta \in \Theta} \mathbb{E}\left[T \cdot \max_{p} p \cdot (\theta_1 + \theta_2 p) - \sum_{t=1}^{T} p_t d_t \right]$$

- Exact solution intractable
- Myopic pricing not optimal
Which non-anticipating prices p_1, \ldots, p_T maximize

$$\min_{\theta \in \Theta} \mathbb{E}\left[\sum_{t=1}^{T} p_t d_t \right],$$

or, equivalently, minimize the Regret(T)

$$\max_{\theta \in \Theta} \mathbb{E}\left[T \cdot \max_p p \cdot (\theta_1 + \theta_2 p) - \sum_{t=1}^{T} p_t d_t \right]$$

- Exact solution intractable
- Myopic pricing not optimal
- Let’s find asymptotically optimal policies: smallest growth rate of Regret(T) in T.
Asymptotically optimal policy

Important observation: Variation in controls \Rightarrow better estimates.
Asymptotically optimal policy

Important observation: Variation in controls \Rightarrow better estimates.

$$\| \hat{\theta}_t - \theta \|^2 = O \left(\frac{\log t}{t \text{Var}(p_1, \ldots, p_t)} \right) \text{ a.s.}$$

To ensure convergence of $\hat{\theta}_t$, some amount of experimentation is necessary.
Asymptotically optimal policy

Important observation: Variation in controls \Rightarrow better estimates.

$$\left\| \hat{\theta}_t - \theta \right\|^2 = O \left(\frac{\log t}{t \text{Var}(p_1, \ldots, p_t)} \right) \text{ a.s.}$$

To ensure convergence of $\hat{\theta}_t$, some amount of experimentation is necessary. But, not too much.
Controlled Variance pricing

- Choose arbitrary initial prices $p_1 \neq p_2$.
- For each $t \geq 2$:
 (i) determine LS estimate $\hat{\theta}_t$ of θ, based on available sales data;
 (ii) set
 \[
 p_{t+1} = \arg\max_{p} p \cdot (\hat{\theta}_{t1} + \hat{\theta}_{t2} p)
 \]
Choose arbitrary initial prices $p_1 \neq p_2$.

For each $t \geq 2$:
 (i) determine LS estimate $\hat{\theta}_t$ of θ, based on available sales data;
 (ii) set
 $$p_{t+1} = \arg \max_p p \cdot (\hat{\theta}_t + \hat{\theta}_t p)$$
 perceived optimal decision

subject to
$$\text{Var}(p_1, \ldots, p_{t+1}) \geq f(t),$$

‘information constraint’ for some increasing $f: \mathbb{N} \to (0, \infty)$.

‘Always choose the perceived optimal action that induces sufficient experimentation’.
‘Controlled Variance pricing’

• Choose arbitrary initial prices \(p_1 \neq p_2 \).
• For each \(t \geq 2 \):
 (i) determine LS estimate \(\hat{\theta}_t \) of \(\theta \), based on available sales data;
 (ii) set

\[
p_{t+1} = \arg \max_p p \cdot (\hat{\theta}_{t1} + \hat{\theta}_{t2} p) \quad \text{perceived optimal decision}
\]

s.t. \(t \cdot \text{Var}(p_1, \ldots, p_{t+1}) \geq f(t), \quad \text{‘information constraint’} \)
‘Controlled Variance pricing’

- Choose arbitrary initial prices $p_1 \neq p_2$.
- For each $t \geq 2$:
 (i) determine LS estimate $\hat{\theta}_t$ of θ, based on available sales data;
 (ii) set

\[
p_{t+1} = \arg \max_p p \cdot (\hat{\theta}_{t1} + \hat{\theta}_{t2}p)
\]

perceived optimal decision

\[
\text{s.t. } t \cdot \text{Var}(p_1, \ldots, p_{t+1}) \geq f(t), \quad \text{‘information constraint’}
\]

for some increasing $f : \mathbb{N} \to (0, \infty)$.
Choose arbitrary initial prices $p_1 \neq p_2$.

For each $t \geq 2$:

(i) determine LS estimate $\hat{\theta}_t$ of θ, based on available sales data;

(ii) set

$$p_{t+1} = \arg \max_p p \cdot (\hat{\theta}_{t1} + \hat{\theta}_{t2}p)$$

perceived optimal decision

s.t. $t \cdot \text{Var}(p_1, \ldots, p_{t+1}) \geq f(t)$, ‘information constraint’

for some increasing $f : \mathbb{N} \rightarrow (0, \infty)$.

‘Always choose the perceived optimal action that induces sufficient experimentation’.
Regret(T) = $O\left(f(T) + \sum_{t=1}^{T} \frac{\log t}{f(t)}\right)$.

Optimal f gives Regret(T) = $O(\sqrt{T \log T})$, and no policy beats \sqrt{T}. Thus, you can characterize asymptotically optimal amount of experimentation.
Regret(T) = $O\left(f(T) + \sum_{t=1}^{T} \frac{\log t}{f(t)}\right)$.

\(f\) balances between exploration and exploitation.
Regret\((T) = O \left(f(T) + \sum_{t=1}^{T} \frac{\log t}{f(t)} \right) \).

\(f \) balances between exploration and exploitation.

Optimal \(f \) gives Regret\((T) = O(\sqrt{T \log T}) \), and no policy beats \(\sqrt{T} \).

Thus, you can characterize asymptotically optimal amount of experimentation.
‘Controlled Variance pricing’ - performance

- Regret(T) = $O\left(f(T) + \sum_{t=1}^{T} \frac{\log t}{f(t)}\right)$.
- f balances between exploration and exploitation.
- Optimal f gives Regret(T) = $O(\sqrt{T \log T})$, and no policy beats \sqrt{T}.

Thus, you can characterize asymptotically optimal amount of experimentation.
Extension: multiple products

\(K \) products: price vector \(\mathbf{p}_t = (p_t(1), \ldots, p_t(K))^\top \),
demand vector \(\mathbf{d}_t = \theta \begin{pmatrix} 1 \\ \mathbf{p}_t \end{pmatrix} + \epsilon \), matrix \(\theta \), noise-vector \(\epsilon \).
Extension: multiple products

\(K \) products: price vector \(\mathbf{p}_t = (p_t(1), \ldots, p_t(K))^\top \),
demand vector \(\mathbf{d}_t = \theta \begin{pmatrix} 1 \\ \mathbf{p}_t \end{pmatrix} + \epsilon \), matrix \(\theta \), noise-vector \(\epsilon \).

Convergence rates of LS-estimator:

\[
\left\| \hat{\theta}_t - \theta \right\|^2 = O \left(\frac{\log t}{\lambda_{\min}(t)} \right) \text{ a.s.,}
\]

where \(\lambda_{\min}(t) \) is the smallest eigenvalue of the information matrix

\[
\sum_{i=1}^{t} \begin{pmatrix} 1 \\ \mathbf{p}_i \\ \mathbf{p}_i \mathbf{p}_i^\top \end{pmatrix}
\]
Extension: multiple products

Same type of policy:

\[p_{t+1} = \arg \max_p \mathbf{p}^\top \hat{\theta}_t \begin{pmatrix} 1 \\ \mathbf{p} \end{pmatrix} \]
Extension: multiple products

Same type of policy:

\[p_{t+1} = \arg \max_p p^\top \hat{\theta}_t \left(\begin{array}{c} 1 \\ p \end{array} \right) \text{ perceived optimal decision} \]
Extension: multiple products

Same type of policy:

\[p_{t+1} = \arg \max_p p^\top \hat{\theta}_t \begin{pmatrix} 1 \\ p \end{pmatrix} \] perceived optimal decision

s.t. \(\lambda_{\text{min}}(t+1) \geq f(t) \), ‘information constraint’
Extension: multiple products

Same type of policy:

\[p_{t+1} = \arg \max_p p^\top \hat{\theta}_t \left(\begin{array}{c} 1 \\ p \end{array} \right) \]

perceived optimal decision

s.t. \(\lambda_{\min}(t + 1) \geq f(t) \), \(\text{‘information constraint’} \)

for some increasing \(f : \mathbb{N} \rightarrow (0, \infty) \).
Extension: multiple products

Same type of policy:

\[p_{t+1} = \arg \max_p p^\top \hat{\theta}_t \left(\begin{array}{c} 1 \\ p \end{array} \right) \quad \text{perceived optimal decision} \]

s.t. \(\lambda_{\min}(t + 1) \geq f(t), \quad \text{‘information constraint’} \)

for some increasing \(f : \mathbb{N} \to (0, \infty) \).

Problem: \(\lambda_{\min}(t + 1) \) is a complicated object.
Extension: multiple products

Same type of policy:

$$p_{t+1} = \arg \max_p p^\top \hat{\theta}_t \left(\begin{array}{c} 1 \\ p \end{array} \right)$$

perceived optimal decision

s.t. $\lambda_{\min}(t+1) \geq f(t)$, ‘information constraint’

for some increasing $f : \mathbb{N} \to (0, \infty)$.

Problem: $\lambda_{\min}(t+1)$ is a complicated object.

Convertible to non-convex but tractable quadratic constraint.
Extension: multiple products

Same type of policy:

\[p_{t+1} = \arg \max_p p^\top \hat{\theta}_t \begin{pmatrix} 1 \\ p \end{pmatrix} \quad \text{perceived optimal decision} \]

s.t. \(\lambda_{\min}(t + 1) \geq f(t) \), ‘information constraint’

for some increasing \(f : \mathbb{N} \rightarrow (0, \infty) \).

Problem: \(\lambda_{\min}(t + 1) \) is a complicated object.

Convertible to non-convex but tractable quadratic constraint.

\[
\text{Regret}(T) = O \left(f(T) + \sum_{t=1}^{T} \frac{\log t}{f(t)} \right),
\]

optimal \(f \) gives \(\text{Regret}(T) = O(\sqrt{T \log T}) \).
Many more extensions

- Non-linear demand functions, non-parametric estimation
Many more extensions

- Non-linear demand functions, non-parametric estimation
- Time-varying markets (how much data to use for inference?)
Many more extensions

- Non-linear demand functions, non-parametric estimation
- Time-varying markets (how much data to use for inference?)
- Strategic customer behavior (can you detect this from data?)
Many more extensions

- Non-linear demand functions, non-parametric estimation
- Time-varying markets (how much data to use for inference?)
- Strategic customer behavior (can you detect this from data?)
- Competition (repeated games with incomplete information? Mean field games with learning?)
Many more extensions

- Non-linear demand functions, non-parametric estimation
- Time-varying markets (how much data to use for inference?)
- Strategic customer behavior (can you detect this from data?)
- Competition (repeated games with incomplete information? Mean field games with learning?)
Many more extensions

- Non-linear demand functions, non-parametric estimation
- Time-varying markets (how much data to use for inference?)
- Strategic customer behavior (can you detect this from data?)
- Competition (repeated games with incomplete information? Mean field games with learning?)

Very fruitful interaction between theory and practice
Dynamic pricing is an example of discrete-choice problems:

- Decision maker chooses attributes and/or availability of alternatives
More general...

Dynamic pricing is an example of discrete-choice problems:
- Decision maker chooses attributes and/or availability of alternatives
- Customers choose according to probabilistic choice-model

Open PhD Position:
http://www.utwente.nl/ewi/sor/about/staff/boer/
Dynamic pricing is example of **discrete-choice problems:**

- Decision maker chooses attributes and/or availability of alternatives
- Customers choose according to probabilistic choice-model
- Decision maker aims to optimize some objective function while learning about choice-behavior
Dynamic pricing is example of **discrete-choice problems**:
- Decision maker chooses attributes and/or availability of alternatives
- Customers choose according to probabilistic choice-model
- Decision maker aims to optimize some objective function while learning about choice-behavior
- Many applications, expands the scope enormously
Dynamic pricing is an example of discrete-choice problems:

- Decision maker chooses attributes and/or availability of alternatives
- Customers choose according to probabilistic choice-model
- Decision maker aims to optimize some objective function while learning about choice-behavior
- Many applications, expands the scope enormously

Open PhD Position:
http://www.utwente.nl/ewi/sor/about/staff/boer/
Integrate the statistical and optimization aspects of OR problems.

- Is closer to practice
- Brings many nice theoretical challenges
Integrate the statistical and optimization aspects of OR problems.

- Is closer to practice
- Brings many nice theoretical challenges

Thanks for your attention