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A Basic Convex Problem

Solve
minimize  f(x)

subject to x € (@,
in z € R"™.

= Here, f(x) is convex, smooth.

m Assume (Q C R"™ is compact, convex and simple.
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Complexity

Newton’s method. At each iteration, take a step in the direction

Azy = —V2f(2) ' V()
Assume that

= the function f(z) is self-concordant, i.e. |f"(x)| < 2f"(x)3/?,

= the set ) has a self concordant barrier g(x).

[Nesterov and Nemirovskii, 1994] Newton's method produces an € optimal
solution to the barrier problem

minh(z) 2 f(z) +tg(x)

X
for some ¢ > 0, in at most

20 — S«
af(l —2a)?

(h(xg) — h™) + log, log,(1/€) iterations

where 0 < a < 0.5 and 0 < 8 < 1 are line search parameters.
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Complexity

Newton’s method. Basically

# Newton iterations < 375 (h(xzg) — h™) + 6

m Empirically valid, up to constants.
m Independent from the dimension n.
m Affine invariant.

In practice, implementation mostly requires efficient linear algebra. . .

m Form the Hessian.

= Solve the Newton (or KKT) system V2f(z)Ax, = —V f(x).
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Complexity

Numerical example from [Boyd and Vandenberghe, 2004], 150 randomly
generated instances of

minimize f(x)=—>_" log(b; — a] x)
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= number of iterations much smaller than 375(f(z(®)) — p*) + 6

= bound of the form ¢(f(x(?) — p*) 4+ 6 with smaller ¢ (empirically) valid
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Affine Invariance

Set x = Ay where A € R™*" is nonsingular

minimize  f(z) becomes minimize  f(y)
subject to z € @, subject to y € @,

in the variable y € R", where f(y) 2 f(Ay) and Q £ A71Q.

= ldentical Newton steps, with Axr,; = AAy,;
= Identical complexity bounds 375 (h(zo) — h*) + 6 since h* = h*

Newton's method is invariant w.r.t. an affine change of coordinates.
The same is true for its complexity analysis.
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Large-Scale Problems

The challenge now is scaling.

= Newton's method (and extensions) solve all reasonably large problems.

m Beyond a certain scale, second order information is out of reach.

Question today: clean complexity bounds for first order methods?
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First order methods

Quadratic exampe in R? from [Boyd and Vandenberghe, 2004]
min f(x) = (1/2) (2] + y23) (v>0)

with exact line search, starting at (9 = (v, 1):
k k
(k) _ (=1 ) _ (=1
Ly =TV 7 > Lo =\ ——7
v+ 1 v+1

m Gradient descent very slow if v > 1 or v < 1

m example for v = 10:
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Frank-Wolfe

Conditional gradient. At each iteration, solve

minimize  (V f(zg),u)
subject to u € Q)

in u € R™. Define the curvature

Cre  swp —(fly) — f@) — {y— 2, V().

The conditional gradient (a.k.a. Franke-Wolfe) algorithm will then produce an ¢
solution after
Y

Nmax -

€
Iterations.

m (¢ is affine invariant but the bound is suboptimal in e.

m If f(x) has a Lipschitz gradient, the lower bound is O (ﬁ)
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Optimal First-Order Methods

Smooth Minimization algorithm in [Nesterov, 1983] to solve

minimize  f(x)
subject to z € @,

m Choose a norm || - ||. Vf(x) Lipschitz with constant L w.r.t. || - ||
1
fy) < fl@)+ (V@) y—2) + 5Ly — =], 2yeQ

m Choose a prox function d(z) for the set @), with
o
2l — ol < d(a)

for some o > 0.
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Optimal First-Order Methods

Smooth minimization algorithm [Nesterov, 2005]

Input: x(, the prox center of the set ().
1: for k=0,...,N do
2. Compute V f(zg).
- C = argmi v — 2+ 3Ly — 27}
3. ompute y;, = argmin, o {(Vf(zr),y — xx) + 3Ly — &
4. Compute z; = argmin, {Z?:o ;[ f(x;) + (V[ (x;),x — )] + %d(x)}
5: Set Thkt+1 = TRk T (1 — Tk)yk-
6: end for
Output: zn,yn € Q.

Produces an e-solution in at most

\/SL d(z*)

iterations. Optimal in ¢, but not affine invariant.

Heavily used: TFOCS, NESTA, Structured ¢4, . . .
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Optimal First-Order Methods

Choosing norm and prox can have a big impact. Consider the following matrix

game problem

min max 1 Ay
{(1Te=1,0>0} {1Ty=1,y>0}

= Euclidean prox. pick || - ||2 and d(z) = ||z||3/2, after regularization, the
complexity bound is
4/|A
v A4l
N+1

= Entropy prox. pick || - ||1 and d(z) = >, z;log x; + logn, the bound becomes

N . 4\/10gnlogm maxs; ; ’Aw|
max — N +1

which can be significantly smaller.

Speedup is roughly y/n when A is Bernoulli. . .
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Choosing the norm

Invariance means || - || and d(x) must be constructed using only f and the set Q.

Minkovski gauge. Assume () is centrally symmetric with non-empty interior.
The Minkowski gauge of () is a norm

|z|lo = inf{\ > 0:2 € \Q}

Lemma

Affine invariance. The function f(x) has Lipschitz continuous gradient with
respect to the norm || - || with constant Lg > 0, i.e.

fo) < F(@) + (Vi @)y — ) + sLally —alld, 7.y€Q

if and only if the function f(Aw) has Lipschitz continuous gradient with respect
to the norm || - || 41 with the same constant L.

A similar result holds for strong convexity. Note that |[z||7, = |[z| g
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Choosing the prox.

How do we choose the prox.? Start with two definitions.

Banach-Mazur distance. Suppose ||-||x and ||- ||y are two norms on a space E,
the distortion d(|| - || x, || - ||y) is the

1
smallest product ab > 0 such that EHZIZ‘HY < ||z||x < al|lx||y, forall x € E.

log(d(|| - [|x, || - [ly)) is the Banach-Mazur distance between X and Y.
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Choosing the prox.

Regularity constant. Regularity constant of (E, || - ||), defined in [Juditsky and
Nemirovski, 2008] to study large deviations of vector valued martingales.

Definition [Juditsky and Nemirovski, 2008]

Regularity constant of a Banach (E,||.||). The smallest constant A > 0 for
which there exists a smooth norm p(x) such that

m The prox p(x)?/2 has a Lipschitz continuous gradient w.r.t. the norm p(x),
with constant n where 1 < u < A,

s The norm p(x) satisfies

AN 1/2
2]l < p(@) < |2 (;)  forallzeE

ie. d(p(z), ||l) < VA
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Complexity

Using the algorithm in [Nesterov, 2005] to solve

minimize  f(x)
subject to z € Q.

Proposition [d’Aspremont and Jaggi, 2013]

Affine invariant complexity bounds. Suppose f(x) has a Lipschitz continuous
gradient with constant Lq with respect to the norm ||-||q and the space (R", ||-||7,)
is Dg-regular, then the smooth algorithm in [Nesterov, 2005] will produce an

e solution in at most
41, D
l- .IIlaX Ci Q

iterations. Furthermore, the constants Lg and Dg are affine invariant.

We can show Cy < LgDg, but it is not clear if the bound is attained. . .
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Complexity

This affine invariant bound is also optimal for 7, balls, up to polylog factor.

m For p € [1,2]. The results in [Guzman and Nemirovski, 2013] show that any
method needs at least

L
€logn

Q

iterations, which is equal to the bound above up to a polylog.

s For p € [2,0]. Now, [Guzman and Nemirovski, 2013] show that any method

needs at least
0 \/ ‘ Ln1_2/19
min[p, logn, |

iterations, which again shows that D is optimal up to poly-logarithmic factors
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Complexity, /1 example

Minimizing a smooth convex function over the unit simplex

minimize  f(x)
subjectto 17z <1,z >0

in r € R™.

= Choosing || - ||1 as the norm and d(z) =logn + Y . | z;logz; as the prox
function, complexity bounded by

\/8L1 logn
€

(note L, is lowest Lipschitz constant among all £, norm choices.)

= Symmetrizing the simplex into the ¢; ball. The space (R™, || - ||s) is 2logn
regular [Juditsky and Nemirovski, 2008, Ex. 3.2]. The prox function chosen
here is || - ||2/2, with a = 2logn/(2logn — 1) and our complexity bound is

\/16L1 logn
€
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In practice

Easy and hard problems.

m The parameter L satisfies

f) < F@) + (VI@)y—2)+ laly — =l wyeQ,

On easy problems, || - || is large in directions where V f is large, i.e. the sublevel
sets of f(x) and () are aligned.

m For [, spaces with p € |2, 00|, the unit balls B, have low regularity constants,
Dp, <min{p —1,2logn}

while Dp, = n (worst case). By duality, problems over unit balls B, for
g € [1,2] are easier.

m Optimizing over cubes is harder.
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Conclusion

= Affine invariant complexity bound for the optimal algorithm [Nesterov, 1983]

4L oD
Nmax — ¢
€

m Matches best known bounds on key examples.

Open problems.

= Prove optimality of product LoD for generic sets (beyond 7, balls).
s Matches curvature C4?
m Symmetrize non-symmetric sets ().

m Systematic, tractable procedure for smoothing ().
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