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CP In Practice

First step .

" Get your hands on a good CP Solver
" |recommend IBM CP Optimizer

" Free for academic use

- http://www-03.ibm.com/ibm/university/academic/pub/page/academic_initiative

" Product to download is “CPLEX Optimization Studio”

" Comes with all the CPLEX Solvers and the OPL
language and development studio

© 2014 IBM Corporation
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Modelling .

" As for MIP, modelling is the most important part
of the process of solving a problem

" CP modelling languages and systems are
generally rich compared to MIP-based ones

— specialized constructs and constraints

" Good models will generally have stronger
propagation (make stronger inferences) than
poor ones

" Variables are normally finite domain
— CP Optimizer supports floating-point
expressions

© 2014 IBM Corporation
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Use the right modelling constructs .1,

= CP solvers work best when you make use of the right e
modelling constructs (variables, constraints and
expressions) for your problem

= You could avoid these and “roll your own” using lower-
level constraints and expressions

= But your model would be more complex and in
general will be much harder to solve!

= These specialized constructs will propagate more
than a combination of simpler ones
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Modelling constructs in CP Optimizer 54
e
v
%“5
Arithmetic Logical Specialized
+ - x / div = 1= < <= all-different,
abs min max && || ro=> element [], count,
pow log exp X ==V X <=V allowedAssignments
Scheduling
interval, sequence, cumul, noOverlap, alternative,
startAfterEnd, startAtEnd,
presenceOf, startOf, endOf, lengthOf,

© 2014 IBM Corporation
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Modelling constructs in CP Optimizer 54
Arithmetic Logical Specialized o
+ - x / div = 1= < <= all-different,
abs min max && || ro=> element [], count,
pow log exp X ==V X <=V allowedAssignments
Scheduling

interval, sequence, cumul, noOverlap, alternative,
startAfterEnd, startAtEnd,

presenceOf, startOf, endOf, lengthOf,
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CP In Practice EERL O
Modelling constructs in CP Optimizer 54
Arithmetic Logical Specialized o
+ - x / div = 1= < <= all-different,
abs min max && | | 1 => element [], count,
pow log exp X ==V X <=V allowedAssignments
Scheduling

interval, sequence, cumul, noOverlap, alternative,
startAfterEnd, startAtEnd,

presenceOf, startOf, endOf, lengthOf,
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Modelling constructs in CP Optimizer ALY
Arithmetic Logical Specialized

+ - x / div = 1= < <= all-different,

abs min max && || ro=> element [], count,

pow log exp X ==V X <=V allowedAssignments

Scheduling

interval, sequence, cumul, noOverlap, alternative,

startAfterEnd, startAtEnd,

presenceOf, startOf, endOf, lengthOf,
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Modelling constructs in CP Optimizer Al S
Arithmetic Logical Specialized o
+ - x / div = 1= < <= all-different,
abs min max && || ro=> element [], count,
pow log exp X == Vv X <=V allowedAssignments
Scheduling

presenceOf,

startAfterEnd,

interval, sequence,

startOf,

startAtEnd, ...

cumul, noOverlap, alternative, ...

endOf, lengthOf, ...

© 2014 IBM Corporation
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Use the right modelling constructs 'ﬁ
Example: Element expression

10

Mini model

y should take a
value equal to

that of the k'th
prime

y and k are
integer decision
variables

Right
dvar int k in 0..9;
dvar int y;
int a[0..91=12,3,5,7,11,13,17,19,23,29];
y == a[k];

Propagation

There is complete propagation between y and k. The
initial domain of y will be deduced as exactly the first
10 primes.

Later, if we deduce that k # 3, then 7 will be removed
from the domain of y. Likewise, if we deduce that y # 5,
then 2 will be removed from the domain of k.

© 2014 IBM Corporation



CP In Practice

[
”:u:
g
VA

Use the right modelling constructs ¥
Example: Element expression

11

Mini model

y should take a
value equal to
that of the k'th

prime

y and k are
integer decision
variables

Wrong
dvar int k in 0..9;
dvar int y;
int a[0..91=(2,3,5,7,11,13,17,19,23,29];
y == sum (j in 0..9) a[Jj] * (k == J);

Propagation

There is incomplete propagation between y and k.
There are two reasons for this.

1) The solver does not see that exactly one term of the
sum must be non-zero, so the initial bounds of y will be
[0, 129] (129 is the sum of all elements of a)

2) Invariably, CP solvers propagate only bounds over
sum expressions, so if we deduce, say, y # 7, this will

have no effect on the domain of k
© 2014 IBM Corporation
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Use the right modelling constructs

12

Example: Generalized assignment

int N = ..; // Number of objects
int M = ..; // Number of agents

int ac[i][]J] = ..; // Assignment cost

// x[1i] = j means object i is assigned to agent
dvar int x[1..N] in 1..M;

dexpr int objl = sum (1 in 1..N) ac[1i][x[]J]];
sum (Jj in 1..M)

sum(i in 1..N)
ac[1][J] * (x[1] == ]);

dexpr int obj2

© 2014 IBM Corporation
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Use the right modelling constructs OE s
Example: Jobshop 05 =2

int nbJobs = ...;
int nbMchs = ...;

0..nbJdobs-1;
0..nbMchs-1;

range Jobs
range Mchs

tuple Operation {
int mch; // Machine
int pt; // Processing time

}i
Operation Ops[j in Jobs][m in Mchs] = ...;

dvar interval itvs[] in Jobs][o in Mchs] size Ops[]j]l[o].pt;
dvar sequence mchs[m in Mchs] in all(j in Jobs, o in Mchs : Ops[j][o].mch == m) itvs[j][o];

minimize max (j in Jobs) endOf (itvs[j][nbMchs-1]);

subject to {
forall (m in Mchs)
noOverlap(mchs[m]);
forall (j in Jobs, o in 0..nbMchs-2)
endBeforeStart(itvs[j]l[o], itvs[j][o+l]);

13 © 2014 IBM Corporation
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Example: Travelling salesman i1

city -+ +_+_++_1 (map the position to the city)

next —+—+—+—+—+—1 (map a city to the next city)

14 © 2014 IBM Corporation
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A First Model

15

(This is a complete model for the TSP)

int N = ..;

range Position = 0..N-1;
range City = 0..N-1;

int dist[City][City] = ..;

dvar int city[Position] in City; // Map
dvar int next[City] in City; // Map

position to city
city to next city

minimize sum (i in City) dist[i][next[i]];

constraints {
allDifferent(city);
forall (j in Position)
next[city[]J]] == city[(J+1l) % N];

© 2014 IBM Corporation
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Boost Propagation

16

Most solvers (including CP Optimizer) allow
you to control how much effort is spent finding
extra inferences.

int N = ...;

range Position = 0..N-1;
range City = 0..N-1;

int dist[City][City] = ..;

dvar int city[Position] in City; // Map position to city
dvar int next[City] in City; // Map city to next city

execute {
cp.param.DefaultInferencelevel = “Extended”;

}
minimize sum (i in City) dist[i][next[i]];

constraints {
allDifferent(city);
forall (j in Position)
next[city[]J]] == city[(Jj+1l) % N]J;

© 2014 IBM Corporation
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Find implied constraints

Make explicit an implicit property of solutlons

Since in a TSP a solution is a loop, all the variables
In the “next” array must have different values.

int N = ...;

range Position = 0..N-1;
range City = 0..N-1;

int dist[City][City] = ..;

dvar int city[Position] in City; // Map position to city
dvar int next[City] in City; // Map city to next city

execute {
cp.param.DefaultInferencelevel = “Extended”;

}
minimize sum (i in City) dist[i][next[i]];

constraints {
allDifferent(city);
allDifferent (next);
forall (j in Position)
next[city[]J]] == city[(Jj+1l) % N]J;

17

© 2014 IBM Corporation
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Be aware of symmetry

18

There is rotational symmetry on the “city”
variables. Any solution can be “rotated” into
an equivalent one. Equivalently, choose one
city (here, city zero) as the “home city”.

int N = ...;

range Position = 0..N-1;
range City = 0..N-1;

int dist[City][City] = ..;

dvar int city[Position] in City; // Map position to city
dvar int next[City] in City; // Map city to next city

execute {
cp.param.DefaultInferencelevel = “Extended”;

}
minimize sum (i in City) dist[i][next[i]];

constraints {
allDifferent(city);
allDifferent (next);
forall (j in Position)
next[city[]J]] == city[(Jj+1l) % N]J;
city[0] == 0;

© 2014 IBM Corporation
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Extending the model PRALSY
Adding precedence constraints giva o

= |magine we would like to be able to say that city 11s
visited before city 2
= j.e. City 1 appears between the home city and city 2

= Modelling this quite cumbersome:

forall (j in Position)
(city[Jj] == 2) => (or (k in 0..j-1) (city[k] == 1));

= For each position, if city 2 is in that position, then city
1 must be in an earlier position
= We need all these constraints for each precedence!

= We would really like to know the position of a city

19 © 2014 IBM Corporation
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An alternative view (“dual model”)

20

Create “position” variables and connect these to
the “city” variables using channeling constraints

of the form
position[city[]]] == J

int N = ..;
range Position = 0..N-1;
range City = 0..N-1;

int dist[City][City] = ..;
dvar int city[Position] in City; // Map position to city
dvar int next[City] in City; // Map city to next city

dvar int position[City] in Position; // Map city to its position

execute {
cp.param.DefaultInferencelLevel = “Extended”;

}
minimize sum (i in City) dist[i][next[i]];

constraints {
allDifferent(city);
allDifferent (next);
forall (j in Position) {

next[city[j]] == city[(Jj+1l) % N];
position[city[j]] == J;

b

city[0] == 0;

position[l] < position[2];

ot . -!'

© 2014 IBM Corporation
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An alternative view (“dual model”)

21

Create “position” variables and connect these to
the “city” variables using channeling constraints

of the form
position[city[]]] == J

int N = ..;
range Position = 0..N-1;
range City = 0..N-1;

int dist[City][City] = ..;
dvar int city[Position] in City; // Map position to city
dvar int next[City] in City; // Map city to next city

dvar int position[City] in Position; // Map city to its position

execute {
cp.param.DefaultInferencelLevel = “Extended”;

}
minimize sum (i in City) dist[i][next[i]];

constraints {
allDifferent(city);
allDifferent (next);
inverse(city, position);
forall (j in Position)

next[city[j]] == city[(Jj+1l) % N];
city[0] == 0;
position[l] < position[2];

ot . -!'

© 2014 IBM Corporation
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Modelling (some good practices) A1,

22

- L
¥y

Good models have the solver make strong inferences

Use the right constructs. Look to see if some
specialized (global) constraints fit what you want to do
= Better propagation

= Compact models

Experiment with inference strength

Look for implied constraints

Be aware of symmetry

Look for alternative views to make modelling simpler

© 2014 IBM Corporation
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Solving .2}
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=

= Once a model is built, instances (instantiated models)
must be solved. Unlike MIP solvers, traditionally CP
solvers provide only a “search toolkit” to the user so
that they can control solution search

= CP Optimizer was the first CP solver with an intelligent
automatic search process

= Numerous techniques which have been traditionally
coded by users to solve problems using classical
solvers are implemented inside the CP Optimizer
automatic search

23 © 2014 IBM Corporation
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Tree Search: Branching Heuristics PRALSY

24

CP solvers are essentially constructed to perform
depth-first search

Decisions are taken at each level of the search tree:
= Which element of the model should be branched
upon (normally called a variable selection rule)
= Which branch should be followed first (normally

called a value selection rule)

CP solvers offer users open APIs to define domain-
specific heuristics to help get to good solutions

Domain-independent heuristics also exist where no
Intuition or domain-specific heuristics are available

© 2014 IBM Corporation
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Tree Search: Generic Heuristics PRALSY

25

= Variable Selection

Smallest domain (“first failure”) [Haralick & Elliot]

Largest degree (involved in the most constraints)
Combinations of the above (e.g. Brelaz, max. degree / domain)
Constrainedness (“Kappa”) [Gent et al.]

Impacts [Refalo]

Randomized

= Value Selection

“Promise” measure [Geelen]
Constrainedness (“Kappa”) [Gent et al.]
Impacts [Refalo]

Randomized

© 2014 IBM Corporation
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Tree Search: Impact-based heuristic Pt
X RS
12//5/ \9\1\117

Estimation for an instantiation
Let S be the product of domain sizes. The estimation of the search
space size below x =a is

e(x=a) = SX ((1-I/x=a))

Estimation for a variable
We assume that all values in the domain D, will be tried. The

estimation is:
E(x) = 2,5, €x=a)

26 © 2014 IBM Corporation
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Tree Search: Specific Heuristics A

= Specific heuristics often mean some programmina
has to be done. Implemented in CP Optimizer
using programming APIs based on either:

= Callbacks written by the user which dynamically determine the
variable and value selection rules to be followed at any point
during the tree search

= Full control using a backtracking system (“goals”) in a Prolog
style. Closures are the primitive objects to control the search.
Roughly speaking, a closure is called which gives back a
combination of the branching rule to follow, together with a
(recursive) specification of what to do after that point in the
27 form of another closure. © 2014 1BM Corporation
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Tree Search: Giving Hints PRALSY

28

Often, you can have some basic intuition about a
problem, but perhaps not to any depth
= Prefer the solver to handle the details

For the TSP, perhaps you think it is best to branch on
the “next” variables:

var £ = cp.factory;
cp.setSearchPhases (f.searchPhase(next));

This kind of high level information is often effective

Finer specification of variable and value selection rules
IS also possible without actually programming. e.q.

f.searchPhase(x, f.selectSmallest(f.domainSize()),

f.selectLargest(value()));

© 2014 IBM Corporation
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Tree Search: Strategies : .1

Il T, N

= Even if heuristics help search go to good solutions,
depth first search (DFS) can be problematic
— If heuristics make “high up” mistakes, DFS takes a
long time to correct these mistakes

= CP Solvers including CP Optimizer often support
different strategies and you can use the general
search mechanisms to build your own strategy
= |t is quite easy to build a discrepancy-based method

= CP Optimizer has built in:
= Depth-first, restarts, multi-point (evolutionary),
large neighbourhood search

29 © 2014 IBM Corporation
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Tree Search: Restarts

30
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CP In Practice
Hybrid Methods: Large Neighbourhood Y,
Search

* |In scheduling, a common way of improving
solutions is to use Large Neighborhood Search

= Depends on the notion of an incumbent solution

= Some operations are “relaxed” - they can move
freely while still obeying problem constraints

= The remaining operations stay “rigid” which means
that they can shift in time but stay in much the
same order as in the current solution

= The start times of the free and rigid parts are then
decided by a search using heuristics. The aim is to
find a solution of lower objective value

31 © 2014 IBM Corporation
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Hybrid Methods: Large Neighbourhood
Search

32
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Hybrid Methods: Large Neighbourhood
Search

33

© 2014 IBM Corporation



CP In Practice

Hybrid Methods: Large Neighbourhood
Search

34

© 2014 IBM Corporation



CP In Practice

Hybrid Methods: Large Neighbourhood
Search

35
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Custom Constraints .1,

= Most CP solvers allow the users to write custom
constraints with whatever semantics they wish

= CP Optimizer uses an event-based mechanism

= The custom constraint is alerted when the values are
removed from a variable domain
= |t then removes values from domains of other vars

= Example:
= In the TSP example, a custom constraint could
dynamically solve a MST problem based on the
current domains of the “next” variables
= Forms a lower bound on the objective function

36 © 2014 IBM Corporation
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Custom Constraints: CP Optimizer example ®

37
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lloCP cp = ...;
ILCDEMONI1(runMST, MSTODbject *, mst) {
// Code to calculate and impose lower bound

llcDemon runMSTDemon = runMST(cp, myMSTODbject);
for (intj=0;j < N;j++)
MmyMSTODbject->next[i].whenDomain(runMST);

© 2014 IBM Corporation
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Hybrid Methods: Using an LP Solver b

38

It may be possible to linearize a part of a CP model

and run an LP on that part to

= provide bounds on the objective

= provide information to the branching heuristic
(choice of value)

[Beck and Refalo] report good improvements on
early/tardy cost problems

Implemented in the CP Optimizer automatic search

= Linearize precedences, logical constraints,
execution / non-execution costs, alternatives

= Use PWL functions to linearize complex cost
functions
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Hybrid Methods: Using an LP Solver

Ratio of cost to final cost when using LP heuristic {98 problens)
188 [ . . .
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Decomposition el

40

. (@5
Some problems are sometimes too large to get a good
solution in reasonable time

Often, a MIP can be used to split an initial problem into

a number of smaller CP problems

= In CPLEX Studio, you get the CPLEX Optimizer & CP
Optimizer together

Examples

= Prod. planning with CPLEX, scheduling with CPO

= Resource assignment w/ CPLEX, scheduling w/ CPO

= Rostering using column generation: Master solved
with CPLEX, subproblem with CPO

© 2014 IBM Corporation
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Summary
35
= Branching Heuristics \
= Generic _
» Dedicated O ét;)t%ma_tlc_ally used by
. Hints ptimizer
_ B Can be implemented with
" Strategies CP Optimizer
= Restarts

= Large Neighbourhood Search

= QOther techniques
= Decomposition
= Custom constraints
= Using an LP solver

41 © 2014 IBM Corporation
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Some Techniques used in CP Optimizer 54

" Automatic search uses a set of techniques working together

—These typically use domain filtering and tree search as a
building block, but are not limited to this

" Examples of techniques used

—Restarting techniques —Large Neighborhood Search

—No-good tracking —Evolutionary algorithms

— Impact-based branching —Constraint aggregation

— Opportunistic probing —Dominance rules

—Large Neighborhood Search —Machine learning

—LP-assisted heuristics

42 © 2014 IBM Corporation
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