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Problems with Multiple Criteria
| Finding the best possible

compromise
| Different features
|One decision maker

(DM) – several DMs
| Deterministic –

stochastic
| Continuous – discrete
| Nonlinear – linear
èNonlinear multiobjective

optimization



| Nonlinear Multiobjective
Optimization by
Kaisa M. Miettinen,
Kluwer (Springer),
Boston, 1999

| Concepts
| Optimality
|Methods (4 classes)
| Tree diagram of methods
| Graphical illustrations
| Some new methods
| Applications
| Conclusions
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Modelling

|Modelling + simulation not
enough alone!

|Reliable models required for
optimization

|Optimization enables taking
full advantage of high-quality
models

|Challenging to combine
different models

Phenomenon/
Application

Mathematical
model

Numerical
model

Computational
model

Simulation with
computers

Vali-
dation

Optimization



Decision Making

| Some background
Å Problems are more and more complex
Å Individuals, groups and organizations need better decisions
Å Complicated interdependencies hard to handle for humans

without decision support
| Optimization provides systematic and analytic ways to

find the best possible solution (according to the criterion
used)

| Optimization is NOT what-if analysis or trying a few
solutions and selecting the best of them

| Operations research is a scientific approach  to decision
making (Saul I. Gass) – applying mathematical and other
techniques in decision problems in business, industry,
government, military etc.



Multiobjective Optimization
|Most real-life problems have several conflicting objectives

to be considered simultaneously
| It is not ok to use typical approaches to

Å convert all but one into constraints in the modelling phase or
Å invent weights for the objectives & optimize the weighted sum
Å simplify the consideration and lose information in this way

|Multiobjective optimization
Å Formulating each relevant aspect as an objective function
Å Typically easier than to try to form a single objective and measure

all relevant points of view e.g. in money
Å Reveals true nature of problem without simplifications and real

interrelationships between the objective functions
Å Can make the problem computationally easier to solve

Needed in strategic, operative and decision making in general
The feasible region may turn out to be empty -> minimize constraint
violations



Challenges

| Hidden needs in various application fields
Å How to attract interest and raise awareness

|We must continuously question current practices
Å New technologies enable revolutionary approaches

|We need tools for handling complexity
| Computational efficiency is still important
|Multidisciplinary: mathematics, information

technology, numerical methods, usability, good
links to specific applications, etc.



Concepts

where
fi: S®R = objective function
k (³ 2) = number of

(conflicting) objective
functions,

x = decision vector (of n
decision variables xi)

S Ì Rn = feasible region
formed by constraint
functions and

``minimize´´ = minimize
the objective functions
simultaneously

We consider multiobjective optimization problems



Concepts cont.
| S consists of linear, nonlinear and box

constraints for the variables
|We denote objective function values by zi = fi(x)
| z = (z1,…, zk) is an objective vector
| Z Ì Rk denotes the image of S; feasible objective

region. Thus z Î Z

Definition: If all functions are linear, problem is
linear (MOLP).  If some functions are nonlinear,
we have a nonlinear multiobjective optimization
problem. Problem is nondifferentiable if some
functions are nondifferentiable and convex if all
objectives and S are convex



Concepts cont.
|A decision maker (DM) is needed. (S)he has insight into

the problem and can express preference relations
|Multiobjective optimization = help DM in finding most

preferred solution
Å We need preference information from DM

|An analyst is responsible for the mathematical side
| Solution process = finding a solution
| Final solution = feasible PO solution satisfying the DM
| Ranges of the PO set: ideal objective

vector z­, approximated nadir point znad

| Ideal objective vector = individual
optima of each fi and utopian objective
vector z­­ is strictly better than z­



Optimality
|Contradiction and possible incommensurability Þ
|x*Î S is (globally) Pareto optimal (PO) if there does

not exist another xÎS such that fi(x) £ fi(x*) for all
i=1,…,k and fj(x) < fj(x*) for at least one j. Objective
vector z*= f(x*)ÎZ is Pareto optimal if x* is
i.e. (z* - Rk

+\{0}) Ç Z = Æ,
that is, (z* - Rk

+) Ç Z = z*.
|PO solutions form a (possibly

nonconvex and disconnected) PO set
|x*Î S is weakly PO if there does not exist another xÎ

S such that fi(x) < fi(x*) for all i=1,…,k
i.e. (z* - int Rk

+) Ç Z = Æ.
|Properly PO: unbounded trade-offs are

not allowed



Optimality cont.
| Paying attention to the Pareto optimal set and

forgetting other solutions is acceptable only if
we know that no unexpressed or approximated
objective functions are involved!

| Assuming DM is rational and problem
correctly specified, final solution is always
PO

| A point x*Î S is locally Pareto optimal if it is
Pareto optimal in some environment of x*.

| Global Pareto optimality Þ local Pareto
optimality

| Local PO Þ global PO, if S convex, fi:s
quasiconvex with at least one strictly
quasiconvex fi



More Concepts
|Value function U:Rk®R may represent preferences.
|If U(z1) > U(z2) then the DM prefers z1 to z2. If U(z1) =

U(z2) then z1 and z2 are equally good (indifferent).
|U is assumed to be strongly decreasing = less is

preferred to more. Implicit U is often assumed

|Decision making can be thought of being based on
either value maximization or satisficing

|An objective vector containing the aspiration levels ži
of the DM is called a reference point ž ÎRk.



Results

|Sawaragi, Nakayama, Tanino: We know
that Pareto optimal solution(s) exist if
Å the objective functions are lower

semicontinuous and
Å the feasible region is nonempty and compact

|Karush-Kuhn-Tucker optimality
conditions can be formed as a natural
extension to single objective optimization
for both differentiable and
nondifferentiable problems



Trading off
|Moving from one PO solution to another = trading off
|Definition: Given x1 and x2 Î S, the ratio of change

between fi and fj is

|Lij is a partial trade-off if fl(x1) = fl(x2) for all l=1,…,k,
l ¹i,j. If fl(x1) ¹ fl(x2) for at least one l and l ¹ i,j, then
Lij is a total trade-off

|Let d* be a feasible direction from x* Î S.  The total
trade-off rate along the direction d* is

|If fl(x*+ad*) = fl(x*) " l ¹i,j and for all 0 £a£a*, then
lij is a partial trade-off rate.



Marginal Rate of Substitution
| x1 and x2 are indifferent if they are

equally desirable to the DM.
| Definition: A marginal rate of

substitution mij=mij(x*) is the
amount of decrement in fi that
compensates the DM for one-unit
increment in fj, while all the other
objectives remain unaltered.

| For continuously differentiable
functions we have



Final Solution



Testing Pareto Optimality

| x* is PO if and only if

has an optimal objective
function value 0. Otherwise, the
solution obtained is PO



Methods for Multiple Objectives
| Finding a Pareto optimal set or a representation of it

= vector optimization
| Typically methods use scalarization for converting

the problem into a single objective one
Å Scalarization contains preference information &

original objective functions
Å After scalarization, single objective optimizers are used

|Methods differ on what information is exchanged
between method ↔ DM as well as how problem is
scalarized

| Classification according to the role of the DM
• Not present, before, after or during solution process

| Based on the existence of a value function:
• ad hoc: U would not help
• non ad hoc: U helps

| Kaisa Miettinen: Nonlinear Multiobjective
Optimization, Kluwer (Springer), Boston, 1999



Four Classes of Methods
| How to support DM?
| No decision maker – some neutral compromise solution
| A priori methods: DM sets hopes and closest solution is found

Å Expectations may be too optimistic or pessimistic
Å Hard to express preferences without knowing the problem well

| A posteriori methods: generate representation of PO set
+ Gives information about variety of PO solutions
Å Expensive, computationally demanding
Å Difficult to represent the PO set if k > 2
o Example: evolutionary multiobjective optimization methods

| Interactive methods: iterative search process
+ Avoid difficulties above
+ Solution pattern is formed and repeated iteratively
+ Move around Pareto optimal set
+ What can we expect DMs to be able to say?
+ Goal: easiness of use
+ Cognitively valid approaches: classification and

reference point consisting of aspiration levels



Methods cont.
|No-preference methods

Å Meth. of Global Criterion
|A posteriori methods

Å Weighting Method
Å e-Constraint Method
Å Hybrid Method
Å Method of Weig. Metrics
Å Achievement Scalarizing

Function Approach
|A priori methods

Å Value Function Method
Å Lexicographic Ordering
Å Goal Programming

|Interactive methods
Å Interactive Surrogate Worth

Trade-Off Method
Å GDF Method
Å Tchebycheff Method
Å Reference Point Method
Å GUESS Method
Å Reference Direction

Approach
Å Satisficing Trade-Off

Method
Å Light Beam Search
Å NIMBUS Method



No-Preference Methods:
Method of Global Criterion (Yu, Zeleny)

|Distance between z­ and Z is minimized by
Lp-metric:
if global ideal
objective vector
is known

| or by L¥-metric:

|Differentiable form of the latter:



Method of Global Criterion cont.

? The choice of p
affects greatly the
solution

+ Solution of the Lp-
metric (p < ¥) is PO

» Solution of the L¥-
metric is weakly PO
and the problem has
at least one PO
solution

+ Simple method (no
special hopes are set)



A Posteriori Methods

| Generate the PO set,
actually a representation
of it

| Present it to the DM
| Let the DM select one
– Computationally

expensive/difficult
– Hard to select from a set
– How to display the

alternatives (if k > 2)?



Weighting Method (Gass, Saaty)
¢Problem

» Solution is weakly PO
+ Solution is PO if it is

unique or wi > 0 for all i
+ Convex problems: any

PO solution can be found
– Nonconvex problems:

some of the PO solutions
may fail to be found



Why not Weighting Method

beauty cooking house-
wifery

tidi-
ness

Mary 1 10 10 10
Jane 5 5 5 5
Carol 10 1 1 1

Selecting a wife (maximization problem):

Idea originally from Prof. Pekka Korhonen



Why not Weighting Method

beauty cooking house-
wifery

tidi-
ness

Mary 1 10 10 10
Jane 5 5 5 5
Carol 10 1 1 1
weights 0.4 0.2 0.2 0.2

Selecting a wife (maximization problem):



Why not Weighting Method

beauty cooking house-
wifery

tidi-
ness

results

Mary 1 10 10 10 6.4
Jane 5 5 5 5 5
Carol 10 1 1 1 4.6
weights 0.4 0.2 0.2 0.2

Selecting a wife (maximization problem):



Weighting Method cont.

– Weights are not easy to be understood
(correlation, nonlinear affects). Small change in
weights may change the solution dramatically

– Evenly distributed weights do not produce an
evenly distributed representation of the PO set



e-Constraint Method (Haimes et al)

| Problem

» The solution is weakly Pareto optimal
+ x* is PO iff it is a solution when ej = fj(x*)

(i=1,…,k, j¹l) for all objectives to be minimized
+ A unique solution is PO
+ Any PO solution can be found with some effort
- There may be difficulties in specifying upper

bounds



Trade-Off Information

| Let the feasible region be of the form
S = {x ÎRn | g(x) = (g1(x),…, gm(x)) T £ 0}

| Lagrange function of the e-constraint
problem is

| Under certain assumptions the coefficients
lj= llj are (partial or total) trade-off rates



Method of Weighted Metrics (Zeleny)

| Weighted metric formulations are



Method of Weighted Metrics cont.
+ If the solution is unique or the weights are positive,

the solution of Lp-metric (p<¥) is PO
+ For positive weights, the solution of L¥-metric is

weakly PO and there exists at least one PO solution
+ Any PO solution can be found with the L¥-metric

with positive weights if the reference point is utopian
but some of the solutions may be weakly PO

- All the PO solutions may not be found with p<¥
|

where r>0. This generates properly PO solutions
and any properly PO solution can be found



Achievement Functions cont.
(Wierzbicki)

| Example of order-representing functions:

where w is some fixed positive weighting vector
| Example of order-approximating functions:

where w is as above and r>0 sufficiently small.
+ The DM can obtain any arbitrary (weakly) PO

solution by moving the reference point only



Achievement Scalar. Fun. cont.

|Solution is Pareto optimal
|Any properly Pareto optimal solution can be found



f1

f2

Achievement Scalarizing
Function:

A
A’

B

B’



Two Worlds

Multiple criteria decision
making
Å Role of DM and decision

support emphasized
Å Role of preference

information important
Å Different types of methods -

interactive ones widely
developed

Å Solid theoretical background
(we can prove Pareto
optimality etc.)

Å Scalarization combining
objective and preferences into
real-valued functions

Evolutionary multiobjective
optimization (EMO)
ÅIdea to approximate the set of

Pareto optimal solutions
ÅCriteria: minimize distance to

real PO set and maximize
diversity within the
approximation

ÅNot too much emphasis on
DM’s preferences so far

ÅGuaranteeing actual
optimality not always clear

ÅE.g. nonconvexity and
discontinuity cause no
difficulties

ÅBackground in applications
ÅMany benchmark problems



Multiobj. Evolutionary Algorithms

|Many different approaches
|VEGA, RWGA, MOGA, NSGA,

NSGA II, DPGA, etc.
|Goals: maintaining diversity and

guaranteeing Pareto optimality –
how to measure?
|Special operators have been

introduced, fitness evaluated in
many different ways etc.
|Works best if k=2



A Priori Methods

| DM specifies hopes,
preferences, opinions

- DM does not
necessarily know
how realistic hopes
are (expectations may
be too high)

Value Function
Method

(Keeney, Raiffa)
ì Problem



Value Function Method cont.

+ If U represents the global preference structure of
the DM, the solution obtained is the ``best´´

+ The solution is PO if U is strongly decreasing
- It is very difficult for the DM to specify the

mathematical formulation of her or his U
- Existence sets consistency and other requirements
- Even if the explicit U were known, the DM may

have doubts or change preferences
- U can not represent intransitivity/incomparability
+ Implicit value functions are important for

theoretical convergence results of many methods



Lexicographic Ordering
|The DM must specify an absolute order of

importance for objectives, i.e., fi >>> fi+1>>> ….
|If the most important objective has a unique

solution, stop. Otherwise, optimize the second most
important objective such that the most important
objective maintains its optimal value etc.

+ The solution is Pareto optimal.
+ Some people make decisions successively.
- Difficulty: specify the absolute order of importance.
- The method is robust. The less important objectives

have very little chances to affect the final solution
- Trading off is impossible



| The DM must specify an aspiration level ži for
each objective function

| fi + an aspiration level = a goal. Deviations from
aspiration levels are minimized

| The deviations can be represented as
overachievements di = max [0, fi(x) – ži]

èWeighted
approach:
with x and di
(i=1,…,k) as
variables.
Å Weights from

the DM
- Not always PO

Goal Programming (Charnes, Cooper)



Goal Programming cont.
|Lexicographic approach: the deviational variables

are minimized lexicographically
|Combination: a weighted sum of deviations is

minimized in each priority class
+ The solution is Pareto optimal if the reference point

is or the deviations are all positive
+ Goal programming is widely used for its simplicity
- The solution may not be PO if the aspiration levels

are not selected carefully
- Specifying weights or lex. orderings may be difficult
- Implicit assumption: it is equally easy for the DM to

let something increase a little if (s)he has got little of
it and if (s)he has got much of it



Interactive Methods
|Most developed class of methods
| A solution pattern is formed and repeated iteratively
| DM directs the solution process, i.e. movement around PO set
| DM needs time and interest for co-operation
| Only some PO points (those that are interesting to the DM)

are generated
| DM is not overloaded with information
| DM can learn: specify and correct preferences and selections

as the solution process continues
| DM has more confidence in the final solution
| Important aspects

Å what is asked – what can we expect DMs to be able to say?
Å what is told – goal: easiness of use
Å how the problem is scalarized

| Psychological convergence!



Examples of Forms of Interaction

|Opinions about trade-off rates, marginal rates of
substitution

|Selecting one from a sample of PO solutions
|Reference point
|Classification
ØLuque et al., OR Spectrum (2011), Ruiz et al,

Annals of OR (2012)



Interactive Surrogate Worth
Trade-Off (ISWT) Method (Chankong, Haimes)
|Idea: Approximate (implicit) U by surrogate worth

values using trade-offs of the e-constraint method
|Assumptions:

Å continuously differentiable U is implicitly known
Å functions are twice continuously differentiable
Å S is compact and trade-off information is available

|KKT multipliers lli> 0 for all i are partial trade-off
rates between fl and fi

|For all i the DM is told: ``If the value of fl is
decreased by lli, the value of fi is increased by one
unit or vice versa while other values are unaltered.´´

|The DM must tell the desirability with an integer
[10,-10] (or [2,-2]) called surrogate worth value



ISWT Algorithm

1) Select fl to be minimized and give upper bounds
2) Solve the e-constraint problem.Trade-off

information is obtained from the KKT-multipliers
3) Ask the opinions of the DM with respect to the

trade-off rates at the current solution
4) If some stopping criterion is satisfied, stop.

Otherwise, update the upper bounds of the
objective functions with the help of the answers
obtained in 3) and solve several e-constraint
problems to determine an appropriate step-size.
Let the DM choose the most preferred alternative.
Go to 3)



ISWT Method cont.
|Thus: direction of the steepest ascent of U is

approximated by the surrogate worth values
|Non ad hoc method
|DM must specify surrogate worth values and

compare alternatives
! The role of fl is important and it should be chosen

carefully
! The DM must understand the meaning of trade-

offs well
! Easiness of comparison depends on k and the DM.
- It may be difficult for the DM to specify consistent

surrogate worth values
+ All the solutions handled are Pareto optimal



Geoffrion-Dyer-Feinberg
(GDF) Method

|Idea: Maximize the DM's (implicit) value function
with a suitable gradient method

|Local approximations of the value function are made
using marginal rates of substitution mi (DM gives)

|Assumptions
Å U is implicitly known, continuously differentiable and

concave in S
Å objectives are continuously differentiable
Å S is convex and compact

|The gradient of U at xh:

|The direction of the gradient of U:



GDF Algorithm

1) Ask the DM to select the reference function fl.
Choose a feasible starting point z1. Set h=1.

2) Ask the DM to specify k-1 marginal rates of
substitution between fl and other objectives at
zh.

3) Solve the problem. Set the search direction
dh. If dh = 0, stop.

4) Determine with the help of the DM the
appropriate step-size into the direction dh .
Denote the corresponding solution by zh+1.

5) Set h=h+1. If the DM wants to continue, go to
2). Otherwise, stop.



! The role of the function fl is significant.
|Non ad hoc method
|DM must specify marginal rates of

substitution and compare alternatives
- The solutions to be compared are not

necessarily Pareto optimal
- It may be difficult for the DM to specify the

marginal rates of substitution (consistency)
- Theoretical soundness does not guarantee

easiness of use

GDF Method cont.



Tchebycheff Method (Steuer)
|Idea: Interactive weighting space reduction

method. Different solutions are generated with well
dispersed weights. The weight space is reduced in
the neighbourhood of the best solution

|Assumptions: Utopian objective vector is available
|Weighted distance (Tchebycheff metric) between

the utopian objective vector and Z is minimized:

|It guarantees Pareto optimality and any Pareto
optimal solution can be found



Tchebycheff Method cont.
|At first, weights between [0,1] are generated.
|Iteratively, the upper and lower bounds of the

weighting space are tightened.
|Algorithm
1) Specify number of alternatives P and number of

iterations H. Construct z­­. Set h=1.
2) Form the current weighting vector space and

generate 2P dispersed weighting vectors.
3) Solve the problem for each of the 2P weights.
4) Present the P most different of the objective

vectors and let the DM choose the most preferred.
5) If h=H, stop. Otherwise, gather information for

reducing the weight space, set h=h+1 and go to 2).



Tchebycheff Method cont.
|Non ad hoc method
+ All the DM has to do is to compare several Pareto

optimal objective vectors and select the most
preferred one.

! The ease of the comparison depends on P and k.
- The discarded parts of the weighting vector space

cannot be restored if the DM changes her/his mind.
- A great deal of calculation is needed at each

iteration and many of the results are discarded.

+ Parallel computing can be utilized.



Reference Point Method (Wierzbicki)
| Idea: Direct the search by reference points

representing desirable values for the
objectives and generate new alternatives by
shifting the reference point

| Reference point is projected onto PO set with
achievement scalarizing function

| Solution is properly PO



Reference Point Method Algorithm

| No specific assumptions
| Algorithm:
1) Present information to the DM. Set h=1.
2) Ask the DM to specify a reference point žh.
3) Minimize ach. function. Present zh to the DM.
4) Calculate k other solutions with reference points

where dh=||žh - zh|| and ei is the ith unit vector.
5) If the DM can select the final solution, stop.

Otherwise, ask the DM to specify žh+1. Set
h=h+1 and go to 3).



Reference Point Method cont.

|Ad hoc method (or both)
+ Easy for the DM to

understand: (s)he has to specify aspiration levels
and compare objective vectors.

+ For nondifferentiable problems, as well
+ No consistency required
- Easiness of comparison depends on the problem
- No clear strategy to produce the final solution



GUESS Method (Buchanan)
|Idea: To make guesses žh and see what happens.

(The search procedure is not assisted.)
|Assumptions: z­ and znad are available.
|Maximize the min. weighted deviation from znad.
|Each fi(x) is normalized
Þ range is [0,1].

èProblem:

+ Solution is weakly PO.
+ Any PO solution can be found.



GUESS Algorithm
1) Present the ideal and the nadir

objective vectors to the DM.
2) Let the DM give upper or

lower bounds to the objective
functions if (s)he so desires.
Update the problem, if
necessary.

3) Ask the DM to specify a
reference point.

4) Solve the problem.
5) If the DM is satisfied, stop.

Otherwise go to 2).



GUESS Method cont.
|Ad hoc method
+ Simple to use
+ No specific assumptions are set on the behaviour or

the preference structure of the DM. No consistency is
required

+ Good performance in comparative evaluations
+ Works for nondifferentiable problems
- No guidance in setting new aspiration levels
- Optional upper/lower bounds are not checked
- Relies on the availability of the nadir point
! DMs are easily satisfied if there is a small difference

between the reference point and the obtained solution



Satisficing Trade-Off Method
(Nakayama et al)

| Idea: To classify the objective functions:
Å functions to be improved
Å acceptable functions
Å functions whose values can be relaxed

|Assumptions
Å functions are twice continuously differentiable
Å trade-off information is available in the KKT multipliers

|Aspiration levels from the DM, upper bounds from
the KKT multipliers

| Satisficing decision making is emphasized



Satisficing Trade-Off Method cont.
è Problem

where žh > z­­ and r>0. Solution weakly
or properly PO, respectively

|Any (properly) PO solution can be found
| Partial trade-off rate information can

be obtained from optimal KKT
multipliers of the differentiable
counterpart problem



Satisficing Trade-Off Algorithm

1) Calculate z­­ and get a starting solution.
2) Ask the DM to classify the objective functions

into the three classes. If no improvements are
desired, stop.

3) If trade-off rates are not available, ask the DM to
specify aspiration levels and upper bounds.
Otherwise, ask the DM to specify aspiration
levels. Utilize automatic trade-off in specifying
the upper bounds for the functions to be relaxed.
Let the DM modify the calculated levels, if
necessary.

4) Solve the problem. Go to 2).



Satisficing Trade-Off Method cont.
|For linear and quadratic problems exact trade-off

may be used to calculate how much objective values
must be relaxed in order to stay in the PO set

|Ad hoc method
|Almost the same as the GUESS method if trade-off

information is not available
+ The role of the DM is easy to understand: only

reference points are used
+ Automatic or exact trade-off decrease burden on

the DM
+ No consistency required
- The DM is not supported



STEM

|Classification: I< and I³ + ideal and nadir objective
vectors

|Solution is weakly Pareto optimal
|Benayon, Tergny, Larichev, Montgolfier



Light Beam Search (Slowinski, Jaszkiewicz)

|Idea: To combine the reference point idea and tools
of multiattribute decision analysis (ELECTRE)

|Minimize order-approximating achievement
function (with an infeasible reference point).

|Assumptions
Å functions are continuously differentiable
Å z­ and znad are available
Å none of the objective functions is more important than

all the others together



Light Beam Search Algorithm
1) Get the best and the worst values of each fi from

the DM or calculate z­ and znad. Set z­ as reference
point. Get indifference (preference and veto)
thresholds.

2) Minimize the achievement function.
3) Calculate k PO additional alternatives and show

them. If the DM wants to see alternatives between
any two, set their difference as a search direction,
take steps in that direction and project them. If
desired, save the current solution.

4) The DM can revise the thresholds; then go to 3). If
(s)he wants to change reference point, go to 2). If,
(s)he wants to change the current solution, go to 3).
If one of the alternatives is satisfactory, stop.



Light Beam Search cont.
| Establish outranking relations between alternatives. Alternative

outranks another if it is at least as good as the latter
| DM gives indifference thresholds=intervals where indifference

prevails. Hesitation between indifference and
preference=preference thresholds. Veto threshold prevents
compensating poor values in some objectives

| Alternatives near the current solution (based on the reference
point) generated so that they outrank current one - no
incomparable/indifferent solutions shown

| Ad hoc method
+ Versatile possibilities: specifying reference points, comparing

alternatives and affecting the set of alternatives in different
ways

- Specifying different thresholds may be demanding. They are
important

+ The thresholds are not assumed to be global.
+ Thresholds  should decrease the burden on the DM



Background for NIMBUSÒ

| DM should understand how to use method
| Solution = best possible compromise
| DM is responsible for the final solution
| Difficult to present the Pareto optimal set,

expectations may be too high
| Interactive approach avoids these difficulties
| Move around Pareto optimal set
| How can we support the learning process?
| DM should be able to direct the solution process
| Goal: easiness of use Þ no difficult questions &

possibility to change one’s mind
| Dealing with objective function values is

understandable and straightforward



Synchronous NIMBUSÒ

Miettinen, Mäkelä, EJOR (2006)
l Scalarization is important: contains preference

information
l But scalarizations based on same input give

different solutions – Which is the best? Þ
Synchronous NIMBUSÒ

l Different solutions are obtained using different
scalarizations (Miettinen, Mäkelä, OR Spec (2002))

l Show them to the DM & let her/him choose the best
l NB: DM is assumed to have knowledge about the

problem in question, no deep understanding of
optimization process or theory

l Also intermediate solutions can be generated
l Versatile possibilities to direct solution process



Classification in NIMBUS
| Form of interaction: Classification of objective functions

into up to 5 classes
| Classification: desirable changes in the current PO

objective function values fi(xh)
| Classes: functions fi whose values

Å should be decreased (iÎI<),
Å should be decreased till some aspiration level ži

h < fi(xh) (iÎI£),
Å are satisfactory at the moment (iÎI=),
Å are allowed to increase up till some upper bound ei

h>fi(xh) (iÎI>)
Å are allowed to change freely (iÎIà)

| Functions in I£ are to be minimized only till the specified
level.

| DM must be willing to give up something
| Miettinen, Mäkelä: Optim (1995), JORS (1999), Comp&OR

(2000), EJOR (2006)



NIMBUSÒ Method cont.
|Solve subproblem

where r > 0
|Appropriate single objective optimizer
|Solution properly PO. Any PO solution can be

found
|Solution satisfies desires as well as possible –

feedback of tradeoffs
|We have 3 more subproblems to get more solutions



3 More Subproblems

Þ Different Pareto optimal solutions



| Intermediate solutions between xh and x’h: f(xh+tjdh), where
dh= xh’- xh and tj=j/(P+1)

| Only different solutions are shown
| Search iteratively around the PO set – learning-oriented
| Ad hoc method
+ Versatile possibilities for the DM: classification,

comparison, extracting undesirable solutions
+ Does not depend entirely on how well the DM manages in

classification. (S)he can e.g. specify loose upper bounds and
get intermediate solutions

+ Works for nondifferentiable/nonconvex problems
+ No demanding questions are posed to the DM
+ Classification and comparison of alternatives are used in

the extent the DM desires
+ No consistency is required – learning-oriented method

NIMBUS Method - Remarks



1) Choose starting solution and project it to be PO.
2) Ask DM to classify the objectives and to specify

related parameters. Solve 1-4 subproblems.
3) Present different solutions to DM.
4) If DM wants to save solutions, update database.
5) If DM does not want to see intermediate solutions,

go to 7). Otherwise, ask DM to select the end points
and the number of solutions.

6) Generate and project intermediate solutions. Go to
3).

7) Ask DM to choose the most preferred solution. If
DM wants to continue, go to 2). Otherwise, stop.

NIMBUSÒ Algorithm



| The first, unique interactive optimization system on the Internet
• Centralized computing (server in Jyväskylä) & distributed

interface
• No special requirements for computers: No computing capacity

nor compilers needed
• Latest version always available
• Graphical user-interface via WWW
• Personal username and password
• Even for nonconvex and nondifferentiable problems and

integer-valued variables
• Symbolic (sub)differentiation
• Available to any academic Internet user for free
| Tutorial and online help
Ø Miettinen, Mäkelä, Comp & OR (2000), EJOR (2006)

http://nimbus.it.jyu.fi/

WWW-NIMBUSÒ since 1995



WWW-NIMBUS Version 4
|Synchronous algorithm

Å Several scalarizing functions based on the same user input
|Minimize/maximize objective functions
|Linear/nonlinear inequality/equality and/or box constraints
|Continuous or integer-valued variables
|Local and and global single-objective solvers and hybrids
|Different constraint-handling methods
|Problem formulation and results available in a file
|Possible to

Å change solver at every iteration or change parameters
Å edit/modify the current problem
Å save different solutions and return to them (visualize, intermediate)

using database











IND-NIMBUSÒ

|For MS-Windows and Linux operating systems
|Synchronous NIMBUS, Pareto Navigator, PAINT
|Minimize/maximize objective functions
|Linear/nonlinear inequality/equality and/or box

constraints
|Continuous or integer-valued variables
|Local solvers and global solvers and their hybrid
|User can change solver at every iteration
|User can change parameters of solvers
|Has been connected with e.g.

Å BALASÒ and APROSÒ process simulators by (VTT) and
GPS-X simulator

Å different modelling and simulation tools (Matlab, GAMS)
http://ind-nimbus.it.jyu.fi/



IND-NIMBUSÒ Views
Objective
function
values and
classification

Numerical
classification
boundaries

Initial PO
solution



IND-NIMBUSÒ Views

NIMBUS
classification
by clicking
objective bar

New
solutions
calculated
with a play
button

New PO
solutions

Initial PO
solution



Tree  Diagram of Methods



Computational Challenges
of complex simulation-based optimization
l We need tools for handling complexity
l Computational cost

– Objective and constraint functions depend on output of
simulation models – may be time-consuming

l Multiple conflicting objectives
– Identifying most preferred solution requires preferences of

decision maker – methodological support needed
l Black-box models

– Global optimization needed -> computational cost
l Stochasticity

– Model output is random vector with unknown distribution
– Sampling the output increases computational cost



Pareto Navigator
Eskelinen et al., OR Spectrum (2010)

|Challenge: computational expense (convex)
|Background & motivation

Å How to support DM?
Å I Learning phase II Decision phase
Å Computationally costly problems

|Pareto optimal set = actual PO set
|Learning-oriented interactive method
|Instead of approximating objective functions we

directly approximate PO set
|Hybrid method which combines a posteriori and

interactive methods
|Move around approximation – then project to actual

PO set



Pareto Navigator, cont.
l Initialization phase

l (relatively small) set of Pareto optimal solutions
l polyhedral approximation of Pareto optimal set (convex hull of

PO solutions available) in objective space – approximated PO
set

l Navigation phase
l DM specifies how current solution should be improved, e.g.

reference point ž. Set search direction d = ž – zc

l dynamic real-time movement into desired direction
l information of whole PO set – possibilities and limitations
l active participation of DM: DM can learn about problem,

trade-offs, interdependencies and adjust one’s hopes
l DM can concentrate on interesting solutions
l computationally inexpensive (parametric LP)
l more accurate approximation can be generated of part of PO

set (Klamroth, Miettinen, Oper Res)



Progress of Method



Pareto Navigator Views

Pareto
optimal
solutions

Objective
function
values
and
goals

Pareto
Navigator
controls



Pareto Navigator Views
First, the DM
selects PO
solution
where
navigation
starts

Next, the
DM sets
goals for
objectives

Then, the
DM starts to
navigate
along the
direction of
goals



Pareto Navigator Views
Based on the
information
given, new
approximated
PO solutions
are generated

to project
them to real
PO solutions

or as a
starting point
for new
navigation

Approximated
solutions can
be used



|We can see what happenes in objective space
during the solution process
(polyhedral approximation and actual PO set)

Example in 3D



Comments on Pareto Navigator
|If approximated solution desirable, it is projected to

actual PO set
|Stop if DM is satisfied with projected solution

Å DM can continue navigation
Å solution can be included in the approximation and

approximation regenerated
Å more accurate approximation can be generated of a part of PO

set (Klamroth, Miettinen, Oper Res, 2008)
Å DM can continue with some interactive method to fine-tune

| Enables convenient and real-time navigation in the approximated
PO set
Å DM can move in directions of promising solutions and learn

| For computationally demanding problems
| Instead of approximating objective functions we directly

approximate PO set



PAINT
Hartikainen et al., Comp Opt & Appl (2012)

|Challenge: computational expense (also
nonconvex problems)

|Background & motivation
Å Combine a posteriori and interactive methods

• Support learning
Å For computationally expensive problems

• Avoid long waiting times in interactive methods when generating
new PO solutions

|Idea
Å Compute a small set of Pareto optimal solutions
Å Create approximated multiobj.optimization problem
Å Use any interactive method to find the best approximate solution on the

approximation
Å Find closest Pareto optimal solution in original problem



PAINT = PAreto front INTerpolation

|Both for convex and nonconvex
problems
|Approximates PO set with Delaunay

triangulations
|Forms mixed-integer linear multiobj.

opt. problem as a surrogate to the
original one
Å computationally inexpensive

|E.g. NIMBUS can be applied with
no waiting times (e.g. CPLEX)



Screen Shot: PAINT+NIMBUS



Nautilus – Background
Miettinen et al., EJOR (2010)

| Typically methods deal with Pareto optimal solutions only
Å No other solutions are expected to be interesting for the DM
Å Trading off necessitated: impairment in some objective(s) must be

allowed in order to get a new solution
| Past experiences affect DMs’ hopes
|We do not react symmetrically to gains and losses

Å Requirement of trading off may hinder DM’s willingness to move from
the current Pareto optimal solution

| Typically low number of iterations in interactive methods
Å Anchoring: solutions considered may fix our expectations (DM fixes

one’s thinking on some (possible irrelevant) information
Å Time available for solution process limited
Å Choice of starting point may play a significant role

Ø Most preferred solution may not be found
Ø Negotiation support for group decision making

Ø Those negotiators easily anchor at starting Pareto optimal solution if it
is advantageous for their interests



Prospect Theory
Ø Kahneman and Tversky (1979)
Ø Critique of expected utility theory as a descriptive model of

decision making under risk
| Our attitudes to losses loom larger than gains

Å Pleasure of gaining some money seems to be lower than the
dissatisfaction of losing the same amount of money

| People underweight outcomes that are merely probable in
comparison with outcomes that are obtained with certainty
-> risk aversion in choices involving sure gains
-> risk seeking in choices involving sure losses
-> inconsistent preferences for situations presented in different forms

| The past and present context of experience defines an adaptation
level, or reference point, and stimuli are perceived in relation to
this reference point
Å If we first see a very unsatisfactory solution, a somewhat better solution

is more satisfactory than  otherwise
| Location of reference point and the manner in which choice

problems are coded and edited emerge as critical factors in the
analysis of decisions



Nautilus
l Learning-oriented interactive method
l DM starts from the worst i.e. nadir objective vector

and moves towards PO set
l Improvement in each objective at each iteration
l Possible to gain at every iteration – no need for

impairment
l At each iteration, objective vector obtained

dominates the previous one
l Only the final solution is Pareto optimal
l DM can always go backwards if desired
l The method allows the DM to approach the part of

the PO set (s)he wishes



nadzz =0
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Nautilus cont.
|Main underlying tool: achievement function based

on a reference point
|Given the current values zh, there are two

possibilities for preference information:
Å Rank relative importance of improving each current value

(the higher rank, the more important improvement is)
Å How would you distribute 100 points among the current

obj.values: the more points you allocate, the more
improvement is desired

|DM sets number of steps to be taken (can be
changed) and preferences related to nadir obj. vector

|We calculate number of iterations left
|We calculate the solution of achievement function

minimization, and take a step towards it
|At the last step we get PO solution
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l At each iteration, range of reachable obj.values shrinks
l We calculate also how close current obj.vector is to the PO set



Example



Nautilus - Remarks
|During the solution process, connection to decision

variable space is temporarily lost
Å Iteration points generated are only defined in objective

space
Å We know that a feasible solution and corresponding

obj.vector better than the current vector exist
|Nautilus allows free search

Å Nautilus “comes from the bottom of the sea towards the
surface” and allows the DM to direct the search

|Avoid need of trading off – should allow the DM to
learn better of what is available/possible
|Nautilus provides new perspective to solving

multiobjective optimization problems
|Solution process can be continued with other

(interactive) methods, if needed



Graphical Illustrations



On Visual Illustration
|The decision maker (DM) is often asked to

compare several alternatives
Å part of interactive methods (GDF, ISWT,

Tchebycheff, reference point method, light beam
search, NIMBUS)

|Graphs and table complement each other
|Illustration is difficult but important

Å easy to comprehend
Å important information should not be lost
Å no unintentional information should be included
Å makes it easier to see essential similarities and

differences
|DMs have different cognitive styles



On Applications
Gain important feedback for method development
Gain new ideas for decision support
l We have applied IND-NIMBUS®

– application independent
l Collaboration with experts of problem domains
l Positive experiences
l DM receives a new perspective

– Can consider different objectives simultaneously,
not one by one

– Interdependencies and interactions between
objectives to be observed

– DM learns about the conflicting qualitative
properties

– New insight to challenging and complex
phenomena

l Experiences of DMs
– methods easy to use – understandable

questions
– DM can find a satisfactory solution and be

convinced of its goodness
– Confidence: best solution was found



Some Applications
Ø Continuous casting of steel

Ø Miettinen et al., Comput Opt & Appl (1998)
Ø Miettinen, Mater & Manuf Processes (2007)

Ø Headbox design for paper machines
Ø Hämäläinen et al., JOTA (2003)

Ø Paper quality in paper machine design
Ø Madetoja et al., Eng with Comp (2006)

Ø Ultrasonic transducer design
Ø Heikkola et al., Ultrasonics (2006)

Ø Chemical process design
Ø Hakanen et al., JMCDA (2005)
Ø Hakanen et al., Appl Therm Eng (2006)

Ø Simulated moving bed processes
Ø Hakanen et al., Cont & Cyb (2007)

Ø Heat exchange network synthesis
Ø Laukkanen et al., Comp  Chem Eng (2010)

Ø Wastewater treatment system planning
Ø Hakanen et al. DSS(2011), Env Mod (2013)

Ø Brachytherapy and IMRT
Ø Ruotsalainen et al., Phys Med Biol (2010)

Ø Paper machine: both design and operation
Ø Steponavice et al., Comp-Aided Design (2014)



Heat Exchanger Network Synthesis
l Simultaneous heat exchanger network synthesis model solved as

a true multiobjective problem
l Objectives: utility cost, fixed cost of units and the cost related to

the size of the heat exchangers
l GAMS model solved using interactive NIMBUS method

– single objective optimizers of GAMS available

Ø Laukkanen et al., Computers and Chem Eng (2010)

Collaboration with Aalto University of Technology and Sciences



Optimization of Wastewater Treatment by
Process Modelling and Simulation

l Challenges
– operational requirements (e.g.

effluent limits of nitrogen and
phosphorus) getting more
stringent

– economical efficiency (e.g. min
plant footprint, consumption of
chemicals and energy)

– operational reliability
l Conflict: quality of the treated

wastewater vs. operational costs
l Interactive tool for designers

combining commercial simulator
and interactive decision making

l Advantages
– conflicting objectives considered

simultaneously
– easier to formulate obj.functions
– novel perspectives for designers

Ø Hakanen et al., DSS (2011), Env
Model & Softw (2013)

Collaboration with



Paper Machine Headbox Design
l100-150 meters long,

width up to 11 meters
lFour main components

– headbox
– former
– press
– drying

l In addition, finishing

lObjectives
– qualitative properties
– save energy
– use cheaper fillers and

fibres
– produce as much as

possible
– save environment

lFirst design problem:
Headbox outlet height
control

lThen chain of unit
process models:
virtual paper machine

lOptimize e.g. gloss,
roughness, basis
weight, fibre orientat.

Collaboration with Metso Paper



Headbox Design cont.

Earlier
l Weighting method

– how to select the
weights?

– how to vary the weights?
l Genetic algorithm

– two objectives
– computational burden

l First model with
NIMBUS
– turned out: model did not

represent the actual
goals

– thus, it was difficult for
the DM to specify
preference information



Continuous Casting of Steel
l Control of secondary cooling; intensity of

water sprays affects solidification rate of
steel

l Quality of steel depends on behavior of
surface temperature and solidification
front in time

l Originally, empty feasible region
l Constraints into objectives: minimize

constraint violations
– Keep the surface temperature near a

desired temperature
– Keep the surface temperature between

some upper and lower bounds
– Avoid excessive cooling or reheating on

the surface
– Restrict the length of the liquid pool
– Avoid too low temperatures at the yield

point
Ø Miettinen et al., Comput Opt & Appl

(1998), Miettinen, Mater & Manuf
Processes (2007)



Process Simulation in
Chemical Engineering

l Using BALASÒ process simulator
(product of VTT Finland)

l Flowsheet of process designed with
BALASÒ provides a simulation model
to be optimized with IND-NIMBUS
– Heat recovery: organize  heat management

taking seasonal changes in climate into
account (typically single objective of
annualized energy and investment costs,
estimated amortization time and interest
rate for capital)

– Water allocation (recycle water in the
process)

– Collaboration with VTT



Heat Recovery System
l Heat recovery system design for

process water system of a paper mill
l Main trade-off between running

costs, i.e., energy and investment
costs

l 4 objective functions
– steam needed for heating water for

summer conditions
– steam needed for heating water for

winter conditions
– estimation of area for heat

exchangers
– amount of cooling or heating needed

for effluent
l 3 decision variables

– area of the effluent heat exchanger
– approach temperatures of the dryer

exhaust heat exchangers for both
summer and winter operations



Ultrasonic Transducer
l High-power ultrasonics creates strong

ultrasonic vibration fields in solids and fluids,
low ultrasonic frequencies (20-100 kHz)

l Vibrations cause intense effects: cavitation,
steaming&heating needed in sonochemistry,
cleaning, welding, etc.

l 3 objectives
– Minimize axial vibration (attachment point

vibrates as little as possible)
– Minimize electric impedance (implying less

power loss & less interference with other
electric equipment)

– Minimize acoustic pressure near transducer
front
(reduce strong cavitation effects at the
container wall)

l Even the starting solution of IND-NIMBUS was
better than current design (in terms of all three
objectives)

l Need for global single obj. optimizer evident



Desing and Operation of
Paper Machine

l Hierarchical structure
– design problem on upper level
– operation optim. on lower level
Ø multiple objective on both levels

l Targets
v on design level

v decrease investment cost
v increase quality of paper

v on operational level
v guarantee runnability and stability of

production system

l Design level objectives
– Min long term averages of operational

objectives (variations in filler content,
basis weight, and paper strength)

– Max runtime
– Min investment cost i.e. tower volumes





Criteria for Good Decision
Support System

l Recognizes and generates PO solutions
l Helps DM feel convinced that final

solution is the most preferred one or at
least close enough to that

l Helps DM to get a “holistic” view over
PO set

l Does not require too much time from
DM to find final solution

l Communication between DM and
system not too complicated

l Provides reliable information about
alternatives available



Method Development
Challenges

l Complex problems
– High dimensions (n and k)
– Computational cost (metamodels vs. interpolation, new methods)
– Uncertainty (scenarios, distributions)
– Stochasticity
– Robustness
– Bi- and multilevel problems
– Model predictive control

l User interface design - usability
l Better decision support (strengths of humans vs

computers) – new devices and platforms
l Automatic decision support

– How to build intelligent systems that learn DM’s preferences
(incomplete, uncertain, verbal information)



Conclusions
l Multiobjective optimization problems

can be solved!
l Complex problems as a whole – not

only suboptima
l New insight of complex phenomena –

no simplifications
l Role of DM emphasized: is in control,

gets decision support and learns
l We can find solutions that could not

have been found otherwise
l Applications everywhere
l Selecting a method: features of

problem, opinions of DM, practical
applicability

l Compromise is better than optimum!
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