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Introduction MINLP

Our Quest

Mixed Integer Nonlinear Program: (MINLP)

zminlp = min f(x)

subject to gj(x) ≤ 0, j = 1, . . . ,m

x ∈ X, xI ∈ Z|I|

X
def
= {x | x ∈ Rn+, Dx ≤ d}

f, gj are continuously differentiable functions.
f, gj linear ⇒ MILP

MINLPs combine challenge of nonlinearities with discrete choice

WLOG: We sometimes want f(x) linear
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Introduction MINLP

Apology accepted

The talk is a bit of a star-blaster
approach to MINLP.

Not many technical details.

Hopefully my subsequent colleagues will
fill them in!

Overview

Applications/Models

Basic algorithms: NLP-Based Branch-and-Bound,
Linearization-Based methods, Spatial branch and bound for global
optimization

An important modeling trick
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Introduction MINLP

Solving MINLP – The Talk Theme

The MILP Force

MILP has become a commodity technology

Instances unsolvable a decade ago have now become routine

Use the MILP

Strategies that have been effective for
MILP should also be effective for
MINLP
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Introduction MINLP

Important Special Cases

Mixed Integer Nonlinear Program: (MINLP)

zminlp = min f(x)

subject to gj(x) ≤ 0, j = 1, . . . ,m

x ∈ X, xI ∈ Z|I|

What’s in a name?

If f, gj are convex, this is called convex MINLP

The set {x ∈ X | gj(x) ≤ 0 ∀j} is a convex set, and minimizing a
convex function over a convex set is easy

If f, gj quadratic, e.g. f(x) = xTQx+ bTx+ c, the problem is
called a mixed integer quadratic program (MIQP)

Convex MIQP (Q � 0)
Nonconvex MIQP (Q 6� 0)
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Introduction MINLP

Why Important?

Without convexity, many solvers
only guarantee solution to a
local optimum

Non-convex instances may require significant computational effort

We will (attempt) to explain why later
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Introduction MINLP

Software for MINLP
Convex MINLP

ALPHA-ECP, Bonmin, DICOPT, FilMINT, KNITRO, MINLP-BB,
SBB

(Convex) MIQP

CPLEX, GUROBI, MOSEK, XPRESS

(Nonconvex) MIQP

GLOMIQO

General Global Optimization

BARON, Couenne, LINDOGlobal, SCIP

Try ’em on NEOS

http://www.neos-server.org/neos/solvers/index.html
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Introduction MINLP

The Rebel Alliance

While most of this material is at an introductory level, the “new”
material I am presenting is joint with many talented members of the
rebel alliance
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Introduction Applications

Application: Death Star Core Reload

Maximize reactor efficiency after reload
subject to diffusion PDE

Discrete: Placement (and age) of bundles.

Nonlinear: Diffusion PDE⇒ A MINLP

Avoid reactor becoming sub-critical
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Introduction Applications

Other MINLPs

1 Gas/Water Network Design—Nonconvex MINLP

Discrete: Pipe connections/sizes
Nonlinear: Pressure Loss

2 Sparse Approximation—Convex MIQP

Discrete: Selection of elements
Nonlinear: (2-norm) model error

3 Petrochemical—Nonconvex MINLP

Discrete: Which process to use?
Nonlinear: Product Blending (among others)

4 Portfolio Management—Convex MIQP

Discrete: Trading Strategy
Utility: Utility

5 Supply Chain—Convex MINLP

Discrete: Fixed charges for opening facilities
Nonlinear: Nonlinear transportation costs
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Introduction Portfolio Management

Portfolio Management

N: Universe of asset to purchase

xi: % investment in asset i

αi: Expected return of asset i

R: Minimum desired expected return

min
x∈R|N|

+

{
u(x) |

∑
i∈N

xi = 1,
∑
i∈N

αixi ≥ R

}

“Markowitz”: u(x)
def
= xTQx

u(x): Variance of return if hold portfolio x
Q: Variance-covariance matrix of expected returns
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Introduction Portfolio Management

Portfolio Management

Limit Names: |i ∈ N : xi > 0| ≤ K
Use binary indicator variables to model the implication
xi > 0⇒ zi = 1

Implication modeled with variable upper bounds:

xi ≤ Bzi ∀i ∈ N

Then add cardinality:
∑
i∈N zi ≤ K

Min Holdings: (xi = 0)∨ (xi ≥ m)

Model implication: xi > 0⇒ xi ≥ m
xi > 0⇒ yi = 1⇒ xi ≥ m
xi ≤ Byi, xi ≥ myi ∀i ∈ N
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Introduction Facility Location

Death Star Location Problem

Problem studied by Günlük, Lee, and Weismantel (’07) and classes of
strong cutting planes derived

M: Death Stars

N: Rebel Bases

xij: percentage of rebel base j ∈ N blown up by death star i ∈M
zi = 1⇔ death star i ∈M is built

Fixed cost for opening death star i ∈M
Quadratic cost for blowing up base j ∈ N from death star i ∈M
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Introduction Facility Location

Death Star Location Formulation

z∗
def
= min

∑
i∈M

cizi +
∑
i∈M

∑
j∈N

qijx
2
ij

subject to

xij ≤ zi ∀i ∈M, ∀j ∈ N∑
i∈M

xij = 1 ∀j ∈ N

xij ≥ 0 ∀i ∈M, ∀j ∈ N
zi ∈ {0, 1} ∀i ∈M

Remember this!

We’ll show a better formulation at the end

Jeff Linderoth (UW-Madison) MINLP Wars NGB/LMGB 14 / 59



Introduction Facility Location

Death Star Location Formulation

z∗
def
= min

∑
i∈M

cizi +
∑
i∈M

∑
j∈N

qijx
2
ij

subject to

xij ≤ zi ∀i ∈M, ∀j ∈ N∑
i∈M

xij = 1 ∀j ∈ N

xij ≥ 0 ∀i ∈M, ∀j ∈ N
zi ∈ {0, 1} ∀i ∈M

Remember this!

We’ll show a better formulation at the end

Jeff Linderoth (UW-Madison) MINLP Wars NGB/LMGB 14 / 59



Introduction Algorithms

Focus Today – How to Solve MINLPs

Good relaxations are key
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Introduction Relaxations

Relaxations

Let zS = min f(x) : x ∈ S
Let zT = min f(x) : x ∈ T

We say that T is a relaxation of S if
S ⊆ T

S

T

Jeff Linderoth (UW-Madison) MINLP Wars NGB/LMGB 16 / 59



Introduction Relaxations

Question Time

What can we say about the relationship between zS and zT?

The “Ice Cream Theorem” (According to my 10-year old)

More is better!

Since we have more to choose from in T , the best point in T must
be at least as good as the best point in S: zT ≤ zS

The Upshot

We get lower bounds on zminlp in MINLP algorithms by solving a
relaxation of the problem
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Introduction Relaxations

More Simple Stuff

If x̂ ∈ S, then the value f(x̂) ≥ zS
There may be better solutions, but here is one...

We get upper bounds on zminlp from feasible solutions

Back to picture: S ⊆ T
If x∗T is an optimal solution to min f(x) : x ∈ T
And x∗T ∈ S, then

x∗T is an optimal solution to min f(x) : x ∈ S
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Introduction Relaxations

Algorithms ↔ Relaxations

Feasible Region “S”

{x ∈ X | gj(x) ≤ 0 ∀j = 1, . . . ,m, xI ∈ Z|I|}

NLP-Based Branch and Bound Relaxation

‘‘T ′′ = {x ∈ X | gj(x) ≤ 0 ∀j = 1, . . . ,m}

Linearization-based methods

Outer-Approximation, Extended Cutting Plane,
LP/NLP-Branch-and-Bound

Assume objective function is linear

Create polyhedral relaxation P such that S ⊆ P
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Introduction Relaxations

Nonconvex Instances

Must create a tractable (convex) relaxation both the integrality, and
the functional non-convexities

Two Steps

Break the (factorable) non-convexities into “simple pieces”

Individually convexify simple pieces using convex/concave
envelopes

Jeff Linderoth (UW-Madison) MINLP Wars NGB/LMGB 20 / 59



Introduction Relaxations

Envelopes

Convex and concave envelopes.
f : Ω→ R

Convex Envelope (vexΩ(f)):
Pointwise supremum of convex
underestimators of f over Ω.

Concave Envelope (cavΩ(f)):
Pointwise infimum of concave
overestimators of f over Ω.
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Introduction Relaxations

Example

Nonconvex Instance

min cTx

s.t. x1x
2
2 + x

3
2x3x

2
4 + x

2
4x5 ≤ 1

0 ≤ x ≤ 1

Reformulation

min cTx

s.t. y1 + y2 + y3 ≤ 1
0 ≤ x ≤ 1
z1 = x

2
2 z2 = x

3
2 z3 = x

2
4

y1 = x1z1 y2 = z2x3z3

y3 = z3x5

Global Optimization Solvers perform this reformulation
They have handlers that enforce equality of the univariate functions
via relaxations and branching.
I will show an example later on
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Introduction Relaxations

Convex MINLP: “Natural” Relaxation

Relax integrality restriction

Instead of searching nonconvex set of feasible solutions

Develop convex relaxation of set

And polyhedral outerapproximations

L
in

ear
C

u
t

L
inear

C
ut

Linear Cut

min
x,z∈R+×Z+

{−x− z | x2 + z2 ≤ 4}

zminlp = min f(x)

subject to gj(x) ≤ 0, j = 1, . . . ,m
x ∈ X, xI ∈ Z|I|
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Introduction NLP-Based Branch and Bound

NLP-Based Branch and Bound

Solve relaxed NLP (0 ≤ xi ≤ 1 continuous relaxation)
. . . solution value provides lower bound

Branch on xi, i ∈ I
non-integral

Solve NLPs & branch until
1 Node infeasible ... •
2 Node integer feasible ... �⇒ get upper bound (U)
3 Lower bound ≥ U ...

⊗ i

i
x  = 1

x  = 0
dominated 
by upper bound

infeasible

integer feasible
etc.

etc.

Search until no unexplored nodes on tree
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Introduction NLP-Based Branch and Bound

A Long Time Ago, At An Argonne Far, Far Away

“Oh wise Yoda Leyffer, how can one
solve (convex) MINLPs?”

“I suggest the LP/NLP Algorithm by
Quesada and Grossmann”

Of the four algorithms I
implemented for my thesis, best
this was

Good implementation exists it
does not
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Algorithm Engineering

Kumar “Luke”
Abhishek

Sven “Yodi”
Leyffer

Jeff “Obi-Wan”
Linderoth

Mustafa
“Anakin” Kılınç

I’ll explain a bit of our background in building a linearization-based
solver for convex MINLP
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Algorithm Engineering QG Algorithm Background

Fixed NLP Subproblem

The QG algorithm solves nonlinear programs with the integer
variables xI fixed to specific values

NLP(xk)

zNLP(xkI )
= min f(x)

subject to gj(x) ≤ 0 ∀j
xI = x

k
I

x ∈ X

NLP(xk) feasible ⇒ Upper Bound.

Linearize f and gj about xk:{
f(xk) +∇f(xk)T (x− xk) ≤ η
gj(x

k) +∇gj(xk)T (x− xk) ≤ 0

By convexity, inequalities underapproximate objective function and
outer-approximate feasible region

Collect linearization points into a set K and create a polyhedral
relaxation of the problem
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Algorithm Engineering QG Algorithm Background

The Master

MP(K): Outer-Approximation MILP Master Problem

zmp(K) = min η

subject to f(xk) +∇f(xk)T (x− xk) ≤ η ∀(xk) ∈ K (MP(K))

gj(x
k) +∇gj(xk)T (x− xk) ≤ 0 ∀(xk) ∈ K ∀j

x ∈ X, xI ∈ Z|I|

Thm: zmp(K) ≤ zminlp
Thm: If K contains the “right” points, then zminlp = zmp(K)
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Algorithm Engineering QG Algorithm Background

LP/NLP-BB (Quesada-Grossmann)

Start solving Master MILP
(MP(K)) ... using MILP
branch-and-cut.

If xkI ∈ Z|I|
+ , then interrupt MILP.

Solve NLP(xkI ) get xk

linearize f, gj about (xk)⇒ add linearization to tree

continue MILP tree-search

... until entire tree is fathomed

Jeff Linderoth (UW-Madison) MINLP Wars NGB/LMGB 29 / 59



Algorithm Engineering QG Algorithm Background

LP/NLP-BB (Quesada-Grossmann)

Start solving Master MILP
(MP(K)) ... using MILP
branch-and-cut.

If xkI ∈ Z|I|
+ , then interrupt MILP.

Solve NLP(xkI ) get xk

linearize f, gj about (xk)⇒ add linearization to tree

continue MILP tree-search

integer
feasible

... until entire tree is fathomed

Jeff Linderoth (UW-Madison) MINLP Wars NGB/LMGB 29 / 59



Algorithm Engineering QG Algorithm Background

LP/NLP-BB (Quesada-Grossmann)

Start solving Master MILP
(MP(K)) ... using MILP
branch-and-cut.

If xkI ∈ Z|I|
+ , then interrupt MILP.

Solve NLP(xkI ) get xk

linearize f, gj about (xk)⇒ add linearization to tree

continue MILP tree-search

... until entire tree is fathomed

Jeff Linderoth (UW-Madison) MINLP Wars NGB/LMGB 29 / 59



Algorithm Engineering QG Algorithm Background

LP/NLP-BB (Quesada-Grossmann)

Start solving Master MILP
(MP(K)) ... using MILP
branch-and-cut.

If xkI ∈ Z|I|
+ , then interrupt MILP.

Solve NLP(xkI ) get xk

linearize f, gj about (xk)⇒ add linearization to tree

continue MILP tree-search

... until entire tree is fathomed

Jeff Linderoth (UW-Madison) MINLP Wars NGB/LMGB 29 / 59



Algorithm Engineering QG Algorithm Background

LP/NLP-BB = Branch and Cut for MINLP

This really is just a branch-and-cut method for solving MINLP

One slight difference: At integer feasible points, we must solve an
NLP and also branch

Branch-and-cut frameworks (like MINTO) have this functionality.

We need an NLP solver: Filter-SQP. Sven’s award-winning,
filter-sequential quadratic programming (active set) code.

RBA–Rebels are Bad at Acronyms

FilMINT = Filter + MINTO

Why FilMINT Could Be Good

1 Use MINTO’s advanced MIP Features “for free.”

2 Really the only LP/NLP-BB algorithm available
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Algorithm Engineering QG Algorithm Background

Or So We Thought...

“That’s no moon. It’s a
space station.”

The Galactic Empire

Pierre Bonami, Larry Biegler, Andy
Conn, Gérard Cornuéjols, Ignacio
Grossmann, Carl Laird, Jon Lee, An-
drea Lodi, François Margot, Nick
Sawaya and Andreas Wächter, “An
algorithmic framework for convex
mixed integer nonlinear programs,”
Discrete Optimization, Volume 5,
May 2008, Pages 186-204, 2008.
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Algorithm Engineering QG Algorithm Background

Battling the Empire

This enormously talented team
built open-source Bonmin, which
(among other things), has an
LP/NLP-BB implementation
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Algorithm Engineering QG Algorithm Background

Variations on a Theme

Instead of doing a “one-tree” approach, we could solve a sequence of
integer programs and nonlinear programs

This algorithm is known as outer-approximation

Outer-Approximation

1 Solve (MILP) MP(K), giving solution xk. Solution gives lower
bound.

2 Solve (NLP) NLP(xk), giving solution yk. If feasible, f(yk) gives
an upper bound

3 Add yk to linearization points K, and Go To 1 if not yet converged.

Outer-Approximation Solvers

AIMMS, Bonmin, DICOPT

Just “MIP” it—Use MILP Solver as black box
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Algorithm Engineering QG Algorithm Background

MINLP Instances

Multi-product batch plant design problems (Batch)

Layout design problems (CLay,FLay,SLay,safetyLay,fo-m-o)

Synthesis design problems (Syn)

Retrofit planning (RSyn)

Stochastic service system design problems (sssd)

Cutting stock problems (trimloss)

Quadratic uncapacitated facility location problems (uflquad)

Network design problems (nd)
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Algorithm Engineering QG Algorithm Background

Instance Families

Instance NL # of Average
Family Ob? ins Var Bin LC NLC
Batch

√
10 334.6 123 1089.1 1

CLay 12 116.7 35.3 138.3 40
FLay 10 158.0 28 183 4

fo-m-o 9 112.2 41.6 194.3 13.6
nd 5 574.0 37.6 283.8 37.6

RSyn 48 922.3 251 1716.3 34.2
safetyLay 3 120.7 38 111 34.7

SLay
√

14 336.0 92 437 0
sssd 14 162.4 135.5 50 20.1
Syn 48 366.3 95 660 34.2

trimloss 12 279.2 227.5 133.3 6
uflquad

√
10 1571.0 23.5 1613 0

others
√

12 205.4 86.4 206 3.3
Total 207 487.5 127.6 767.9 22.3
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Algorithm Engineering QG Algorithm Background

Computational Experiments

Convex MINLPs from variety of sources: GAMS MINLP World,
MacMINLP, IBM-CMU Team

≈ 50% easy: Solved by B&B solver in < 1 min. (Ignored)
37 moderate: Solved by B&B solver in < 1 hour
85 hard: Took > 1 hour

Performance Profile

An empirical CDF of relative solver performance

The “probability” that a solver will be at most x times worse
(slower) than the best solver for an instance

“High” lines denote more effective solvers
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Algorithm Engineering QG Algorithm Background

MINTO v3.1 MILP Features

Preprocessing

Cutting planes

Knapsack covers, flow covers, clique inequalities, implication cuts

Primal heuristic: Diving-based

Branching

Pseudo-cost based branching.

Node selection strategies

Adaptive (Depth first + best estimate).

The MILP Force

Do fancy-pants MILP techniques make a difference for the
LP/NLP-BB (QG) Algorithm?
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Algorithm Engineering QG Algorithm Background

YES! Performance Profile: Moderate Instances

QP + IP
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Algorithm Engineering QG Algorithm Background

(Old) Comparison of Solvers
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Non-Convex

Nonconvex Instances

I will explain the basic ideas using the nonconvex quadratic program
(QCQP) as a specific example:

QCQP


min
x∈Rn

q0(x)

s.t. qk(x) ≤ bk ∀i = k ∈M
l ≤ x ≤ u

qk(x) = (ck)Tx+ xTQkx ∀k ∈ {0 ∪ M
qk(x) could be convex, concave, or nonconvex

l and u are finite
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Non-Convex

Solving QCQP

Convexify “simple” nonconvex term xixj over the region

(xi, xj) ∈ R
def
= [li, ui]× [lj, uj].

xixj ≥ max{lixj + ljxi − lilj, uixj + ujxi − uiuj}

xixj ≤ min{lixj + ujxi − liuj, uixj + ljxi − uilj}

Thm: (McCormick ’76, Al-Khayyal and Falk, ’83)

vexR(xixj) = max{lixj + ljxi − lilj, uixj + ujxi − uiuj}

cavR(xixj) = min{lixj + ujxi − liuj, uixj + ljxi − uilj}
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Non-Convex

Worth 1000 Words?
xixj
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Non-Convex

Worth 1000 Words?
cavR(xixj)
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Non-Convex Relaxations

(LP) Relaxation of QCQP

zLP = min

n∑
i=1

c0i xi +

n∑
i=1

n∑
j=1

Q0
ijzij

subject to

n∑
i=1

cki xi +

n∑
i=1

n∑
j=1

Qk
ijzij ≤ bk ∀k ∈M

zij − lixj − ljxi + lilj ≥ 0 ∀i = 1, . . . , n, j = 1, . . . , n
zij − uixj − ujxi + uiuj ≥ 0 ∀i = 1, . . . , n, j = 1, . . . , n
zij − lixj − ujxi + liuj ≤ 0 ∀i = 1, . . . , n, j = 1, . . . , n
zij − uixj − ljxi + uilj ≤ 0 ∀i = 1, . . . , n, j = 1, . . . , n

xi ∈ [li, ui] ∀i = 1, . . . , n

Jeff Linderoth (UW-Madison) MINLP Wars NGB/LMGB 43 / 59



Non-Convex Relaxations

Branching

In LP relaxation, zij = xixj ∀xi, xj on the boundary of the
rectangular region Rij

If zij 6= xixj, we branch. Two suggested branching schemes

Two Rectangles

li uixi
lj

uj

xj
(x̂i, x̂j)

Four Rectangles

li uixi
lj

uj

xj
(x̂i, x̂j)
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Non-Convex Relaxations

Tight Bounds are Important!

Hock and Schittkowski

minimize

x3 + x1x5 + x2x5 + x3x5

subject to

x5 − x1x4 = 0

x6 − x2x3 = 0

x21 + x
2
2 + x

2
3 + x

2
4 = 40

x5x6 ≥ 25

1 ≤ xk ≤ K k = 1, 2, 3, 4

K Nodes
5 210

10 788
25 6834
50 19360

100 > 70000
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Preprocessing

Oktay “R2D2”
Günlük

Jeff “Obi-Wan”
Linderoth
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Preprocessing Background

Preprocessing for MINLP

MILP Force: Exploit The Structure!

Mixed Integer Linear Programmers carefully study simple problem
structures to come up with “good” formulations for problems

Good formulations closely approximate convex hull of feasible
solutions

We study carefully the structure of a special MINLP with indicator
variables
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Preprocessing Background

Linear Objective Is Important Here!

min(y1 − 1/2)
2 + (y2 − 1/2)

2

s.t. y1 ∈ {0, 1}, y2 ∈ {0, 1}

η ≥ (y1 − 1/2)
2 + (y2 − 1/2)

2

y1

y2

(ŷ1, ŷ2)

Without linear objective, optimal solution may be interior to the
convex hull ⇒ convexifying may do you no good!
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Preprocessing Background

Indicator MINLPs

Binary variables z are used as indicator variables.

If zi = 0, components of x controlled by zi collapse to a point

If zi = 1, components of x controlled by zi belong to a convex set

Process Flow Applications

z = 0⇒ x1 = x2 = x3 = x4 = 0

z = 1⇒ f(x1, x2, x3, x4) ≤ 0

x1

x2 x3

x4

z

Jeff Linderoth (UW-Madison) MINLP Wars NGB/LMGB 49 / 59



Preprocessing Convex Hull Characterizations

A Very Simple Example

R
def
=
{
(x, y, z) ∈ R2 × B | y ≥ x2, 0 ≤ x ≤ uz

}

z = 0⇒ x = 0, y ≥ 0
z = 1⇒ x ≤ u, y ≥ x2

x

y

z = 1

z

y ≥ x2

Deep Insights

conv(R) ≡ line connecting (0, 0, 0) to y = x2 in the z = 1 plane
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Preprocessing Convex Hull Characterizations

Characterization of Convex Hull
Deep Theorem #1

R =
{
(x, y, z) ∈ R2 × B | y ≥ x2, 0 ≤ x ≤ uz

}
conv(R) =

{
(x, y, z) ∈ R3 | yz ≥ x2, 0 ≤ x ≤ uz, 0 ≤ z ≤ 1, y ≥ 0

}

x2 ≤ yz, y, z ≥ 0 ≡

Second Order Cone Programming

x2 − yz is not convex

There are effective, robust algorithms for optimizing over conv(R)

Jeff Linderoth (UW-Madison) MINLP Wars NGB/LMGB 51 / 59



Preprocessing Convex Hull Characterizations

Characterization of Convex Hull
Deep Theorem #1

R =
{
(x, y, z) ∈ R2 × B | y ≥ x2, 0 ≤ x ≤ uz

}
conv(R) =

{
(x, y, z) ∈ R3 | yz ≥ x2, 0 ≤ x ≤ uz, 0 ≤ z ≤ 1, y ≥ 0

}

x2 ≤ yz, y, z ≥ 0 ≡

Second Order Cone Programming

x2 − yz is not convex

There are effective, robust algorithms for optimizing over conv(R)

Jeff Linderoth (UW-Madison) MINLP Wars NGB/LMGB 51 / 59



Preprocessing Convex Hull Characterizations

Characterization of Convex Hull
Deep Theorem #1

R =
{
(x, y, z) ∈ R2 × B | y ≥ x2, 0 ≤ x ≤ uz

}
conv(R) =

{
(x, y, z) ∈ R3 | yz ≥ x2, 0 ≤ x ≤ uz, 0 ≤ z ≤ 1, y ≥ 0

}

x2 ≤ yz, y, z ≥ 0 ≡

Second Order Cone Programming

x2 − yz is not convex

There are effective, robust algorithms for optimizing over conv(R)

Jeff Linderoth (UW-Madison) MINLP Wars NGB/LMGB 51 / 59



Preprocessing Convex Hull Characterizations

Characterization of Convex Hull
Deep Theorem #1

R =
{
(x, y, z) ∈ R2 × B | y ≥ x2, 0 ≤ x ≤ uz

}
conv(R) =

{
(x, y, z) ∈ R3 | yz ≥ x2, 0 ≤ x ≤ uz, 0 ≤ z ≤ 1, y ≥ 0

}

x2 ≤ yz, y, z ≥ 0 ≡

Second Order Cone Programming

x2 − yz is not convex

There are effective, robust algorithms for optimizing over conv(R)

Jeff Linderoth (UW-Madison) MINLP Wars NGB/LMGB 51 / 59



Preprocessing Perspective

Giving You Some Perspective

For a convex function f : Rn → R, the perspective function
P : Rn+1 → R of f is

P(x, z) def
=

{
0 if z = 0
zf(x/z) if z > 0

The epigraph of P(x, z) is a cone pointed at the origin whose lower
shape is f(x)

Exploiting Your Perspective

If zi is an indicator that the (nonlinear, convex) inequality f(x) ≤ 0
must hold, (otherwise x = 0), replace the inequality with its
perspective version:

zif(x/zi) ≤ 0

The resulting (convex) inequality is a much tighter relaxation of
the feasible region.
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Preprocessing Computations

Death Star Location Problem

Problem studied by Günlük, Lee, and Weismantel (’07) and classes of
strong cutting planes derived

M: Death Stars

N: Rebel Bases

xij: percentage of rebel base j ∈ N blown up by death star i ∈M
zi = 1⇔ death star i ∈M is built

Fixed cost for opening death star i ∈M
Quadratic cost for blowing up base j ∈ N from death star i ∈M
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Preprocessing Computations

Death Star Location Formulation

z∗
def
= min

∑
i∈M

cizi +
∑
i∈M

∑
j∈N

qijx
2
ij

subject to

xij ≤ zi ∀i ∈M, ∀j ∈ N∑
i∈M

xij = 1 ∀j ∈ N

xij ≥ 0 ∀i ∈M, ∀j ∈ N
zi ∈ {0, 1} ∀i ∈M

x2ij −

zi

yij ≤ 0 ∀i ∈M, ∀j ∈ N
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Preprocessing Computations

Strength of Relaxations

zR: Value of NLP relaxation

zGLW : Value of NLP relaxation after GLW cuts

zP: Value of perspective relaxation

z∗: Optimal solution value

|M| |N| zR zGLW zP z∗

10 30 140.6

326.4 346.5

348.7
15 50 141.3

312.2 380.0

384.1
20 65 122.5

248.7 288.9

289.3
25 80 121.3

260.1 314.8

315.8
30 100 128.0

327.0 391.7

393.2

Woo Hoo!
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Preprocessing Computations

Impact of SOCP

m = 30, n = 100

Bonmin B&B, GLW, Original: 16697 CPU seconds, 45901 nodes

Bonmin B&B, GLW, w/ineq: 21206 CPU seconds, 29277 nodes

Bonmin B&B, Perspective, 4201 CPU seconds, 39 B&B nodes

Mosek SOCP, Perspective, 23 CPU seconds, 44 B&B nodes

Larger Instances

m n T N

30 200 141.9 63
40 100 76.4 54
40 200 101.3 45
50 100 61.6 49
50 200 140.4 47

“The Force is
Strong with This

One”
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Preprocessing Computations

Conclusions

My 10-year old likes Star Wars

The MILP Force is Powerful

Applying “traditional” techniques from MILP in the domain of
MINLP can lead to significant improvements in our ability to solve
instances

Final Frontiers

Keep using the MILP force on MINLP

Strong formulations
Cutting planes
Branching rules
Heuristics
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Preprocessing Computations

MINLP: A New Hope?!

MINOTAUR: Mixed Integer Nonlinear
Optimization Toolkit: Algorithms,
Underestimators, Refinements

http://wiki.mcs.anl.gov/

minotaur/index.php/Main_Page

Framework & toolbox for solving
MINLPs

Implemented algorithms in
MINOTAUR:

branch-and-{bound|cut} for convex
MINLPs
branch-and-bound for mixed
polynomial programs

Extensible: implement new MINLP
algorithms, solvers
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References

Bunch of refs

I am including a number of classical and recent reference on MINLP

The list is by no means comprehensive

Don’t yell at me if your favorite reference is not there!
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