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Problems with Multiple Criteria

€ Finding the best possible
compromise

£ Different features

£ One decision maker
(DM) — several DMs

£ Deterministic —
stochastic

£ Continuous — discrete
£ Nonlinear - linear

=» Nonlinear multiobjective
optimization
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Decision Making

€ Some background
e Problems are more and more complex
e Individuals, groups and organizations need better decisions
e Complicated interdependencies hard to handle for humans
without decision support
€ Optimization provides systematic and analytic ways to
find the best possible solution (according to the criterion
used)

€ Optimization is NOT what-if analysis or trying a few
solutions and selecting the best of them

€ Operations research is a scientific approach to decision
making (Saul 1. Gass) — applying mathematical and other
techniques in decision problems in business, industry,
government, military etc.



Multiobjective Optimization

€ Most real-life problems have several conflicting objectives
to be considered simultaneously

€ It is not ok to use typical approaches to
e convert all but one into constraints in the modelling phase or
e invent weights for the objectives & optimize the weighted sum
e simplify the consideration and lose information in this way

€ Multiobjective optimization
e Formulating each relevant aspect as an objective function

e Typically easier than to try to form a single objective and measure
all relevant points of view e.g. in money

e Reveals true nature of problem without simplifications and real
Interrelationships between the objective functions

e Can make the problem computationally easier to solve
» Needed in strategic, operative and decision making in general

» The feasible region may turn out to be empty -> minimize constraint
violations



Challenges

€ Hidden needs in various application fields
e How to attract interest and raise awareness

€ We must continuously question current practices
e New technologies enable revolutionary approaches

€ We need tools for handling complexity
€ Computational efficiency is still important

€ Multidisciplinary: mathematics, information
technology, numerical methods, usability, good
links to specific applications, etc.



Concepts

We consider multiobjective optimization problems

- f1(x) 7 where
C . fa(x) f.: s>rR = objective function
minimize _
: K (= 2) = number of
_ fr(x) (conflicting) objective
subject to x € 5, fun(ftl_ons’
_ X = decision vector (of n
in other words decision variables x;)

minimize  {f1(x), f2(x),..., fu(x)} S Cfcl;\)rm:egegilltc):genﬁ?f:\?r?t

subject to x €5, functions and
“minimize”” = minimize
the objective functions
simultaneously



Concepts cont.

£ S consists of linear, nonlinear and box
constraints for the variables

€ We denote objective function values by z; = f;(x)
®z=(z,...,2) 1s an objective vector
# Z — Rk denotes the image of S; feasible objective

region. Thusz € Z | C

Definition: If all functions are linear, problem is
linear (MOLP). If some functions are nonlinear,
we have a nonlinear multiobjective optimization
problem. Problem is nondifferentiable if some
functions are nondifferentiable and convex if all
objectives and S are convex

P




Concepts cont.

& A decision maker (DM) is needed. (S)he has insight into
the problem and can express preference relations

@ Multiobjective optimization = help DM in finding most
preferred solution
e We need preference information from DM

€ An analyst is responsible for the mathematical side
€ Solution process = finding a solution

€ Final solution = feasible PO solution satisfying the DM
€ Ranges of the PO set: ideal objective *:
vector z+, approximated nadir point z"ad

& Ideal objective vector = individual
optima of each f; and utopian objective

vector z++ Is strictly better than z-



Optimality
& Contradiction and possible incommensurability =
& x*e S is (globally) Pareto optimal (PO) if there does
not exist another xeS such that f;(x) < f;(x*) for all
I=1,...,k and fj(x) < fj(x*) for at least one J. Objective
vector z*= f(x*)eZ is Pareto optimal if Ax* IS
ie. (z*-Rk{0D)nzZ=0,
thatis, (z*-R%)nZ=2z*
€ PO solutions form a (possibly
nonconvex and disconnected) PO set
& x*e S Is weakly PO if there does not exist another xe
S such that f;(x) < f:(x*) for all 1=1,...,k 4
ie. (ZF-intRk)NZ=0.
& Properly PO: unbounded trade-offs are
not allowed

—_




Optimality cont.

€ Paying attention to the Pareto optimal set and
forgetting other solutions is acceptable only if
we know that no unexpressed or approximated
objective functions are involved!

€ Assuming DM is rational and problem
correctly specified, final solution is always
PO

€ A point x*e S is locally Pareto optimal if it is
Pareto optimal in some environment of x*.

€ Global Pareto optimality = local Pareto
optimality
€ Local PO = global PO, If S convex, f::s

quasiconvex with at least one strictly
quasiconvex f;



More Concepts

& Value function U:R¥—=R may represent preferences.

& If U(z!) > U(z?) then the DM prefers z! to z2. If U(ZY) =
U(z%) then z! and z? are equally good (indifferent).

€ U 1s assumed to be strongly decreasing = less Is
preferred to more. Implicit U is often assumed

€ Decision making can be thought of being based on
either value maximization or satisficing

€ An objective vector containing the aspiration levels z,
of the DM is called a reference point Z eRk,



Results

& Sawaragi, Nakayama, Tanino: We know
that Pareto optimal solution(s) exist If

e the objective functions are lower
semicontinuous and

e the feasible region is nonempty and compact

& Karush-Kuhn-Tucker optimality
conditions can be formed as a natural
extension to single objective optimization
for both differentiable and
nondifferentiable problems



Trading off

€ Moving from one PO solution to another = trading off

& Definition: Given x! and x? € S, the ratio of change
between f. and f; IS £:(x1) — fi(x2)
I J Ai' _ Ai' 1} 2 __ J 1 -
= B = G = 56
& A; is a partial trade-off if fi(x!) = f(x?) for all I=1,... Kk,
| #i,j. If f,(x1) # f,(x?) for at least one | and | # i,j, then
Aj; 1s a total trade-off

@ Let d* be a feasible direction from x* € S. The total
trade-off rate along the direction d* is

)\ij p— }\ij(}(*, d*) — ]_l]]ln Aij(x* -+ &d*,}(*).
ce—¥

@ If f,(x*+ad*) = f,(x*) V | 1,) and for all 0 <a<a*, then
A;; Is a partial trade-off rate.



Marginal Rate of Substitution

& x!and x? are indifferent if they are
equally desirable to the DM.

& Definition: A marginal rate of
substitution m;=m;;(x*) Is the
amount of decrement in f; that
compensates the DM for one-unit
Increment in f;, while all the other
objectives remain unaltered.

& For continuously differentiable
functions we have

_ dft(}i*)
d f;(x*)

dU(a")) 1dU(z"))

Aij d Ej d ~q

and mij —



Final Solution

Pareto optimal set

indifference curve

Figure 1. The final solution.



Testing Pareto Optimality

& x*I1s PO if and only If
minimize Y &;

subject to  fi{x)+¢&; = fi(x*) foralli =1,...,k,
g > 0foralli=1,...,k,
x € 8.
has an optimal objective
function value 0. Otherwise, the
solution obtained 1s PO



@ Finding a Pareto optimal set or a representation of it
= vector optimization

@ Typically methods use scalarization for converting
the problem into a single objective one

e Scalarization contains preference information &
original objective functions

e After scalarization, single objective optimizers are used

€ Methods differ on what information is exchanged
between method <> DM as well as how problem is
scalarized

€ Classification according to the role of the DM
Not present, before, after or during solution process

€ Based on the existence of a value function:
 ad hoc: U would not help
e non ad hoc: U helps

@ Kaisa Miettinen: Nonlinear Multiobjective &
Optimization, Kluwer (Springer), Boston, 1999

NONLINEAR
MULTIOBJECTIVE
OPTIMIZATION



Four Classes of Methods

€ How to support DM?
€ No decision maker — some neutral compromise solution

& A priori methods: DM sets hopes and closest solution is found
e EXpectations may be too optimistic or pessimistic
e Hard to express preferences without knowing the problem well

€ A posteriori methods: generate representation of PO set
+ Gives information about variety of PO solutions
e EXxpensive, computationally demanding
e Difficult to represent the PO set if k > 2
o Example: evolutionary multiobjective optimization methods

€ Interactive methods: iterative search process
Avoid difficulties above

Solution pattern is formed and repeated iteratively
Move around Pareto optimal set

What can we expect DMs to be able to say?

Goal: easiness of use

Cognitively valid approaches: classification and
reference point consisting of aspiration levels

+ + + + o+ o+



Methods cont.

@ No-preference methods & Interactive methods

e Meth. of Global Criterion e Interactive Surrogate Worth
€ A posteriori methods Trade-Off Method

e Weighting Method e GDF Method

e ¢-Constraint Method e Tchebycheff Method

e Hybrid Method e Reference Point Method

e Method of Welg. Metrics e GUESS Method

e Achievement Scalarizing
Function Approach Approach

@A priori met_hOdS e Satisficing Trade-Off
e Value Function Method Method

e Lexicographic Ordering
e Goal Programming

e Reference Direction

e Light Beam Search
e NIMBUS Method



No-Preference Methods:
Method of Global Criterion ¢yu, zeleny)

@ Distance between z+ and Z is minimized by ,
L -metric: o ’° . P
if %Iobal ideal TR (Z (fix) = 2 )p)
objective vector =
IS kKnown

@ or by L-metric:  minimize  max [f;(x) - ]

subject to x€ S

subject to x € S.
£ Differentiable form of the latter:

minimize @
subject to o > (fi(x) — 2f), foralli=1,...,k
X € S,



Method of Global Criterion cont.

Z-

? The choice of p
affects greatly the
solution

+ Solution of the L ;-

metric (p < «) IS PO i

Solution of the L_- S

o objective vector

metric is weakly PO .

U

and the problem has
at least one PO
solution

+ Simple method (no
special hopes are set)

L | - metdc

L 2 - metac

L . .
o metric



A Posteriori Methods

& Generate the PO set,
actually a representation

of It
£ Present 1t to the DM
£ Let the DM select one

— Computationally
expensive/difficult

— Hard to select from a set

— How to display the
alternatives (if k > 2)?




'PPI’Ob|em minimize

subject to

where

~ Solution 1s weakly PO

+ Solution i1s PO If it is
unique or w; > 0 for all |

+ Convex problems: any
PO solution can be found

— Nonconvex problems:
some of the PO solutions
may fail to be found

k

Y w;fi(x)
i=1
x €5,
k
Z w; — 1



Why not Weighting Method

Selecting a wife (maximization problem):

beauty | cooking | house- | tidi-
wifery |ness

Mary 1 10 10 10
Jane 5 5 5 5
Carol 10 1 1 1

ldea originally from Prof. Pekka Korhonen




Why not Weighting Method

Selecting a wife (maximization problem):

beauty | cooking | house- | tidi-
wifery |ness

Mary 1 10 10 10
Jane 5 5 5 5
Carol 10 1 1 1

weights [0.4 0.2 0.2 0.2




Why not Weighting Method

Selecting a wife (maximization problem):

beauty | cooking | house- |tidi- |results
wifery |ness
Mary 1 10 10 10 (6.4
Jane 5 5 5 5
Carol 10 1 1 1 4.6
weights 0.4 0.2 0.2 0.2




Weighting Method cont.

Z

Figure 3. Convex and nonconvex problems.

— Weights are not easy to be understood
(correlation, nonlinear affects). Small change In
weights may change the solution dramatically

— Evenly distributed weights do not produce an
evenly distributed representation of the PO set



g-Constraint Method (Haimes et al)

£ Problem

U

minimize  fp(x)
subject to  fj(x) <eg;, forall j=1,...,k,j #¢
x € S.
The solution is weakly Pareto optimal

X* 1S PO Iff It Is a solution when g; = f;(x*)
(I=1,...,k, J#l) for all objectives to be mlnlmlzed

A unlque solution i1s PO
Any PO solution can be found with some effort

There may be difficulties in specifying upper
bounds



Trade-Off Information

& Let the feasible region be of the form
S={xeR"[g(x) = (91(X).---, Im(x)) " <0}

€ Lagrange function of the e-constraint

problem is m
Fe(x) + ) A(f;(x) —¢5) + Z pigi (x).

i#e

€ Under certain assumptions the coefficients
A= \; are (partial or total) trade-off rates



Method of Weighted Metrics (Zeleny)

€ Weighted metric formulations are

: 1/p

minimize (Z Wi (f i(x) — 2z ) p)
i=1

subject to x € S

and
@ 5 5 TE — ¥
minimize 11151?;: [wz (f i (X) %4 )]
subject to x € 5,

where w; > 0 for all 7 and Ef=1 w; = 1.



Method of Weighted Metrics cont.

+ If the solution Is unique or the weights are positive,
the solution of L ,-metric (p<co) is PO

+ For positive weights, the solution of L_-metric Is
weakly PO and there exists at least one PO solution

+ Any PO solution can be found with the L_-metric
with positive weights If the reference point is utopian
but some of the solutions may be weakly PO

— All the PO solutions may not be found with p<co

<
min _max Lwi(fi(x) +,OZ fi(x

=1,

s.t. xX€S8,

where p>0. This generates properly PO solutions
and any properly PO solution can be found



Achievement Functions cont.
(Wierzbicki)

& Example of order-representing functions:

sz(z) = 1%1?53(:@[%(2" &)

where w iIs some fixed positive weighting vector
& Example of order-approximating functions:

sz(z) = 111(1?2(k wilz; — +pr1 — Zi),
where w Is as above and p>0 sufficiently small.

+ The DM can obtain any arbitrary (weakly) PO
solution by moving the reference point only



Achievement Scalar. Fun. cont.

S(f(X)) — MaX [wz(fz( )_ Z’L +pzwz fz — zz’)

i=1,...k

€ Solution Is Pareto optimal
€ Any properly Pareto optimal solution can be found



Achievement Scalarizing
Function:

k
minimize  max lf;g? ]_|_ Z na{;(X)

L

7,




Two Worlds

Multiple criteria decision
making

e Role of DM and decision
support emphasized

e Role of preference
Information important

e Different types of methods -
Interactive ones widely
developed

e Solid theoretical background
(we can prove Pareto
optimality etc.)

e Scalarization combining
objective and preferences into
real-valued functions

Evolutionary multiobjective
optimization (EMO)
eldea to approximate the set of
Pareto optimal solutions

e Criteria: minimize distance to
real PO set and maximize
diversity within the
approximation

eNot too much emphasis on
DM’s preferences so far

e Guaranteeing actual
optimality not always clear

eE.g. nonconvexity and
discontinuity cause no
difficulties

eBackground in applications
eMany benchmark problems



Multiobj. Evolutionary Algorithms

& Many different approaches

®VEGA, RWGA, MOGA, NSGA,
NSGA |I, DPGA, etc.

€ Goals: maintaining diversity and
guaranteeing Pareto optimality —
how to measure?

€ Special operators have been
Introduced, fitness evaluated In
many different ways etc.

8 \Works best If k=2



A Priori Methods

maximize U(f;(x),..., fr(x))
& DM specifies hopes, subject to x € S
oreferences, opinions

— DM does not |
necessarily know K
how realistic hopes
are (expectations may
be too high)

Value Function
Method
(Keeney, Raiffa)

2 Problem

contours of U



Value Function Method cont.

+ If U represents the global preference structure of
the DM, the solution obtained is the ""best™”

+ The solution is PO if U is strongly decreasing

— It 1s very difficult for the DM to specify the
mathematical formulation of her or his U

— EXxistence sets consistency and other requirements

— Even if the explicit U were known, the DM may
have doubts or change preferences

— U can not represent intransitivity/incomparability

+ Implicit value functions are important for
theoretical convergence results of many methods



_exicographic Ordering

& The DM must specify an absolute order of
Importance for objectives, i.e., f; >>>f, ,>>> ...

& If the most important objective has a unigue
solution, stop. Otherwise, optimize the second most
Important objective such that the most important
objective maintains its optimal value etc.

+ The solution is Pareto optimal.
+ Some people make decisions successively.
— Difficulty: specify the absolute order of importance.

— The method is robust. The less important objectives
have very little chances to affect the final solution

— Trading off Is Impossible



Goal Programming (Charnes, Cooper)

€ The DM must specify an aspiration level z; for
each objective function

@ f, + an aspiration level = a goal. Deviations from
aspiration levels are minimized

€ The deviations can be represented as
overachievements o, = max [0, f.(x) — z;]

= Weighted
approach: .
\(/:”:t:[]’ _)_(_i?)da? minimize Z; w;d;
variables. subject to fi(x) -9, <7z, i=1,...
e Weights from 0; 20, 1=1,...,k,
the DM X eSS

- Not always PO



Goal Programming cont.

£ |_exicographic approach: the deviational variables
are minimized lexicographically

€ Combination: a weighted sum of deviations is
minimized in each priority class

+ The solution is Pareto optimal if the reference point
IS or the deviations are all positive

+ Goal programming is widely used for its simplicity

— The solution may not be PO if the aspiration levels
are not selected carefully

— Specifying weights or lex. orderings may be difficult

— Implicit assumption: it is equally easy for the DM to
let something increase a little if (s)he has got little of
It and If (s)he has got much of it




Interactive Methods

€ Most developed class of methods

€ A solution pattern is formed and repeated iteratively

€ DM directs the solution process, i.e. movement around PO set
€ DM needs time and interest for co-operation

€ Only some PO points (those that are interesting to the DM)
are generated

$ DM Is not overloaded with information

€& DM can learn: specify and correct preferences and selections
as the solution process continues

# DM has more confidence in the final solution

€ Important aspects
e what is asked — what can we expect DMs to be able to say?
e what is told — goal: easiness of use
e how the problem is scalarized

€ Psychological convergence!



Examples of Forms of Interaction

€ Opinions about trade-off rates, marginal rates of
substitution

€ Selecting one from a sample of PO solutions
& Reference point
& Classification

» Luque et al., OR Spectrum (2011), Ruiz et al,
Annals of OR (2012)



Interactive Surrogate Worth

Trade-Off (lSWT) Method (Chankong, Haimes)

@ ldea: Approximate (Implicit) U by surrogate worth
values using trade-offs of the e-constraint method
& Assumptions:
e continuously differentiable U is implicitly known
e functions are twice continuously differentiable
e S Is compact and trade-off information is available

€ KKT multipliers A;;> 0 for all | are partial trade-off
rates between f; and f;

@ For all i the DM is told: ""If the value of f; is
decreased by A;, the value of f. Is increased by one
unit or vice versa while other values are unaltered.”

& The DM must tell the desirability with an integer
[10,-10] (or [2,-2]) called surrogate worth value



1)
2)

3)

4)

ISWT Algorithm

Select f, to be minimized and give upper bounds

Solve the g-constraint problem.Trade-off
Information is obtained from the KKT-multipliers

Ask the opinions of the DM with respect to the
trade-off rates at the current solution

If some stopping criterion is satisfied, stop.
Otherwise, update the upper bounds of the
objective functions with the help of the answers
obtained in 3) and solve several e-constraint
problems to determine an appropriate step-size.
et the DM choose the most preferred alternative.
Go to 3)



ISWT Method cont.

€ Thus: direction of the steepest ascent of U is
approximated by the surrogate worth values

£ Non ad hoc method

€ DM must specify surrogate worth values and
compare alternatives

I The role of f, Is Important and it should be chosen
carefully

I The DM must understand the meaning of trade-
offs well

I Easiness of comparison depends on k and the DM.

— It may be difficult for the DM to specify consistent
surrogate worth values

+ All the solutions handled are Pareto optimal



Geoffrion-Dyer-Feinberg
(GDF) Method

& ldea: Maximize the DM's (implicit) value function
with a suitable gradient method

€ Local approximations of the value function are made
using marginal rates of substitution m; (DM gives)

& Assumptions

e U is implicitly known, continuously differentiable and
concave in S

e objectives are continuously differentiable
e S Is convex and compact

& The gradient of U at xM:

VmU(fl(Xh), . .,fk(Xh)) = Z (gg) me,;(xh), I

i=1 _ ivmi h’
@ The direction of the gradient of U: ; iV i(X")




1)

2)

3)

4)

5)

GDF Algorithm

Ask the DM to select the reference function f;.
Choose a feasible starting point z1. Set h=1.

Ask the DM to specify k-1 marginal rates of
substitution between f, and other objectives at
zh,

Solve the problem. Set the search direction

dh. If dh =0, stop.

Determine with the help of the DM the
appropriate step-size into the direction d" .
Denote the corresponding solution by z"*1

Set h=h+1. If the DM wants to continue, go to
2). Otherwise, stop.



GDF Method cont.

I The role of the function f, is significant.
€ Non ad hoc method

€ DM must specify marginal rates of
substitution and compare alternatives

— The solutions to be compared are not
necessarily Pareto optimal

— It may be difficult for the DM to specify the
marginal rates of substitution (consistency)

— Theoretical soundness does not guarantee
easiness of use



Tchebycheff Method (Steuer)

& ldea: Interactive weighting space reduction
method. Different solutions are generated with well
dispersed weights. The weight space Is reduced In
the neighbourhood of the best solution

& Assumptions: Utopian objective vector is available

& Weighted distance (Tchebycheff metric) between
the utopian objective vector and Z is minimized:

k
wi(fi(x) =27, ) (fi(x) = 7)
i=1

lex minimize max |
i=1,....k

subject to X € S.

& |t guarantees Pareto optimality and any Pareto
optimal solution can be found



Tchebycheff Method cont.

& At first, weights between [0,1] are generated.

& |teratively, the upper and lower bounds of the
welighting space are tightened.

£ Algorithm

1) Specify number of alternatives P and number of
Iterations H. Construct z++. Set h=1.

2) Form the current weighting vector space and
generate 2P dispersed weighting vectors.

3) Solve the problem for each of the 2P weights.

4) Present the P most different of the objective
vectors and let the DM choose the most preferred.

5) If h=H, stop. Otherwise, gather information for
reducing the weight space, set h=h+1 and go to 2).




Tchebycheff Method cont.

£ Non ad hoc method

+ All the DM has to do Is to compare several Pareto
optimal objective vectors and select the most
preferred one.

I The ease of the comparison depends on P and k.

— The discarded parts of the weighting vector space
cannot be restored if the DM changes her/his mind.

— A great deal of calculation is needed at each
Iteration and many of the results are discarded.

+ Parallel computing can be utilized.



Reference Point Method (Wierzbicki)

& ldea: Direct the search by reference points
representing desirable values for the
objectives and generate new alternatives by
shifting the reference point

& Reference point is projected onto PO set with
achievement scalarizing function

$ Solution i1s properly PO
[ fi(x) —
k

k
o fi(x)
minimize ?:n}ax ] +p E nad

subject to x e S.

7,

nad _
’L

Figure 6. Altering the reference points.



Reference Point Method Algorithm

€ No specific assumptions
€ Algorithm:
1) Present information to the DM. Set h=1.
2) Ask the DM to specify a reference point z".
3) Minimize ach. function. Present z" to the DM.
4) Calculate k other solutions with reference points
z(i) = 2" + d"e’,
where d"=||z" - zN|| and €' is the ith unit vector.

5) If the DM can select the final solution, stop.
Otherwise, ask the DM to specify z"*1, Set
h=h+1 and go to 3).



Reference Point Method cont.

€ Ad hoc method (or both)

+ Easy for the DM to
understand: (s)he has to specify aspiration levels
and compare objective vectors.

+ For nondifferentiable problems, as well

+ No consistency required

— Easiness of comparison depends on the problem
— No clear strategy to produce the final solution



GUESS Method (Buchanan)

& Idea: To make guesses 2" and see what happens.
(The search procedure iIs not assisted.)

& Assumptions: z+ and z"ad are available.
& Maximize the min. weighted deviation from z"ad,
@ Each f,(x) is normalized  #* - fi(x)

= range is [0,1]. 2 —zf
=>»Problem: - . [zMed — fi(x)
mMaximize min
1<i<k | zhad — zh

subject to x € 5.

+ Solution is weakly PO.
+ Any PO solution can be found.



1)

2)

3)

4)
5)

GUESS Algorithm

Present the ideal and the nadir
objective vectors to the DM.

et the DM give upper or
lower bounds to the objective
functions If (s)he so desires.
Update the problem, if
necessary.

Ask the DM to specify a
reference point.

Solve the problem.
If the DM is satisfied, stop.

Otherwise go to 2).



GUESS Method cont.

£ Ad hoc method
+ Simple to use

+ No specific assumptions are set on the behaviour or
the preference structure of the DM. No consistency Is
required

+ Good performance in comparative evaluations
+ Works for nondifferentiable problems

— No guidance in setting new aspiration levels

— Optional upper/lower bounds are not checked
— Relies on the availability of the nadir point

| DMs are easily satisfied if there is a small difference
petween the reference point and the obtained solution




Satisficing Trade-Off Method
(Nakayama et al)

& ldea: To classify the objective functions:
e functions to be improved
e acceptable functions
e functions whose values can be relaxed

& Assumptions
e functions are twice continuously differentiable
e trade-off information is available in the KKT multipliers

& Aspiration levels from the DM, upper bounds from
the KKT multipliers

€ Satisficing decision making is emphasized



Satisficing Trade-Off Method cont.

=» Problem

or

i\X) — 2 i
max [ff, — o ] Z zzf_ -
where 2> z++ and p>O. Solution weakly
or properly PO, respectively
€ Any (properly) PO solution can be found
& Partial trade-off rate information can
be obtained from optimal KKT

multipliers of the differentiable
counterpart problem



Satisficing Trade-Off Algorithm

1) Calculate z++ and get a starting solution.

2) Ask the DM to classify the objective functions
Into the three classes. If no Improvements are
desired, stop.

3) If trade-off rates are not available, ask the DM to
specify aspiration levels and upper bounds.
Otherwise, ask the DM to specify aspiration
levels. Utilize automatic trade-off in specifying
the upper bounds for the functions to be relaxed.
et the DM modify the calculated levels, iIf
necessary.

4) Solve the problem. Go to 2).



Satisficing Trade-Off Method cont.

& For linear and quadratic problems exact trade-off
may be used to calculate how much objective values
must be relaxed in order to stay in the PO set

£ Ad hoc method

£ Almost the same as the GUESS method If trade-off
Information i1s not available

+ The role of the DM Is easy to understand: only
reference points are used

+ Automatic or exact trade-off decrease burden on
the DM

+ No consistency required
— The DM is not supported



STEM

@ Classification: I< and I= + ideal and nadir objective
vectors

€;

minimize max

| fi(x) — 7

1=1,....,k I Zle e]( ( ) )_

subject to  fi(x) <¢g; forall i€ -,
fi(x) < fi(x¢) forall ¢€lI-,

x €S,
€ Solution is weakly Pareto optimal

€ Benayon, Tergny, Larichev, Montgolfier




Light Beam Search (Slowinski, Jaszkiewicz)

& ldea: To combine the reference point idea and tools
of multiattribute decision analysis (ELECTRE)

€ Minimize order-approximating achievement
function (with an infeasible reference point).

k
lgl?gk[wi(zz‘ - Z;)] + p;(zi - Z).

& Assumptions
e functions are continuously differentiable
e z+ and z"d gre available

e none of the objective functions is more important than
all the others together



1)

2)
3)

4)

Light Beam Search Algorithm

Get the best and the worst values of each f; from
the DM or calculate z¢ and z"ad, Set z+ as reference
point. Get indifference (preference and veto)
thresholds.

Minimize the achievement function.

Calculate k PO additional alternatives and show
them. If the DM wants to see alternatives between
any two, set their difference as a search direction,
take steps In that direction and project them. If
desired, save the current solution.

The DM can revise the thresholds; then go to 3). If
(s)he wants to change reference point, go to 2). If,
(s)he wants to change the current solution, go to 3).
If one of the alternatives is satisfactory, stop.



Light Beam Search cont.

€ Establish outranking relations between alternatives. Alternative
outranks another if it is at least as good as the latter

€& DM gives indifference thresholds=intervals where indifference
prevails. Hesitation between indifference and
preference=preference thresholds. VVeto threshold prevents
compensating poor values in some objectives

€ Alternatives near the current solution (based on the reference
point) generated so that they outrank current one - no
Incomparable/indifferent solutions shown

€ Ad hoc method

+ Versatile possibilities: specifying reference points, comparing
alternatives and affecting the set of alternatives in different
ways

— Specifying different thresholds may be demanding. They are
Important

+ The thresholds are not assumed to be global.

+ Thresholds should decrease the burden on the DM
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Background for NIMBUS®

DM should understand how to use method
Solution = best possible compromise

DM is responsible for the final solution
Difficult to present the Pareto optimal set,
expectations may be too high

Interactive approach avoids these difficulties
Move around Pareto optimal set

How can we support the learning process?

DM should be able to direct the solution process
Goal: easiness of use = no difficult questions &
possibility to change one’s mind

Dealing with objective function values is
understandable and straightforward



Synchronous NIMBUS®
Miettinen, Makela, EJOR (2006)

e Scalarization Is important: contains preference
iInformation

e But scalarizations based on same input give
different solutions — Which is the best? =
Synchronous NIMBUS®

e Different solutions are obtained using different
scalarizations (Miettinen, Makela, OR Spec (2002))
e Show them to the DM & let her/him choose the best

e NB: DM is assumed to have knowledge about the
problem in question, no deep understanding of
optimization process or theory

e Also intermediate solutions can be generated
e Versatile possibilities to direct solution process



e o

Classification in NIMBUS

Form of interaction: Classification of objective functions
Into up to 5 classes

Classification: desirable changes in the current PO
objective function values f;(x")

Classes: functions f; whose values
e should be decreased (iel*),
e should be decreased till some aspiration level z" < f,(x") (iel),
e are satisfactory at the moment (iel”),
e are allowed to increase up till some upper bound &">f.(x") (iel”)
e are allowed to change freely (iel)

Functions in I= are to be minimized only till the specified
level.
DM must be willing to give up something

Miettinen, Mékela: Optim (1995), JORS (1999), Comp&OR
(2000), EJOR (2006)



NIMBUS® Method cont.

€ Solve subproblem _
fi(x) —2F f(x) =z | Zk: fi(x)

- ’ d ok | ! nad ok
I< nad _ '** na J— . . . — .
i€ _Zz 2 zj zj | i—1%; z;

s.t. fi(x) < fi(x¢) forall ieI<UISUIT,
fi(x) <e; forall ielI2,

x € 5,
where p > 0

€ Appropriate single objective optimizer
ﬁ?olution properly PO. Any PO solution can be
ound

@ Solution satisfies desires as well as possible —
feedback of tradeoffs

& \We have 3 more subproblems to get more solutions




3 More Subproblems

k
. fi(x) — Z** fi(x)
min  max
i=1,... k { Zi — 2} ; Z"
s.t. xe S
— k
. fi(x) — z; fi(x)
min max '
i=1,... k {Zinad _ Z;* l Pi; Z,?ad _ Z;:k"k
s.t. xe 8§
, nad k _
min max [fZ(X) % } Fp > filx)
2 ZPad — z; i—1 Z,Lnad — Z;
s.t. xe s

—> Different Pareto optimal solutions




NIMBUS Method - Remarks

& Intermedlate solutions between x" and x’": f(x"+t,d"), where

dh=x"- x" and t;=j/(P+1)

& Only dlfferent solutlons are shown

€ Search iteratively around the PO set — learning-oriented
€ Ad hoc method

_I_

_I_

_I_

Versatile possibilities for the DM: classification,
comparison, extracting undesirable solutions

Does not depend entirely on how well the DM manages in
classification. (S)he can e.g. specify loose upper bounds and
get intermediate solutions

Works for nondifferentiable/nonconvex problems
No demanding questions are posed to the DM

Classification and comparison of alternatives are used in
the extent the DM desires

No consistency Is required — learning-oriented method



NIMBUS® Algorithm

1) Choose starting solution and project it to be PO.

2) Ask DM to classify the objectives and to specify
related parameters. Solve 1-4 subproblems.

3) Present different solutions to DM.
4) If DM wants to save solutions, update database.

5) If DM does not want to see intermediate solutions,
go to 7). Otherwise, ask DM to select the end points
and the number of solutions.

6) Generate and project intermediate solutions. Go to
3).

7) Ask DM to choose the most preferred solution. If
DM wants to continue, go to 2). Otherwise, stop.



WWW-NIMBUS® since 1995 “NIMEgS)

& The first, unigue interactive optimization system on the Internet

e Centralized computing (server in Jyvaskyld) & distributed
Interface

* No special requirements for computers: No computing capacity
nor compilers needed

 Latest version always available
e Graphical user-interface via WWW
 Personal username and password

e Even for nonconvex and nondifferentiable problems and
Integer-valued variables

o Symbolic (sub)differentiation

« Auvailable to any academic Internet user for free

€ Tutorial and online help

> Miettinen, Mékeld, Comp & OR (2000), EJOR (2006)

http://nimbus.it.jyu.fi/



WWW-NIMBUS Version 4 ’N@

€ Synchronous algorithm
e Several scalarizing functions based on the same user input

€ Minimize/maximize objective functions

& Linear/nonlinear inequality/equality and/or box constraints
€ Continuous or integer-valued variables

_ocal and and global single-objective solvers and hybrids
Different constraint-handling methods

Problem formulation and results available in a file

Possible to
e change solver at every iteration or change parameters
e edit/modify the current problem

e save different solutions and return to them (visualize, intermediate)
using database

S0 8




WWW-NIMBLUS - Netscape
‘G0 Communicator  Help

Welcome to use the {scalar) version 3.3 of the —
interactive multiohjective optimization system
Information abowt WHW-NIMBUS
Tutorial
Latest improve ments
There exsts also other wersions of MILBITS
To experitnent with WWW-HINBUS, choose the guest vser-radichutton. Hote that a guest is not allowed to save any problems. Tobe able to
save problems get a personal nser account by selecting the new wser-radichutton.
& 0ld user -t
Enter the nsermatne: |:
Exnter the passwornd: [
" Mew user
" Chuest user (carmot save problens)
Submit | Clear |

=y Document: Dore.




Y WWW-NIMBUS ## Kalvokuval - Netscape - 10| x|

File Edit Yiew Go Communicator Help

Classify Functions Graphically

Point out desired function values. Waitt a moment after each click. Do not use the hack function of the browser on this page.

HAD IR f1 -7.7925355 £z 17.0 f3 289.0975 fd4 3557.857 £5 0.0

—190,5392
1536.149
-5.510456
—228 6446 0.24718
cy =262 AAPA =160 0L 007 67 .25 =407 2aER

OBJECTIVE FUNWCTIONS

Function ICV {estn ) Current Solution MNadir (estim.)

f1 -262.8827  -225.6446 -7 92568

f2 -16.0 -5.510456 17.0

i3 FOTT087E-3 024716579 285.0975 .
4 -67.25 1586.149 3587858

5 SA407.2835 0 -190.5553 0.0

Next optimization: IGIuhaI {GA + Deb) j

MMaximum number of new solutions to he generated: IFnur 'I

=l |Dacument: Done




WAWW-NIMBUS ## Kalvokuval - Metscape

File Edit View Go Communicator  Help

=l Ihttp:f fenimbus. it o, FifNEfindes. hml

Booiiiizziiiiiic f Liiiic B Liinit st
F Y
:_I 1' .:. ; - |
I\ A
IMBUS homepage ;"
PETAL DIAGRAM OF THE ALTERHATIVES
Alternative 1 Alternative 2 Alternative 32 Alternative 4 Alternative S .=F1
TR
m--
-
_|=+‘5
VALIE PATHS IN THE EELATIVE RANGE OF VALIES
Different alternatives have different colours
Alternative: 1
1 = -218,.8609¢
NADIR f£1 -155.8544 £2 -B.9999% {3 25.83343 {4 3939.291 +5 0.0
2 1 -5.937325
3 :8.88734
4 -21,.67885
5 & -52,3280¢5
Colour: .
—————— : Current classificatio
oy |00 BN -Z280.Te45 Bl -16.8 0 Be BB WAiT il -6T7. 25 —4B7. 2935
1] |




IND-NIMBUS
Command  YWiew Display Method Help

|EIX| P |#| [ciobal1+Local ~| [STD [ACH [ 5TOM [ GUESS
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IND-NIMBUS®

€ For MS-Windows and Linux operating systems
€ Synchronous NIMBUS, Pareto Navigator, PAINT
€ Minimize/maximize objective functions

€ Linear/nonlinear inequality/equality and/or box
constraints

€ Continuous or integer-valued variables

@ Local solvers and global solvers and their hybrid
€ User can change solver at every iteration

€ User can change parameters of solvers

€ Has been connected with e.g.

e BALAS® and APROS® process simulators by (VTT) and
GPS-X simulator

e different modelling and simulation tools (Matlab, GAMS)
http://ind-nimbus.it.jyu.fi/
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IND-NIMBUS® Views
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Computational Challenges

of complex simulation-based optimization
e \We need tools for handling complexity

e Computational cost

— Objective and constraint functions depend on output of
simulation models — may be time-consuming

e Multiple conflicting objectives

— ldentifying most preferred solution requires preferences of
decision maker — methodological support needed

e Black-box models
— Global optimization needed -> computational cost
e Stochasticity

— Model output is random vector with unknown distribution
— Sampling the output increases computational cost



Pareto Navigator
Eskelinen et al., OR Spectrum (2010)

€ Challenge: computational expense (convex)

& Background & motivation

e How to support DM?
e | Learning phase Il Decision phase

e Computationally costly problems
& Pareto optimal set = actual PO set
@ Learning-oriented interactive method

& Instead of approximating objective functions we
directly approximate PO set

€ Hybrid method which combines a posteriori and
Interactive methods

& Move around approximation — then project to actual
PO set



Pareto Navigator, cont.

e Initialization phase
e (relatively small) set of Pareto optimal solutions
e polyhedral approximation of Pareto optimal set (convex hull of
PO solutions available) in objective space — approximated PO
set
e Navigation phase

e DM specifies how current solution should be improved, e.g.
reference point z. Set search directiond =z — z¢

e dynamic real-time movement into desired direction
e information of whole PO set — possibilities and limitations

e active participation of DM: DM can learn about problem,
trade-offs, interdependencies and adjust one’s hopes

e DM can concentrate on interesting solutions
e computationally inexpensive (parametric LP)

e more accurate approximation can be generated of part of PO
set (Klamroth, Miettinen, Oper Res)
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Pareto Navigator Views
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Pareto Navigator Views
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Pareto Navigator Views
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Example in 3D

& \We can see what happenes in objective space
during the solution process

(polyhedral approximation and actual PO set)

nadir
o<




Comments on Pareto Navigator

@ |f approximated solution desirable, it is projected to
actual PO set

€ Stop If DM s satisfied with projected solution
e DM can continue navigation

e solution can be included in the approximation and
approximation regenerated

e more accurate approximation can be generated of a part of PO
set (Klamroth, Miettinen, Oper Res, 2008)

e DM can continue with some interactive method to fine-tune

€ Enables convenient and real-time navigation in the approximated

PO set
e DM can move in directions of promising solutions and learn

€ For computationally demanding problems

& Instead of approximating objective functions we directly
approximate PO set



PAINT
Hartikainen et al., Comp Opt & Appl (2012)

€ Challenge: computational expense (also
nonconvex problems)

& Background & motivation

e Combine a posteriori and interactive methods
 Support learning

e For computationally expensive problems

 Avoid long waiting times In interactive methods when generating
new PO solutions

& |dea

e Compute a small set of Pareto optimal solutions
e Create approximated multiobj.optimization problem

e Use any interactive method to find the best approximate solution on the
approximation

e Find closest Pareto optimal solution in original problem



PAINT = PAreto front INTerpolation

8 Both for convex and nonconvex
problems

€ Approximates PO set with Delaunay
triangulations

€ Forms mixed-integer linear multiobj.
opt. problem as a surrogate to the

original one
e computationally inexpensive

@ E.g. NIMBUS can be applied with
no waiting times (e.g. CPLEX)




Screen Shot: PAINT+NIMBUS
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Nautilus — Background

Miettinen et al., EJOR (2010)

€ Typically methods deal with Pareto optimal solutions only
e No other solutions are expected to be interesting for the DM

e Trading off necessitated: impairment in some objective(s) must be
allowed in order to get a new solution

€ Past experiences affect DMs’ hopes

€ We do not react symmetrically to gains and losses
e Requirement of trading off may hinder DM’s willingness to move from
the current Pareto optimal solution
& Typically low number of iterations in interactive methods

e Anchoring: solutions considered may fix our expectations (DM fixes
one’s thinking on some (possible irrelevant) information

e Time available for solution process limited
e Choice of starting point may play a significant role

» Most preferred solution may not be found

» Negotiation support for group decision making

» Those negotiators easily anchor at starting Pareto optimal solution if it
IS advantageous for their interests



Prospect Theory

» Kahneman and Tversky (1979)

» Critigue of expected utility theory as a descriptive model of
decision making under risk

€ Our attitudes to losses loom larger than gains
e Pleasure of gaining some money seems to be lower than the
dissatisfaction of losing the same amount of money
€ People underweight outcomes that are merely probable in
comparison with outcomes that are obtained with certainty
-> risk aversion in choices involving sure gains
-> risk seeking in choices involving sure losses
-> Inconsistent preferences for situations presented in different forms

€ The past and present context of experience defines an adaptation
level, or reference point, and stimuli are perceived in relation to
this reference point

e If we first see a very unsatisfactory solution, a somewhat better solution
IS more satisfactory than otherwise

€ Location of reference point and the manner in which choice
problems are coded and edited emerge as critical factors in the
analvsis of decisions



Nautilus

e Learning-oriented interactive method

e DM starts from the worst i.e. nadir objective vector
and moves towards PO set
e Improvement in each objective at each iteration
e Possible to gain at every iteration — no need for
Impairment
e At each iteration, objective vector obtained
dominates the previous one

e Only the final solution is Pareto optimal
e DM can always go backwards if desired

e The method allows the DM to approach the part of
the PO set (s)he wishes






Nautilus cont.

€ Main underlying tool: achievement function based
on a reference point

@ Given the current values z", there are two
possibilities for preference information:

e Rank relative importance of improving each current value
(the higher rank, the more important improvement is)

e How would you distribute 100 points among the current
obj.values: the more points you allocate, the more
Improvement is desired

& DM sets number of steps to be taken (can be
changed) and preferences related to nadir obj. vector

£ \We calculate number of iterations left

® We calculate the solution of achievement
minimization, and take a step towards it i o— [k

3 -, 40—

@ At the last step we get PO solution —




e At each iteration, range of reachable obj.values shrinks
e \We calculate also how close current obj.vector is to the PO set
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Example

min low current max
-8.34 -4.07 -4.07
-3.44 -2.83 -2.83
—7.50 -0.32 -0.32
0.00 9.71 9.71
min low current max
min low current max
_3.44 e 3,07 -2.83
~7.50 . 5.11| -D.32
0.00 1.23 - 5.24 g9.71
min low current max
-f.34 -g.01 ¢ -6.01 =-4.07
-3.44 -3.21 ¢ -3.21 -2.83
—T.50 -8.22 ¢ -6.22 -0.32
0.00 2.99 ¢ 2.99 9.71




Nautilus - Remarks

@ During the solution process, connection to decision
variable space is temporarily lost

e Iteration points generated are only defined in objective
space

e We know that a feasible solution and corresponding
obj.vector better than the current vector exist

£ Nautilus allows free search

e Nautilus “comes from the bottom of the sea towards the
surface” and allows the DM to direct the search

€ Avoid need of trading off — should allow the DM to
learn better of what is available/possible

@ Nautilus provides new perspective to solving
multiobjective optimization problems

® Solution process can be continued with other
(interactive) methods, If needed



Graphical Illustrations
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On Visual Hlustration

& The decision maker (DM) is often asked to
compare several alternatives

e part of interactive methods (GDF, ISWT,
Tchebycheff, reference point method, light beam
search, NIMBUYS)

€ Graphs and table complement each other

& |llustration is difficult but important
e easy to comprehend
e important information should not be lost
e no unintentional information should be included

@ makes it easier to see essential similarities and
differences

& DMs have different cognitive styles



On Applications

Gain important feedback for method development
Gain new ideas for decision support
e We have applied IND-NIMBUS®

— application independent
e Collaboration with experts of problem domains
Positive experiences

e DM receives a new perspective

— Can consider different objectives simultaneously,
not one by one

— Interdependencies and interactions between
objectives to be observed

— DM learns about the conflicting qualitative
properties

— New insight to challenging and complex
phenomena

e EXxperiences of DMs

— methods easy to use — understandable
guestions

— DM can find a satisfactory solution and be
convinced of its goodness

— Confidence: best solution was found



Some Applications

» Continuous casting of steel
> Miettinen et al., Comput Opt & Appl (1998)
> Miettinen, Mater & Manuf Processes (2007)
Headbox design for paper machines
> Hamalainen et al., JOTA (2003)
Paper quality in paper machine design
> Madetoja et al., Eng with Comp (2006)
Ultrasonic transducer design
> Heikkola et al., Ultrasonics (2006)
Chemical process design
» Hakanen et al., JMCDA (2005)
> Hakanen et al., Appl Therm Eng (2006)
» Simulated moving bed processes
> Hakanen et al., Cont & Cyb (2007)
» Heat exchange network synthesis
> Laukkanen et al., Comp Chem Eng (2010)
» Wastewater treatment system planning
» Hakanen et al. DSS(2011), Env Mod (2013)
» Brachytherapy and IMRT
> Ruotsalainen et al., Phys Med Biol (2010)
» Paper machine: both design and operation
> Steponavice et al., Comp-Aided Design (2014)

N Y Y



Heat Exchanger Network Synthesis

e Simultaneous heat exchanger network synthesis model solved as
a true multiobjective problem

e Objectives: utility cost, fixed cost of units and the cost related to
the size of the heat exchangers

e GAMS model solved using interactive NIMBUS method
— single objective optimizers of GAMS available

» Laukkanen et al., Computers and Chem Eng (2010)
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Optimization of Wastewater Treatment by

Process Modelling and Simulation

e Challenges

— operational requirements (e.g.
effluent limits of nitrogen and
phosphorus) getting more
stringent

— economical efficiency (e.g. min
plant footprint, consumption of
chemicals and energy)

— operational reliability

e Conflict: quality of the treated
wastewater vs. operational costs

e Interactive tool for designers
combining commercial simulator "™
and interactive decision making

e Advantages

— conflicting objectives considered
simultaneously

— easier to formulate obj.functions
— novel perspectives for designers

» Hakanen et al.,, DSS (2011), Env
Model & Softw (2013)
Collaboration with g POYIRY



Paper Machine Headbox Design

¢ 100-150 meters long, eObjectives e First design problem:
width up to 11 meters _ qualitative properties Headbox outlet height

_ control
e Four main components —save energy

i . e Then chain of unlt
_press fibres virtual paper machine
— drying —produce as much as ¢ Optimize e.g. gloss,
o In addition, finishin possible roughness, basis
’ 9 —save environment weight, fibre orientat.

Collaboration with Metso Paper



Headbox Design cont.

Earlier

e Weighting method

— how to select the
weights?

— how to vary the weights?
e Genetic algorithm

— two objectives

— computational burden

e First model with
NIMBUS

— turned out: model did not
represent the actual
goals

— thus, it was difficult for
the DM to specify
preference information



Continuous Casting of Steel
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e Control of secondary cooling; intensity of
water sprays affects solidification rate of
steel

e Quality of steel depends on behavior of
surface temperature and solidification
front in time

e Originally, empty feasible region
e Constraints into objectives: minimize
constraint violations

— Keep the surface temperature near a
desired temperature

— Keep the surface temperature between
some upper and lower bounds

— Avoid excessive cooling or reheating on
the surface

— Restrict the length of the liquid pool
— Avoid too low temperatures at the yield
point
» Miettinen et al., Comput Opt & Appl
(1998), Miettinen, Mater & Manuf
Processes (2007)



Process Simulation In
Chemical Engineering

BALAS VT

Process Simulation
Software

e Using BALAS® process simulator
(product of VTT Finland)

e Flowsheet of process designed with
BALAS® provides a simulation model
to be optimized with IND-NIMBUS

— Heat recovery: organize heat management

taking seasonal changes in climate into {} N
account (typically single objective of _*ﬁmmﬁ
annualized energy and investment costs, (=

estimated amortization time and interest

17
2 @ - ; Water sources (m¥t)

rate for capital)

— Water allocation (recycle water in the

process)
— Collaboration with VTT




Heat Recovery System

To effluent treatment

e Heat recovery system design for R
process water system of a paper mill '
e Main trade-off between running L . Boling/heding
costs, i.e., energy and investment l i
COStS : ! Fresh water
e 4 objective functions =) .
— steam needed for heating water for Dryerefhst | Bffinet

summer conditions

— steam needed for heating water for
winter conditions PAPERMACHINE

— estimation of area for heat
exchangers

— amount of cooling or heating needed

for effluent
By minimize  {f1(y(x)),. ., fa(y(:))}
e 3 decision variables subject to  F(y(x)) = y(x) — ¥(y(x)) = 0
— area of the effluent heat exchanger X € S,

— approach temperatures of the dryer
exhaust heat exchangers for both
summer and winter operations




Ultrasonic Tran

e High-power ultrasonics creates strong
ultrasonic vibration fields in solids and fluids,
low ultrasonic frequencies (20-100 kHz)

e Vibrations cause intense effects: cavitation,
steaming&heating needed in sonochemistry,
cleaning, welding, etc.

e 3 objectives

— Minimize axial vibration (attachment point
vibrates as little as possible)

— Minimize electric impedance (implying less
power loss & less interference with other
electric equipment)

— 1I:\/Iinimize acoustic pressure near transducer

ront

(reduce strong cavitation effects at the
container wall)

e Even the starting solution of IND-NIMBUS was
better than current design (in terms of all three
objectives)

Need for global single obj. optimizer evident

sducer
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Desing and Operation of
Paper Machine

e Hierarchical structure
— design problem on upper level
— operation optim. on lower level
» multiple objective on both levels

e Targets

% on design level
decrease investment cost
increase quality of paper
% on operational level
guarantee runnability and stability of
production system

e Design level objectives

— Min long term averages of operational
objectives (variations in filler content,
basis weight, and paper strength)

— Max runtime
— Min investment cost i.e. tower volumes

- = = = ===

Integrated design & control

Design optimization
(multiple objectives)

Decision variables Objectives
Impose constraints (operational quality)

Model predictive control
(multiple objectives)

e S s

e Computationally expensive
e Stochastic

e o Em Em o Em Em e e o e e e Em e E e e e o e = e o E =



Y |
Stage 1: pre-decision | Stage 2: decision | Stage 3: post-decision
Interactive methods
Interactive methods
Swrrogate problem (MO)
Surrogate preparation SO optimuzation methods
A posterion methods Scalarization

Creation of a surrogate
problem
N
Stage 1
solution set
PAINT
method y




Criteria for Good Decision
Support System

e Recognizes and generates PO solutions

e Helps DM feel convinced that final
solution is the most preferred one or at
east close enough to that

e Helps DM to get a “holistic” view over
PO set

e Does not require too much time from
DM to find final solution

e Communication between DM and
system not too complicated

e Provides reliable information about
alternatives available




Method Development
Challenges

e Complex problems

High dimensions (n and k)

Computational cost (metamodels vs. interpolation, new methods)
Uncertainty (scenarios, distributions)

Stochasticity

Robustness

Bi- and multilevel problems

Model predictive control

e User interface design - usability

e Better decision support (strengths of humans vs
computers) — new devices and platforms

e Automatic decision support

How to build intelligent systems that learn DM’s preferences
(incomplete, uncertain, verbal information)



Conclusions

e Multiobjective optimization problems
can be solved!

e Complex problems as a whole — not
only suboptima

e New insight of complex phenomena —
no simplifications

e Role of DM emphasized: Is in control,
gets decision support and learns

e \We can find solutions that could not
have been found otherwise

e Applications everywhere

e Selecting a method: features of
problem, opinions of DM, practical
applicability

e Compromise is better than optimum!
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- International Society on Multiple
~~Criteria Decision Making

http://www.mcdmsociety.org/

About 1500 members in 100 countries
No membership fees

Electronic newsletter (2 times/year)
Contact secretary@mcdmsociety.org if
you wish to join

International Conferences every two
years

e MCDMZ2015 in August in Hamburg,
Germany



