
LNMB conference, Luntheren

 FEDOR V. FOMIN

Kernelization Algorithms

15.01.2013

Preprocessing

I Preprocessing: reducing the input to something simpler...

I Kernelization: an attempt to analyze preprocessing...

Preprocessing

I Preprocessing: reducing the input to something simpler...

I Kernelization: an attempt to analyze preprocessing...

Preprocessing. Sudoku

2 5 1 9
8 2 3 6

3 6 7
1 6

5 4 1 9
2 7

9 3 8
2 8 4 7

1 9 7 6

2 5 1 9
8 2 3 6

3 6 7
1 6

5 4 1 9
2 7

9 3 8
2 8 4 7

1 9 7 6

4 6 7 3 8

5 7 9 1 4

1 9 4 8 2 5

9 7 3 8 5 2 4

3 7 2 6 8

6 8 1 4 9 5 3

7 4 6 2 5 1

6 5 1 9 3

3 8 5 4 2

Preprocessing. Sudoku

2 5 1 9
8 2 3 6

3 6 7
1 6

5 4 1 9
2 7

9 3 8
2 8 4 7

1 9 7 6

2 5 1 9
8 2 3 6

3 6 7
1 6

5 4 1 9
2 7

9 3 8
2 8 4 7

1 9 7 6

4 6 7 3 8

5 7 9 1 4

1 9 4 8 2 5

9 7 3 8 5 2 4

3 7 2 6 8

6 8 1 4 9 5 3

7 4 6 2 5 1

6 5 1 9 3

3 8 5 4 21

1

1 9

9

9

1

9
9

Cross-hatching rule

Preprocessing. Train management

- We want a minimum-sized
subset of stations S such
that every train stops at
least at one station from S

Preprocessing. Train management

- Rule 1 If S(t) ⊆ S(t′),
then remove t

S(t)={B,D}
S(t')={B}

Reduction Rules:

t

t′

A

B

C

D

Preprocessing. Train management

- Rule 2 If T (s) ⊆ T (s′),
then remove s

Reduction Rules:
A

B

C

D

Preprocessing. Train management

K.Weihe, ALEX, 1998: Similar preprocessing for real-world data
from the German and European train schedules (25.000 stations,
154.000 trains and 160.000 single train stops) the data reduction
merely took a few minutes to reduce the original, huge input graph
into a graph consisting of disjoint components of size at most 50.

Preprocessing is ubiquitous

I Commercial linear program solvers like CPLEX

I Navigation systems

I Microarray data analysis for the classification of cancer types

I ...

Analysis of Algorithms

I Powerful tools developed since 1960s

I Theory of NP-completeness

Analysis of Algorithms. Naive question

I Take your favourite NP-complete problem

I Is there preprocessing algorithm that guarantees to reduce
every instance of your problem, say by 5%?

I That would be very strange!!!

Analysis of Algorithms. Naive question

I Take your favourite NP-complete problem

I Is there preprocessing algorithm that guarantees to reduce
every instance of your problem, say by 5%?

I That would be very strange!!!

Theory of Computing for the 21st century

“While theoretical work on models of computation and
methods for analyzing algorithms has had enormous
payoff, we are not done. In many situations, simple
algorithms do well. We don’t understand why! It is
apparent that worst-case analysis does not provide useful
insights on the performance of algorithms and heuristics
and our models of computation need to be further
developed and refined.”

Condon, Edelsbrunner, Emerson, Fortnow, Haber, Karp,
Leivant, Lipton, Lynch, Parberry, Papadimitriou, Rabin,
Rosenberg, Royer, Savage, Selman, Smith, Tardos, and
Vitter, Challenges for theory of computing: Report for an
NSF-sponsored workshop on research in theoretical computer science,
1999.

Anther try: Covering Points with Lines

Task: Given a set P of n points in the plane and an integer k, find
k lines that cover all the points.

Note: We can assume that every line of the solution covers at
least 2 points, thus there are at most n2 candidate lines.

Covering Points with Lines

Reduction Rule If there is a line L covering more than k points,
remove all points covered by L and reduce the
parameter k by one.

Why this rule is sound?

Covering Points with Lines

Reduction Rule If there is a line L covering more than k points,
remove all points covered by L and reduce the
parameter k by one.

Why this rule is sound?

Covering Points with Lines

At every step of Reduction Rule we obtain a problem with a
smaller number of points. Thus we

I either end up with the problem with no points left, and in this
case we solved the problem; YES!

I or the parameter k is zero but some points are left, in this
case the problem does not have solution; NO!

I or we arrive at the problem for which our Reduction Rule
cannot be applied. What happens here?

Covering Points with Lines

At every step of Reduction Rule we obtain a problem with a
smaller number of points. Thus we

I either end up with the problem with no points left, and in this
case we solved the problem; YES!

I or the parameter k is zero but some points are left, in this
case the problem does not have solution; NO!

I or we arrive at the problem for which our Reduction Rule
cannot be applied. What happens here?

Covering Points with Lines

At every step of Reduction Rule we obtain a problem with a
smaller number of points. Thus we

I either end up with the problem with no points left, and in this
case we solved the problem; YES!

I or the parameter k is zero but some points are left, in this
case the problem does not have solution; NO!

I or we arrive at the problem for which our Reduction Rule
cannot be applied. What happens here?

Covering Points with Lines

Reduction Rule If there is a line L covering more than k points,
remove all points covered by L and reduce the
parameter k by one.

If Rule cannot be applied, WE HAVE AT MOST k2 POINTS!

We have an algorithm that

Input: An instance of our (NP-complete) problem of size n, and a
parameter k.
Output: Either correct solution, or an equivalent instance.
Properties of the algorithm and the reduced instance

I It runs in time O(n2) [polynomial time]

I Outputs an equivalent instance of size k2 [the size of reduced
instance depends only on parameter k].

What happens?

Preprocessing: We are not able to say how much the whole input
length has been changed but we can analyse progress of
preprocessing in terms of some parameter.

Parameterized complexity

Main idea: Instead of expressing the running time as a function
T (n) of n, we express it as a function T (n, k) of the input size n
and some parameter k of the input.

In other words: we do not want to be efficient on all inputs of size
n, only for those where k is small.

Parameterized complexity

What can be the parameter k?

I The size k of the solution we are looking for.

I The maximum degree of the input graph.

I The diameter of the input graph.

I The length of clauses in the input Boolean formula.

I . . .

Fixed-parameter tractability

Main definition:

A parameterized problem is fixed-parameter tractable (FPT)
if there is an f(k)nc time algorithm for some constant c solving
this problem.

Parameterized complexity

Problem: Min Vertex Cover Max Independent Set
Input: Graph G, integer k Graph G, integer k
Question: Is it possible to cover

the edges with k vertices?
Is it possible to find
k independent vertices?

Complexity: NP-complete NP-complete

Complete O(nk) possibilities O(nk) possibilities

Enumeration: O(2kn2) algorithm exists No no(k) algorithm known

Parameterized complexity

Problem: Min Vertex Cover Max Independent Set
Input: Graph G, integer k Graph G, integer k
Question: Is it possible to cover

the edges with k vertices?
Is it possible to find
k independent vertices?

Complexity: NP-complete NP-complete

Complete O(nk) possibilities O(nk) possibilities

Enumeration: O(2kn2) algorithm exists No no(k) algorithm known

Parameterized complexity

Problem: Min Vertex Cover Max Independent Set
Input: Graph G, integer k Graph G, integer k
Question: Is it possible to cover

the edges with k vertices?
Is it possible to find
k independent vertices?

Complexity: NP-complete NP-complete

Complete O(nk) possibilities O(nk) possibilities

Enumeration: O(2kn2) algorithm exists No no(k) algorithm known

FPT problems

Examples of NP-hard problems that are FPT:

I Finding a vertex cover of size k.

I Finding a path of length k.

I Finding k disjoint triangles.

I Drawing the graph in the plane with k edge crossings.

I Finding disjoint paths that connect k pairs of points.

I . . .

Companion Complexity Theory.
Examples of W-hard problems:

I Finding a dominating set of size k.

I Finding a clique of size k.

I Finding an independent set of size k.

I . . .

FPT problems

Examples of NP-hard problems that are FPT:

I Finding a vertex cover of size k.

I Finding a path of length k.

I Finding k disjoint triangles.

I Drawing the graph in the plane with k edge crossings.

I Finding disjoint paths that connect k pairs of points.

I . . .

Companion Complexity Theory.
Examples of W-hard problems:

I Finding a dominating set of size k.

I Finding a clique of size k.

I Finding an independent set of size k.

I . . .

Books

Downey-Fellows: Parameterized Com-
plexity, Springer, 1999

Flum-Grohe: Parameterized Complexity
Theory, Springer, 2006

Niedermeier: Invitation to Fixed-
Parameter Algorithms, Oxford University
Press, 2006.

Coming back to preprocessing

Kernelization algorithm:

Input: An instance of parameterized problem with parameter k.
Output: An equivalent instance of size at most f(k), where f(k)
is some function of parameter k only.

Properties of the kernelization algorithm

I Algorithm runs in polynomial time.

f(k): size of the kernel

Covering points by lines

Our algorithm for Covering Points with Lines is a
kernelization algorithm:

On input with n vertices and parameter k, it produces in
polynomial time an equivalent instance of size at most k2.

Example: Vertex Cover

I ILP for Vertex Cover

VERTEX COVER: Kernelization Based on LP

An alternative route to a 2k-vertices problem kernel: state the

optimization version of VERTEX COVER as an integer linear program.

Integer Linear Program (ILP) for VERTEX COVER

Minimize
∑

v∈V xv

subject to xu + xv ≥ 1, ∀e = {u, v} ∈ E

xv ∈ {0, 1}, ∀v ∈ V

• xv = 1: v is in the vertex cover;

• xv = 0: v is not in the vertex cover.

Fixed-Parameter Algorithms Rolf Niedermeier & Jiong Guo 60

I LP Relaxation

VERTEX COVER: Kernelization Based on LP

Since integer linear programming is generally intractable (the

corresponding decision problem is NP-complete), we relax the integer

programming formulation to polynomial-time solvable linear

programming.

LP-relaxation

Minimize
∑

v∈V xv

subject to xu + xv ≥ 1, ∀e = {u, v} ∈ E

0 ≤ xv ≤ 1, ∀v ∈ V

Fixed-Parameter Algorithms Rolf Niedermeier & Jiong Guo 61

Example: Vertex Cover

Theorem (Nemhauser-Trotter, 1975)

LP relaxation of IPL vertex cover has a superoptimal half-integral
{0, 1/2, 1} solution.

Corollary

Parameterized Vertex Cover admits a kernel with at most 2k
vertices and O(k2) edges, i.e. a kernel of size O(k2).

Proof.
By Nemhauser-Trotter, LP relaxation gives a graph on at most 2k
vertices.

Example: Vertex Cover

Theorem (Nemhauser-Trotter, 1975)

LP relaxation of IPL vertex cover has a superoptimal half-integral
{0, 1/2, 1} solution.

Corollary

Parameterized Vertex Cover admits a kernel with at most 2k
vertices and O(k2) edges, i.e. a kernel of size O(k2).

Proof.
By Nemhauser-Trotter, LP relaxation gives a graph on at most 2k
vertices.

Example: Feedback Vertex Set

Theorem (Thomasse, SODA 2009)

Parameterized Feedback Vertex Set problem admits a kernel with
O(k2) vertices and O(k2) edges, i.e. of size O(k2).

Vertex Cover

VC Independent Set

Feedback Vertex Set

FVS Forest

Treewidth Deletion

Graph of small
treewidthDeletion Set

Example: Treewidth Deletion Set

Theorem (FF, Lokshtanov, Misra, Saurabh, FOCS 2012)

Parameterized Treewidth Deletion problem admits a polynomial
kernel.

Origin of kernelization

Parameterized Complexity

Folklore: A parameterized problem admits kernelization if and only
if it is fixed parameter tractable.

Origin of kernelization

Thus the powerful tools of Parameterized Complexity can be used
to decide if a problem has a kernel or not.

However, Parameterized Complexity cannot be used to estimate
size of the kernel (the function f(k) bounding the output of the
algorithm).

Origin of kernelization

Thus the powerful tools of Parameterized Complexity can be used
to decide if a problem has a kernel or not.

However, Parameterized Complexity cannot be used to estimate
size of the kernel (the function f(k) bounding the output of the
algorithm).

Questions about kernelization

Does problem
admit a kernel?

Is kernel
polynomial?Is obtained

kernelization tight?

Questions about kernelization

Does problem
admit a kernel?

Is kernel
polynomial?Is obtained

kernelization tight?

Pa
ram

ete
riz

ed

Co
mp

lex
ity

New Tools

Polynomial time algorithms

I Exact

I Approximation

I Kernelization

Polynomial time algorithms

I Exact

I Approximation

I Kernelization

Why kernelization?

I Hope to shed some light on the effectiveness of established
heuristics

I Help to design better heuristics in mathematically disciplined
ways

I Deeper understanding of what can be done efficiently with
intractable computational problems

Few years ago

The Lost Continent of Polynomial Time:

Preprocessing and Kernelization

Michael R. Fellows

School of Electrical Engineering and Computer Science
University of Newcastle, University Drive, Callaghan NSW 2308, Australia

mfellows@cs.newcastle.edu.au

Abstract. One of the main objectives of the talk is to survey the history
of the practical algorithmic strategy of preprocessing (also called data-
reduction and kernelization) since the beginnings of computer science,
and to overview what theoretical computer science has been able to say
about it.

Parameterized complexity affords the subject of preprocessing (kernelization) a
central place via the (trivial) lemma that states:

Lemma. A parameterized problem Π is fixed-parameter tractable if and only if
there is a transformation τ from Π to itself, that takes an instance (x, k) to an
instance (x′, k′) where:

(1) (x′, k′) is a yes-instance if and only if (x, k) is a yes-instance,
(2) |x′| ≤ g(k) for some function g associated to τ ,
(3) k′ ≤ k,
(4) τ runs in polynomial time, that is, in time polynomial in |(x, k)|.

In the situation described by the lemma, we say that Π can be kernelized to
instances of size g(k). The lemma is built around a transformation τ that is
many:1. This can be generalized to a notion of P-time Turing kernelization. If
the parameterized problem Π is solvable in time O(f(k)nc), then the lemma
provides only a P-time kernelization bound of g(k) = f(k). Hence, membership
in FPT generally insures only an exponential kernelization.

Many parameterized problems admit P-time kernelization bounds g(k) where
g is a polynomial, or even linear function of k. Sometimes, the bounds are stated in
terms of other instance measures than total size, for example, a Vertex Cover
instance (G, k) can be kernelized to an instance (G′, k′) where G′ has at most 2k
vertices. Another avenue for generalization is therefore to consider kernelization
as a P-time transformation that bounds one parameter in terms of another (the
overall input size, the number of vertices or edges, the treewidth, etc.).

Pre-processing is a humble strategy for coping with hard problems, almost
universally employed. It has become clear, however, that far from being trivial
and uninteresting, that pre-processing has unexpected practical power for real-
world input distributions, and is mathematically a much deeper subject than has
generally been understood. It is almost impossible to talk about pre-processing

H.L. Bodlaender and M.A. Langston (Eds.): IWPEC 2006, LNCS 4169, pp. 276–277, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Thriving research area

I Complexity

I Algorithms

Complexity

I There are problems that have exponential kernels and (unless
polynomial hierarchy collapses to the third level) have no
polynomial kernels.

I The work of Fortnow and Santhanam (STOC 2008) and of
Bodlaender, Downey, Fellows, and Hermelin (ICALP 2008) on
OR-expressive problems

Theorem
The problem of finding a path of length at least k has no
polynomial kernel unless polynomial hierarchy collapses to the third
level.

Complexity. More OR-expressive problems

I k-Path, k-Cycle, k-Exact Cycle and k-Short Cheap Tour,

I k-Graph Minor Order Test and k-Bounded Treewidth
Subgraph Test,

I k-Planar Graph Subgraph Test and k-Planar Graph Induced
Subgraph Test

Complexity. AND-expressive problems

Drucker (FOCS, 2012)

I k-Cutwidth, k-Search Number,

I k-Pathwidth, k-Treewidth, and k-Branchwidth

Complexity

I Extension of technique by Lokshtanov and Saurabh (ICALP
2009): Steiner tree, connected vertex cover

I More by Bodlaender, Jansen, and Kratsch (STACS 2010)

Complexity

I Dell and van Melkebeek (STOC 2010): lower bounds on
polynomial sizes of kernels.

Theorem
The problem of finding a vertex cover at most k has no kernel with
k(2−ε) edges for any ε > 0 unless polynomial hierarchy collapses to
the third level.

Note: as we discussed, kernel with k2 edges can be constructed.

Algorithms

I Meta-algorithmic results on sparse graphs (Bodlaender, FF,
Lokshtanov, Penninks, Saurabh, Thilikos, FOCS 2009, SODA
2010): Many problems like Dominating Set, r-Dominating Set,

Vertex Cover, Connected Vertex Cover, Connected Dominating

Set, Almost Outerplanar, Feedback Vertex Set, Cycle Domination,

different packing and covering problems... admit linear kernels on
H-minor-free graphs

Algorithms

I Graph Minors Techniques (FF, Lokshtanov, Misra, Saurabh,
FOCS 2012)

I Matroids (Kratsch and Walstrom, FOCS 2012)

Algorithms

Modular and Tree

decompositions

Clustering [G
uo 2009, Cao and Chen

2010]

Hittimg minors [FF,
 Lokshtano

v,

Misra, Philip, and S
aurabh, 2011]

Algebraic and Probabilistic methodsAbove guarantee [Alon et al. 2010],
[Gutin et al. 2011]

Matroid
s

Matroid
 repre

senta
tions

[Krat
sch a

nd

Wahlst
röm, 2012

]

Combinato
rial to

ols

Matchi
ngs [

Chor, F
ellow

s and
 Juedes,

2004]

Expan
sion

[Thomasse,
 2009

]

Matroid
 Mathch

ing [L
oksht

anov
and

Saurabh,
2009]

Meta theorems

Planar Graphs [Bodlaender et al.

2009]

H-minor free graphs [FF, Lokshtanov,

Saurabh, and Thilikos, 2010]

Future directions

I General techniques (what are analogues for, say, LP or PCP
for kernelization?)

I Approximation and kernelization

Conclusion

I Kernelization can be thought of as a polynomial-time
preprocessing before attacking the problem with whatever
method we have. “It does no harm” to try kernelization.

I Some kernelizations use lots of simple reduction rules and
require a complicated analysis to bound the kernel size. . .

I . . . while other kernelizations are based on surprising nice
tricks and deep mathematical ideas.

I Possibility to prove lower bounds.

Further reading

Hans L. Bodlaender, Rodney G. Downey, Michael R. Fellows,
and Danny Hermelin.
On problems without polynomial kernels.
J. Comput. Syst. Sci., 75(8):423–434, 2009.

Jiong Guo and Rolf Niedermeier.
Invitation to data reduction and problem kernelization.
SIGACT News, 38(1):31–45, 2007.

Neeldhara Misra, Venkatesh Raman, and Saket Saurabh.
Lower bounds on kernelization.
Discrete Optim., 8(1):110–128, 2011.

	Titlepage
	Vertex Cover Example

