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Background

Background in networks; at Stanford since 2004
Recent area of interest: design and analysis of online
markets
Just returned from 18 month leave at oDesk (online
marketplace for remote work);
last 9 months as director of data products
This tutorial: Two examples of how mean field models help
us understand complex dynamic markets
Today: Dynamic auctions
Tomorrow: Dynamic matching market
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Outline

A motivating example: dynamic auctions with learning
A mean field model
Mean field equilibrium
Characterizing MFE
Using MFE: dynamic revenue equivalence, reserve prices
Other models: budget constraints, unit demand bidders
Open problems
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PART I: A MOTIVATING EXAMPLE
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Sponsored search markets

Advertisers bid on various keywords to get their ads placed on
the search page.

On each query, an auction occurs among the relevant
advertisers, and winners get their ads placed.

Cost-per-click (CPC): The good being auctioned is a click, i.e.,
advertisers pay only if a user clicks on their ad.

Advertisers care for conversion – how an ad click converts into
sales or profit.
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Sponsored search markets

There is a mismatch between the good being auctioned and
what the advertisers value.

This creates a dynamic incentive:

Bidders must simultaneously estimate their conversion rates
while bidding on keywords.
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Repeated auctions with learning

Here we consider a simple abstraction:

N bidders
Bidder i has a valuation vi ∈ [0, 1] that is unknown to her

Think of this as the conversion rate.

vi distributed according to prior Fi
(independent across bidders)
Bidders compete in a sequence of second price auctions
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What should a bidder do?

First suppose there is a single period.

Dominant strategy: bid expected value (according to current
belief).
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What should a bidder do?

What about multiple periods?

There is now a value for learning:

Agents will tend to overbid above expected valuation,
because learning about their value might help them in future
periods
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What should a bidder do?

But the amount to overbid depends critically on
what a bidder believes about her competitors.

The classical solution concept is perfect Bayesian equilibrium
(PBE): A bidder optimizes with respect to:

her beliefs over all that is unknown, given the history so far;
and
her prediction of how others will behave in the future, in
response to her action today.
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Challenge 1: PBE is implausible

There seems to be a “law of large numbers of rationality”:

Complex beliefs and forecasting become uncommon even with
relatively small numbers of players (5-10).

Therefore PBE seems to be a highly implausible model of
agent behavior, even in settings with fairly sophisticated agents.
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Challenge 2: PBE is intractable

The dynamic optimization problem of an agent has a very high
dimensional state space:

An agent optimizes given beliefs over all that is unknown.

Even computing best responses is prohibitive, let alone
equilibria!
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Moral

This is a bad place to be:

One does not want theory to be both intractable and
implausible.

As a result, we leave engineers with few tools to guide design:

How does market structure, auction format, reserve prices, etc.
affect bidder behavior?
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PART II: A MEAN FIELD MODEL
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Bounding rationality

“Bounded rationality” models offer a way out of the impasse;
but which bounded rationality approach to use?

We’ll discuss an approximation founded on the premise that
there are a large number of bidders present.

This is a mean field model.
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A formal model

We now formally describe a mean field model for dynamic
auctions with learning.

Key components:
Bidder model: learning and payoffs
The “mean field”: competitors’ bid distribution
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A formal model

A bidder participates in a sequence of second price auctions.

α bidders in each auction.

The bidder lives for a geometric(β) lifetime (mean 1/(1 − β)).

The bidder has an unknown private valuation v ∈ [0, 1]:

P(rewardt = 1) = 1 − P(rewardt = 0) = v
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Learning model

Initial prior: Beta(m, n)

(m, n) and v chosen on arrival.

Mean: µ(m, n) = m/(m + n)

Variance: σ2(m, n) decreasing in m and n

Belief update is through Bayes’ rule;
let sk = (mk, nk) denote belief parameters after k’th auction.
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Belief update

On losing the auction:

Beta(m, n)

−→

Beta(m, n)
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Belief update

On winning the auction, and getting a positive reward:

Beta(m, n)

−→

Beta(m + 1, n)

21 / 107



Belief update

On winning the auction, and getting zero reward:

Beta(m, n)

−→

Beta(m, n + 1)
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Objective

Maximize the total expected payoff over the lifetime

(Per period payoff = reward - payment)
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The “mean field” market

Suppose the distribution of bids in the market is g

The mean field assumption:

For a fixed agent, in each of her auctions, bids of the other
α− 1 agents are sampled i.i.d. from g.
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Sponsored search: Bid landscape

Why is the mean field model reasonable?

In sponsored search, advertisers use bid landscape
information to model the rest of the market.

Bid landscapes use the last week’s data to give aggregated
estimates of cost-per-click, number of clicks, and number of
impressions that can be expected for a given bid.

The mean field model captures this information structure.
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Questions

What is a reasonable notion of equilibrium for this system?
Does it exist?
What is the structure of bidders’ optimal strategy?
Do mean field models approximate games with finitely
many players?
How do we compute an equilibrium?
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PART III: MEAN FIELD EQUILIBRIUM
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Mean field equilibrium

Inspired by large markets.

In an MFE:

Agents do not track individual competitors

Each agent plays against a “stationary” market
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Mean field equilibrium

Optimality:

Stationary
market

Actions are
optimal

Consistency:

Given
agents’
actions

Same
stationary
distribution
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Mean field equilibrium: Dynamic auctions

A bid distribution g and a strategy C constitute an MFE if

Optimality:

Fixed bid
distribution g

Strategy C is
optimal

Consistency:

Given each
agent

follows C

Market bid
distribution

is g
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Mean field equilibrium: Formal definition

Fix a bid distribution g.
Let C(·|g) be an optimal strategy for the agent’s expected
lifetime profit maximization problem, given g.
Let Φ be the steady state distribution (on valuations and
states) induced by the resulting agent dynamics under the
strategy C(·|g), and assuming other agents’ bids are drawn
from g. (Note that these dynamics include regeneration.)
Let g′ be the new steady state bid distribution derived by
integrating the strategy C(·|g) against the steady state
distribution Φ.

The bid distribution g is a MFE bid distribution if it is a fixed
point of this map.
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Mean field equilibrium: Related work

Mean field models arise in a wide variety of fields:
physics, applied math, engineering, economics, ...

Extensive work on mean field models for static games (e.g.,
competitive equilibrium, nonatomic games, etc.)
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Mean field equilibrium: Related work

Mean field models in dynamic games:
Economics: Jovanovic and Rosenthal (1988); Stokey, Lucas,
Prescott (1989); Hopenhayn (1992); Sleet (2002); Weintraub,
Benkard, Van Roy (2008, 2010); Acemoglu and Jepsen (2010);
Bodoh-Creed (2011)
Control: Glynn, Holliday, Goldsmith (2004); Lasry and Lions
(2007); Huang, Caines, Malhamé (2007-2012); Gueant (2009);
Tembine, Altman, El Azouzi, le Boudec (2009); Yin, Mehta,
Meyn, Shanbhag (2009); Adlakha, Johari, Weintraub (2009,
2011)
Finance: Duffie, Malamud, Manso (2009, 2010)
Dynamic auctions: Wolinsky (1988); McAfee (1993); Backus and
Lewis (2010); Iyer, Johari, Sundararajan (2012); Gummadi,
Proutière, Key (2013); Bodoh-Creed (2012); Balseiro, Besbes,
Weintraub (2013)

(Other names for MFE: Stationary equilibrium, oblivious equilibrium)
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Mean field equilibrium: Related work

Another relevant line of literature is on dynamic mechanism
design.

Examples: Athey and Segal (2007); Bergemann and Valimaki
(2010); etc.

In dynamic mechanism design, a hard optimization
problem is solved (optimal dynamic allocation), and
payments are structured so equilibrium behavior bidder is
simple (truthtelling).
But, in many real markets: repetitions of simple
mechanisms are implemented, leading to complex
equilibrium bidder behavior.
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PART IV: CHARACTERIZING MFE
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Characterizing MFE

Optimal strategies
Existence of MFE
Approximation and finite games
Computation
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PART IV-A: Optimal strategies
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MFE: Stationary market

Suppose the distribution of bids in the market is g

Probability of winning: q(b|g) = g(b)α−1

Expected payment: p(b|g)
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MFE: Agent’s decision problem

Let V(s|g) denote the agent’s maximum possible expected
lifetime payoff, when her current belief is s, and the population
bid distribution is g.

By the principle of optimality for discounted dynamic
programming, V must satisfy Bellman’s equation.
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MFE: Agent’s decision problem

Given g, agent’s value function satisfies Bellman’s equation:

V(s|g) = max
b≥0

{
q(b|g)µ(s)− p(b|g) + βq(b|g)µ(s)V(s + e1|g)

+ βq(b|g)(1 − µ(s))V(s + e2|g) + β(1 − q(b|g))V(s|g)
}
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MFE: Agent’s decision problem

Given g, agent’s value function satisfies Bellman’s equation:

V(s|g) = max
b≥0

{
q(b|g)µ(s)− p(b|g) + βq(b|g)µ(s)V(s + e1|g)

+ βq(b|g)(1 − µ(s))V(s + e2|g) + β(1 − q(b|g))V(s|g)
}

(1) Expected payoff in current auction
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MFE: Agent’s decision problem

Given g, agent’s value function satisfies Bellman’s equation:

V(s|g) = max
b≥0

{
q(b|g)µ(s)− p(b|g) + βq(b|g)µ(s)V(s + e1|g)

+ βq(b|g)(1 − µ(s))V(s + e2|g) + β(1 − q(b|g))V(s|g)
}

(2) Future expected payoff on winning and positive reward:

s1

−→

s + e1
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MFE: Agent’s decision problem

Given g, agent’s value function satisfies Bellman’s equation:

V(s|g) = max
b≥0

{
q(b|g)µ(s)− p(b|g) + βq(b|g)µ(s)V(s + e1|g)

+ βq(b|g)(1 − µ(s))V(s + e2|g) + β(1 − q(b|g))V(s|g)
}

(3) Future expected payoff on winning and zero reward:

s1

−→

s + e2
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MFE: Agent’s decision problem

Given g, agent’s value function satisfies Bellman’s equation:

V(s|g) = max
b≥0

{
q(b|g)µ(s)− p(b|g) + βq(b|g)µ(s)V(s + e1|g)

+ βq(b|g)(1 − µ(s))V(s + e2|g) + β(1 − q(b|g))V(s|g)
}

(4) Future expected payoff on losing:

s1

−→

s1
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MFE: Agent’s decision problem

Given g, agent’s value function satisfies Bellman’s equation:

V(s|g) = max
b≥0

{
q(b|g)µ(s)− p(b|g) + βq(b|g)µ(s)V(s + e1|g)

+ βq(b|g)(1 − µ(s))V(s + e2|g) + β(1 − q(b|g))V(s|g)
}
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MFE: Agent’s decision problem

Given g, agent’s value function satisfies Bellman’s equation:

V(s|g) = max
b≥0

{
q(b|g)µ(s)− p(b|g) + βq(b|g)µ(s)V(s + e1|g)

+ βq(b|g)(1 − µ(s))V(s + e2|g) + β(1 − q(b|g))V(s|g)
}
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MFE: Agent’s decision problem

Rewriting:

V(s|g) = max
b≥0

{
q(b|g)C(s|g)− p(b|g)

}
+ βV(s|g),

where

C(s|g) = µ(s) + βµ(s)V(s + e1|g)
+ β(1 − µ(s))V(s + e2|g)− βV(s|g).
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MFE: Optimality

Agent’s decision problem is

max
b≥0

{
q(b|g)C(s|g)− p(b|g)

}
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MFE: Optimality

Agent’s decision problem is

max
b≥0

{
q(b|g)C(s|g)− p(b|g)

}

Same decision problem as in

Static second-price auction
against α− 1 bidders drawn i.i.d. from g
with agent’s known valuation C(s|g).
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MFE: Optimality

Agent’s decision problem is

max
b≥0

{
q(b|g)C(s|g)− p(b|g)

}

Same decision problem as in

Static second-price auction
against α− 1 bidders drawn i.i.d. from g
with agent’s known valuation C(s|g).

We show C(s|g) ≥ 0 for all s
=⇒ Bidding C(s|g) at posterior s is optimal!
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Conjoint valuation

C(s|g): Conjoint valuation at posterior s

C(s|g) = µ(s) + βµ(s)V(s + e1|g) + β(1 − µ(s))V(s + e2|g)− βV(s|g)

50 / 107



Conjoint valuation

C(s|g): Conjoint valuation at posterior s

C(s|g) = µ(s) + βµ(s)V(s + e1|g) + β(1 − µ(s))V(s + e2|g)− βV(s|g)

Conjoint valuation = Mean + Overbid

(We show Overbid ≥ 0)
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Conjoint valuation: Overbid

Overbid: βµ(s)V(s + e1|g) + β(1 − µ(s))V(s + e2|g)− βV(s|g)
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Conjoint valuation: Overbid

Overbid: βµ(s)V(s + e1|g) + β(1 − µ(s))V(s + e2|g)− βV(s|g)

Overbid
Expected marginal future gain from one additional
observation about private valuation
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Conjoint valuation: Overbid

Overbid: βµ(s)V(s + e1|g) + β(1 − µ(s))V(s + e2|g)− βV(s|g)

Overbid
Expected marginal future gain from one additional
observation about private valuation

Simple description of agent behavior!

52 / 107



PART IV-B: Existence of MFE
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Existence of MFE

We make one assumption for existence:

We assume that the distribution from which the value and belief
of a single agent are initially drawn has compact support with
no atoms.
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Existence of MFE

Theorem
A mean field equilibrium exists where each agent bids her
conjoint valuation given her posterior.

Bid
distribution g

Optimal
strategy
C(·|g)

Market bid
distribution

F(g)

Show: With the right topologies, F is continuous
Show: Image of F is compact (using previous assumption)
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PART IV-C: Approximation and MFE
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Approximation

Does an MFE capture rational agent behavior in finite market?

Issues:

Repeated interactions =⇒ agents no longer independent.

Keeping track of history will be beneficial.

Hope for approximation only in the asymptotic regime
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Approximation

Theorem
As the number of agents in the market increases, the
maximum additional payoff on a unilateral deviation converges
to zero.

As the market size increases,

Expected payoff under
optimal strategy, given

others play C(·|g)
−

Expected payoff under
C(·|g), given others play

C(·|g)
→ 0
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Approximation

Look at the market as an interacting particle system.

Interaction set of an agent: all agents influenced by or that
had an influence on the given agent (from Graham and
Méléard, 1994).

+

+

+

+

+

+

Propagation of chaos =⇒ As market size increases, any two
agents’ interaction sets become disjoint with high probability.
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Approximation

Theorem
As the number of agents in the market increases, the
maximum additional payoff on a unilateral deviation converges
to zero.

Mean field equilibrium is good approximation to agent behavior
in finite large market.
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PART IV-D: Computing MFE
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MFE computation

A natural algorithm inspired by model predictive control (or
certainty equivalent control)

Closely models market evolution when agents optimize given
current average estimates
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MFE computation

Initialize the market at bid distribution g0.

Compute
conjoint
valuation

Evolve the
market one
time period

Compute
new bid

distribution

Continue until successive iterates of bid distribution are
sufficiently close.

- Stopping criterion: total variation distance is below
tolerance ε.
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Performance

Algorithm converges within 30-50 iterations in practice, for
reasonable error bounds (ε ∼ 0.005)

Computation takes ∼ 30-45 mins on a laptop.
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Overbidding
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Discussion

In the dynamic auction setting, proving convergence of this
algorithm remains an open problem.

However, we have proven convergence of similar algorithms in
two other settings:

Dynamic supermodular games (Adlakha and Johari, 2011)
Multiarmed bandit games (Gummadi, Johari, and Yu,
2012)

Alternate approach: Best response dynamics (Weintraub,
Benkard, Van Roy, 2008)
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PART V: USING MFE IN MARKET DESIGN
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Auction format

The choice of auction format is an important decision for the
auctioneer.

We consider markets with repetitions of a standard auction:

1 Winner has the highest bid.

2 Zero bid implies zero payment.

Example: First price, second price, all pay, etc.
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Repeated standard auctions

Added complexity due to strategic behavior:

For example, the static first-price auction naturally induces
underbidding.

This is in conflict with overbidding due to learning.
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Repeated standard auctions

Added complexity due to strategic behavior:

For example, the static first-price auction naturally induces
underbidding.

This is in conflict with overbidding due to learning.

We show a dynamic revenue equivalence theorem:

Maximum revenue over
all MFE of repeated

second-price auction.

Maximum revenue over
all MFE of any repeated

standard auction.
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Repeated standard auctions

Added complexity due to strategic behavior:

For example, the static first-price auction naturally induces
underbidding.

This is in conflict with overbidding due to learning.

We show a dynamic revenue equivalence theorem:

Maximum revenue over
all MFE of repeated

second-price auction.

Maximum revenue over
all MFE of any repeated

standard auction.

All standard auction formats yield the same revenue!
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Dynamic revenue equivalence

Maximum revenue over
all MFE of repeated

second-price auction.

Maximum revenue over
all MFE of any repeated

standard auction.

Proof in two steps:
1 ≤: Composition of conjoint valuation and static auction

behavior.
2 ≥: technically challenging (constructive proof).
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Reserve price

Setting a reserve price can increase auctioneer’s revenue.

Effects of a reserve:

1 Relinquishes revenue from agents with low valuation

2 Extracts more revenue from those with high valuation
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Reserve price

Setting a reserve price can increase auctioneer’s revenue.

Effects of a reserve:

1 Relinquishes revenue from agents with low valuation

2 Extracts more revenue from those with high valuation

3 Imposes a learning cost:
- Precludes agents from learning, and reduces incentives to

learn
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Reserve price

Consider repeated second price auction setting.

Due to learning cost, agents change behavior on setting a
reserve.

Auctioneer sets a reserve r and agents behave as in an
MFE with reserve r.

Defines a game between the auctioneer and the agents.
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Optimal reserve

Two approaches:

1 Nash: Ignores learning cost.
Auctioneer sets a reserve r assuming bid distribution is
fixed, and agents behave as in a corresponding MFE.

2 Stackelberg: Includes learning cost.
Auctioneer computes revenue in MFE for each r, and sets
the maximizer rOPT.

We compare these two approaches using numerical
computation.
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Optimal reserve: Numerical findings

By definition, Π(rOPT) ≥ Π(rNASH).

Π(rOPT)−Π(0) is greater than Π(rNASH)−Π(0) by ∼ 15 − 30%.

Improvement depends on the distribution of initial beliefs of
arriving agents.

By ignoring learning, auctioneer may incur a potentially
significant cost.
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Discussion

There is a significant point to be made here:

These types of comparative analyses are very difficult (if not
impossible) using classical equilibrium concepts:

If equilibrium analysis is intractable, then we can’t study how
the dynamic market changes as we vary parameters.
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PART VI: OTHER DYNAMIC INCENTIVES
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PART VI-A: Budget constraints
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Bidder model

Now suppose that a bidder faces a budget constraint B,
but knows her valuation v.

The remainder of the specification remains as before.

In particular, the agent has a geometric(β) lifetime, and
assumes that her competitors in each auction are i.i.d. draws
from g.
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Decision problem

Then a bidder’s dynamic optimization problem has the following
value function:

V(B, v|g) = max
b≤v

{
q(b|g)v − p(b|g) + β(1 − q(b|g))V(B, v|g)

+ βq(b|g)E
[
V(B − b−, v|g)|b− ≤ b

]}
,

where b− is the highest bid among the competitors.
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Decision problem

Some rearranging gives:

V(B, v|g) = 1
1 − β

max
b≤v

{
q(b|g)v − p(b|g)+

− βq(b|g)E
[
V(B, v|g)− V(B − b−, v|g)|b− ≤ b

]}
,

where b− is the highest bid among the competitors.
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Decision problem: large B

Suppose that B is very large relative to v. Then we can
approximate:

V(B, v|g)− V(B − b−, v|g)

by:
V′(B, v|g)b−.
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Decision problem: large B

Since:
q(b|g)E

[
b−|b− ≤ b

]
= p(b|g),

conclude that:

βq(b|g)E
[
V(B, v|g)− V(B − b−, v|g)|b− ≤ b

]
≈ βV′(B, v|g)p(b|g).
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Decision problem: large B

Substituting we find:

V(B, v|g) = 1 + βV′(B, v|g)
1 − β

max
b≤v

{
q(b|g)

(
v

1 + βV′(B, v|g)

)
− p(b|g)

}
.

As before: this is the same decision problem as an agent in a
static second price auction, with “effective” valuation
v/(1 + βV′(B, v|g).
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Optimal bidding strategy

Moral:

In a mean field model of repeated second price auctions with
budget constraints (and with B ) v), an agent’s optimal bid is:

v
1 + βV′(B|g) .

Note that agents shade their bids:

This is due to the opportunity cost of spending budget now.
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Large B

This model can be formally studied in a limit that captures the
regime where B becomes large relative to the valuation.

See Gummadi, Proutière, Key (2012) for details;
see also Balseiro, Besbes, Weintraub (2012).

85 / 107



PART VI-B: Unit demand bidders
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Bidder model

Now consider a setting where a bidder only wants one copy of
the good, and her valuation is v.

She competes in auctions until she gets one copy of the good;
discount factor for future auctions = δ.

The remainder of the specification remains as before.

In particular, the agent has a geometric(β) lifetime, and
assumes that her competitors in each auction are i.i.d. draws
from g.
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Decision problem

Then a bidder’s dynamic optimization problem has the following
value function:

V(v|g) = max
b≤v

{q(b|g)v − p(b|g) + β(1 − q(b|g))δV(v|g)}.
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Decision problem

Rearranging:

V(v|g) = 1
1 − β

max
b≤v

{q(b|g)(v − βδV(v|g))− p(b|g)}.

As before: this is the same decision problem as an agent in a
static second price auction, with “effective” valuation
v − βδV(v|g).
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Optimal bidding strategy

Moral:

In a mean field model of repeated second price auctions with
unit demand bidders, an agent’s optimal bid is:

v − βδV(v|g).

Note that agents shade their bids:

This is due to the possibility of waiting until later to get the item.
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Generalization

This model has been analyzed in a much more complex
setting, with many sellers and buyers, and with endogeneous
entry and exit.

See Bodoh-Creed (2012) for details.
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PART VI-C: Common value auctions
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Bidder model

Now suppose that the valuation v is common to all the bidders,
but unknown to any of them.

In particular, assume v ∈ {vH, vL}.
After each auction, each bidder in the auction observes the
highest bid among the competitors (denoted B).

With common values, the bidders learn not only from observing
their rewards, but also from observing B.
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Bid distribution

In an MFE, the distribution of B will be correlated with the true
valuation.
Denote these two distributions by gH, gL.
Define the log-likelihood ratio as:

λ(·) = ln
(

dgH(·)
dgL(·)

)
.

We restrict attention to MFE where λ is increasing.
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Belief update

In this model, there are two sources of belief update:
1 On seeing the price B, an agent with log-likelihood ratio s

about the valuation updates it to:

supdate = s + λ(B).

2 On winning the auction, an agent updates her belief on
seeing the reward as before:

supdate =

{
s + 1 if reward = 1;
s − 1 if reward = 0.
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Decision problem

A single bidder’s dynamic optimization problem becomes:

V(s) = max
b

{E[I{B ≤ b}(v − B)|s]

+ βE[I{B ≤ b}(vV(s + 1 + λ(B)) + (1 − v)V(s − 1 + λ(B)))|s]
+ βE[I{B > b}V(s + λ(B))|s]} .
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Optimal bidding strategy (Iyer 2012)

Following similar analysis, we can show that the optimal bid for
an agent at belief s is:

sup{C(s + λ(b)) : C(s + λ(b)) > b}

Informally:

The optimal bid is the conjoint valuation at posterior belief,
assuming the price isthe same as the bid (i.e., that the bidder is
“pivotal”).
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Intuition

Bidder’s gain conditional on winning
= Conjoint valuation at posterior belief
= C(s + λ(B))

In second price auctions, bidders bid their maximum gain
conditional on winning:

Optimal bid = sup{C(s + λ(B))︸ ︷︷ ︸
gain

: C(s + λ(B)) > B︸ ︷︷ ︸
win

}

[Note: This intuition is the same as for static second price
common value auctions.]
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PART VII: OPEN PROBLEMS
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General theory

A similar analysis can be carried out for general anonymous
dynamic games.

Extensions to:
Nonstationary models (Weintraub et al.);
Unbounded state spaces (Adlakha et al.);
Continuous time (Tembine et al., Huang et al., Lasry and
Lions, etc.).
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Efficiency

There is an extensive literature in economics studying
convergence of large static double auctions to:

competitive equilibrium (with private values); or
rational expectations equilibrium (with common values).

Analogously, which sequential auction mechanisms converge
to dynamic competitive or rational expectations equilibria in
large markets?

[ Note: dynamic incentives such as learning or budget
constraints cause an efficiency loss. ]
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Intractability

What does it mean to say MFE is simpler than classical
equilibrium concepts?

Typical argument: curse of dimensionality.

But in the end, all concepts rely on fixed point arguments to
establish existence.

Can we establish in a computational complexity-theoretic
framework, that MFE is simpler?
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Finding MFE

In most settings, MFE existence remains nonconstructive.

As discussed above, in some cases algorithms exist to
compute MFE.

What are some other reasonable algorithms to compute MFE?
In what settings can we establish uniqueness, convergence,
etc.?
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Interchanging limits

Our approximation theorem only holds over finite time intervals.

In general, interchanging time and number of agents is not
straightforward: requires uniform convergence to mean field
limit over time.

Under what conditions is this guaranteed? (See also: Glynn,
2004; Gummadi, Johari, Yu, 2012.)
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Interaction models

MFE is valid with full temporal mixing:

Interact with a small number of agents each period, but
resample i.i.d. every time period

But MFE is also valid with full spatial mixing:

Interact with everyone at every time period

What about more complex interaction models (e.g., random
graphs that evolve over time)?
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CONCLUSION
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Conclusion

Modern large scale markets are highly dynamic, and present
significant design challenges to engineers.

Approximation methods like MFE are both more tractable and
more plausible than classical equilibrium approaches to such
complex dynamic games.
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