
LNMB conference, Luntheren

 FEDOR V. FOMIN

Kernelization Algorithms

15.01.2013

Exact solutions for NP-hard problems

Early interest in exponential algorithms in the late 70’s and early
80’s (following fundamental results on NP-completeness)

Emerging interest in fast exponential algorithms for NP-hard (and
other hard) problems in the last years

Why is it interesting?

(I) Approaches to attack hard computational problems

I approximation algorithms

I randomized algorithms

I fixed parameter algorithms

I heuristics

I restricting the inputs

have weak points

I necessity of exact solutions

I difficulty of approximation

I limited power of the method itself

Why is it interesting?

(I) Approaches to attack hard computational problems

I approximation algorithms

I randomized algorithms

I fixed parameter algorithms

I heuristics

I restricting the inputs

have weak points

I necessity of exact solutions

I difficulty of approximation

I limited power of the method itself

Why is it interesting?

(II) Curiosity

I If we believe that P 6= NP , are all NP complete problems on
the same level of intractability? Or maybe some of them can
be solved faster than the others? If yes, then why?

I Is the exhaustive search (trying all possible solutions) the only
alternative for solving NP complete problems?

Why is it interesting?

(III) Are exponential algorithms really bad?

I What is better, algorithm with exponential running time
O(1.01n) or algorithm with polynomial running time O(n4)?

For n = 5000, 1.01n < n4.

Why is it interesting?

(III) Are exponential algorithms really bad?

I What is better, algorithm with exponential running time
O(1.01n) or algorithm with polynomial running time O(n4)?

For n = 5000, 1.01n < n4.

Why is it interesting?

(IV) Fun

I Often there is a nice combinatorics

Old exponential algorithms

TSP: O∗(2n) Held, Karp (1962)
COLORING: O(2.4422n) Lawler (1976)
3-COLORING: O(1.4422n) Lawler (1976)
3-SAT: O(1.6181n) Speckenmeyer & Monien (1985)
INDEPEND. SET: O(1.2599n) Tarjan & Trojanowski (1977)

Some new exponential algorithms

3-SAT: O(1.465n) Scheder (2008)
COLORING: O∗(2n) Bjorklund & Husfeldt, Koivisto (2006)
TREEWIDTH: O(1.7348n) Fomin & Villanger (2010)
3-COLORING: O(1.3289n) Beigel & Eppstein (2005)
INDEPEND. SET: O(1.1893n) Robson (2001)
BANDWIDTH: O∗(4.383n) Cygan & Pilipczuk (2010)
HAMILTONICITY: O∗(1.657n) Björklund (2010)

Basic question in EA:

Is there an algorithm significantly faster than a trivial (brute-force)
one?

Exhaustive search: What is a trivial solution for NP
complete problem?

I Subset problems:
I SAT for CNF with n variables: O∗(2n)
I Maximum Independent Set in a graph on n vertices : O∗(2n)

I Permutation problems:
I TSP on n cities O∗(n!)

I Partitioning problems:
I Graph coloring O∗(2n log n)

Exhaustive search: What is a trivial solution for NP
complete problem?

I Subset problems:
I SAT for CNF with n variables: O∗(2n)
I Maximum Independent Set in a graph on n vertices : O∗(2n)

I Permutation problems:
I TSP on n cities O∗(n!)

I Partitioning problems:
I Graph coloring O∗(2n log n)

Exhaustive search: What is a trivial solution for NP
complete problem?

I Subset problems:
I SAT for CNF with n variables: O∗(2n)
I Maximum Independent Set in a graph on n vertices : O∗(2n)

I Permutation problems:
I TSP on n cities O∗(n!)

I Partitioning problems:
I Graph coloring O∗(2n log n)

Exhaustive search: What is a trivial solution for NP
complete problem?

I Subset problems:
I SAT for CNF with n variables: O∗(2n)
I Maximum Independent Set in a graph on n vertices : O∗(2n)

I Permutation problems:
I TSP on n cities O∗(n!)

I Partitioning problems:
I Graph coloring O∗(2n log n)

Exhaustive search: What is a trivial solution for NP
complete problem?

I Subset problems:
I SAT for CNF with n variables: O∗(2n)
I Maximum Independent Set in a graph on n vertices : O∗(2n)

I Permutation problems:
I TSP on n cities O∗(n!)

I Partitioning problems:
I Graph coloring O∗(2n log n)

Beating the brute-force

Many different algorithmic techniques and approaches.

Branching

Example:

Maximum Independent Set

Trivial algorithm to find a maximum independent set is: try all
subsets, for each try check if it is independent set and count how
many vertices are in this set. Output the maximum number. Runs
in time O∗(2n).

Example: Branching for IS

If all vertices of a graph are of degree 2 or less, the problem is
trivial. Let v be a vertex of maximum degree (≥ 3).

If v belongs to an optimal independent set I, then none of its
neighbors can be in I. Thus we can branch on two subproblems of
smaller size: G \ {v} and G \N [v].

Example: Branching for IS

The running time of the algorithm (up to a polynomial factor) is
proportional to the number of leaves t(n) in the branching tree.

t(n) ≤ t(n− 1) + t(n− 4),

and t(n) = 1.

Better analysis
Number of leaves

t(n) = t(n− 1) + t(n− 4)

There is a standard technique for bounding such functions
asymptotically.

We prove by induction that t(n) ≤ xn for some x > 1 as small as
possible.

What values of x are good? We need:

xn≥xn−1 + xn−4

x4 − x3 − 1 ≥ 0

Hence
t(n) ≤ αn,

where α < 1.3802 is the unique positive root of

1 =
1
x

+
1
x4
.

Note: it is always true that such an equation has a unique positive
root.

Better analysis

Is this bound tight? There are two questions:

I Can the function t(k) be that large?
Yes (ignoring rounding problems).

I Can the search tree of the Vertex Cover algorithm be that
large?
Difficult question, hard to answer in general.

Independent Set: How to improve?

More cases... (from Tarjan & Trojanowski, SICOMP 1977)

Independent Set: How to improve?

More cases (...continued) ⇒ O(1.2599n)

The description of Robson’s algorithms (2001) takes 18 pages
resulting into claimed running time O(1.1893n).

Difference between polynomial and exponential algorithms

Polynomial time algorithms: (usually) exact time analysis.

Exponential time algorithms: different story

Playing with measure µ

We measure the progress in the number of vertices, µ = n.

It can be the number of edges, µ = n, or some function
µ = f(m,n).

Or a function µ = f(m,n1, n2, . . . , nk), where ni is the number of
vertices of degree i.

Playing with measure

Then recursions are of type

T (µ) = O∗(
∑

1≤i≤k
T (µ− εi))

The running time of the algorithm is O(cµ), where c is the unique
positive root of

1 =
∑

1≤i≤k

1
xεi

Finally, to estimate the progress in n, we find a function g s.t.
µ(G) ≤ g(n). Then the running time is O(cg(n)).

Why measure helps?

Let us put weight on vertices of degree two ω = 0.5.

Why measure helps?

The running time

t(µ) ≤ min



t(µ− 1) + t(µ− 5)
t(µ− 1− ω) + t(µ− 4− ω)
t(µ− 1− 2ω) + t(µ− 3− 2ω)
t(µ− 1− 3ω) + t(µ− 2− 3ω)
· · ·
t(µ− 1− 3ω) + t(µ− 1− 3(1− ω))

brings to
t(µ) = O∗(1.320µ) = O∗(1.320n),

Algorithm is the same, only the analyzes has been changed!

Measure & Conquer

I How to find the right measure to analyze branching
algorithms?

I Minimum Dominating Set [FF, Grandoni, & Kratsch, ICALP
2005]

I Maximum Independent Set [FF, Grandoni, & Kratsch, SODA
2006, J ACM 2009]

I Surprise: Simple algorithms (which are easier to analyze)
provide better running times.

I Importance of giving lower bounds for exponential algorithms

Measure & Conquer

I How to find the right measure to analyze branching
algorithms?

I Minimum Dominating Set [FF, Grandoni, & Kratsch, ICALP
2005]

I Maximum Independent Set [FF, Grandoni, & Kratsch, SODA
2006, J ACM 2009]

I Surprise: Simple algorithms (which are easier to analyze)
provide better running times.

I Importance of giving lower bounds for exponential algorithms

Combinatorial questions: How many?

Maximal Independent Sets
Moon and Moser 1965. The number of maximal independent sets
in a graph on n vertices is at most 3n/3. The bound is tight: there
are graphs containing 3n/3 maximal independent sets.

Combinatorial questions: How many?

Minimal Dominating Sets
[FF, Grandoni, Pyatkin, Stepanov, TALG 2008.] Every n-vertex
graph has at most 1.7159n minimal dominating sets

Lower bound 15n/6 = 1.5704n n/6 copies of octahedron.

· · ·

Combinatorial questions: How many?

Maximum Induced Forests (Minimum Vertex
Feedback Sets)
[FF, Gaspers, Pyatkin, Razgon, Algorithmica, 2008] Every n-vertex
graph contains at most 1.8638n maximum induced forests.

Lower bound 105n/10 > 1.5926n

· · ·

Inclusion-Exclusion

Hamiltonian cycle problem: we are given a graph on n vertices, the
task is to decide whether the graph has a Hamiltonian cycle, which
is a cycle visiting every vertex of the graph exactly once.

A special case of the famous Travelling Salesman Problem.

Hamiltonian path

Stronger version, Hamiltonian path problem: the first vertex s and
the last vertex t, and asks to decide whether the graph has a path
that starts at s, ends at t, and visits all the vertices exactly once.

s

t

s

t

Hamiltonian path

I Brute-force algorithm — try all possible permutations starting
from s and ending by t.

I On n-vertex graphs it takes time O((n− 2)!n) = O∗(n!).

I Bellman (1962) and Held and Karp (1962) used dynamic
programming to solve the problem in time O(2nn2) (and
exponential space)

I We discuss: How to use inclusion-exclusion

Hamiltonian path

I Brute-force algorithm — try all possible permutations starting
from s and ending by t.

I On n-vertex graphs it takes time O((n− 2)!n) = O∗(n!).

I Bellman (1962) and Held and Karp (1962) used dynamic
programming to solve the problem in time O(2nn2) (and
exponential space)

I We discuss: How to use inclusion-exclusion

Hamiltonian path

I Brute-force algorithm — try all possible permutations starting
from s and ending by t.

I On n-vertex graphs it takes time O((n− 2)!n) = O∗(n!).

I Bellman (1962) and Held and Karp (1962) used dynamic
programming to solve the problem in time O(2nn2) (and
exponential space)

I We discuss: How to use inclusion-exclusion

Walks in graphs

a b

e f

c d

g h

A B
C
D
E F GH

I J

We assume that s = a and t = h. A walk of length n− 1 that
starts from s and ends at t can be viewed as a string of length
2n− 1 with alternating and possibly repeating vertices and edges,
such as

aAeCbDfFcGgIdJh

or
aBfDbEgGcFfFcHh .

Walks in graphs

Each such walk makes exactly n visits to vertices and contains,
possibly with repetitions, n− 1 edges.
The walk is a Hamiltonian path if and only if the walk visits n
distinct vertices

a b

e f

c d

g h

A B
C
D
E F GH

I J

aAeCbDfFcGgIdJh

is a path, and
aBfDbEgGcFfFcHh .

is a non-path.

Walks in graphs

Counting Hamiltonian paths is hard but counting walks is easy.

I To compute the number of walks of length k between s and t
just look at the s, t-entry of Ak matrix. (A adjacency matrix
of the input graph.)

I Alternative way: do dynamic programming

Inclusion-Exclusion
Consider a finite set X and three subsets A1, A2, and A3.

X

A₂ A₃

A₁

To obtain |A1 ∪A2 ∪A3|, we can use the following formula

|A1 ∪A2 ∪A3| = |A1|+ |A2|+ |A3|
− |A1 ∩A2| − |A1 ∩A3| − |A2 ∩A3|
+ |A1 ∩A2 ∩A3| ,

or, equivalently,

|X \ (A1 ∪A2 ∪A3)| = |X| − |A1| − |A2| − |A3|
+ |A1 ∩A2|+ |A1 ∩A3|+ |A2 ∩A3|
− |A1 ∩A2 ∩A3| .

Inclusion-Exclusion

The case when there are q subsets A1, A2, . . . , Aq of X∣∣∣∣X \ q⋃
i=1

Ai

∣∣∣∣ = ∑
J⊆{1,2,...,q}

(−1)|J |
∣∣∣∣⋂
j∈J

Aj

∣∣∣∣ .

What it has to do with walks and cycles?

I Take q = n− 2 and suppose that the vertices other than s
and t are labeled with integers 1, 2, . . . , n− 2.

I Let X be the set of all walks of length n− 1 from s to t and,
for each i = 1, 2, . . . , n− 2, let Ai be the set of walks in X
that avoid the vertex i.

I Then X \
⋃q
i=1Ai is the set of Hamiltonian paths, and we can

use I-E to count their number.

Running time

∣∣∣∣X \ q⋃
i=1

Ai

∣∣∣∣ = ∑
J⊆{1,2,...,q}

(−1)|J |
∣∣∣∣⋂
j∈J

Aj

∣∣∣∣ .
I For each fixed J ⊆ {1, 2, . . . , q}, the right-hand side can be

computed in time polynomial in n by counting the number of
walks of length n− 1 from s to t in the graph with the
vertices in J deleted.

I Running time O(2nn).

Historical comments

I Dynamic programming O∗(2n), Bellman and Held-Karp
(1962)

I I-E for Hamiltonian path and TSP rediscovered several times

I In 1969, Kohn, Gottlieb, and Kohn

I In 1982, Karp

I In 1993, Bax

More on Hamiltonian cycles

a b

e f

c d

g h

A B
C
D
E F GH

I J

I Can we do better on bipartite graphs?

I Naive approach: do inclusion-exclusion on each part of the
graph, time O(2n/2).

I Naive approach does not work, why?

More on Hamiltonian cycles

a b

e f

c d

g h

A B
C
D
E F GH

I J

I Can we do better on bipartite graphs?

I Naive approach: do inclusion-exclusion on each part of the
graph, time O(2n/2).

I Naive approach does not work, why?

More on Hamiltonian cycles

a b

e f

c d

g h

A B
C
D
E F GH

I J

I Can we do better on bipartite graphs?

I Naive approach: do inclusion-exclusion on each part of the
graph, time O(2n/2).

I Naive approach does not work, why?

More on Hamiltonian cycles

a b

e f

c d

g h

A B
C
D
E F GH

I J

I IDEA:

I Do inclusion-exclusion on the vertices of the upper part, to
exclude all walks not covering it.

I “Expand” signatures of walks to ensure that walks not
covering the lower part are counted even number of times.

More on Hamiltonian cycles

a b

e f

c d

g h

A B
C
D
E F GH

I J

I IDEA:

I Do inclusion-exclusion on the vertices of the upper part, to
exclude all walks not covering it.

I “Expand” signatures of walks to ensure that walks not
covering the lower part are counted even number of times.

More on Hamiltonian cycles

a b

e f

c d

g h

A B
C
D
E F GH

I J

I IDEA:

I Do inclusion-exclusion on the vertices of the upper part, to
exclude all walks not covering it.

I “Expand” signatures of walks to ensure that walks not
covering the lower part are counted even number of times.

More on Hamiltonian cycles

a b

e f

c d

g h

A B
C
D
E F GH

I J

I IDEA:

I Do inclusion-exclusion on the vertices of the upper part, to
exclude all walks not covering it.

I “Expand” signatures of walks to ensure that walks not
covering the lower part are counted even number of times.

More on Hamiltonian cycles

a b

e f

c d

g h

A B
C
D
E F GH

I J

I Every walk of length n− 1 makes n visits to vertices, where
exactly n/2 visits are to vertices in V1.

I Label each of the n/2 visits to V1 by an integer from
L = {1, 2, . . . , n/2}. Each walk has (n/2)n/2 possible
labelings, exactly (n/2)! of which are bijective; that is, each
label is used exactly once.

For example,
a
1
AeCb

3
DfBa

4
BfFc

2
Hh .

is a bijectively labeled non-path.

More on Hamiltonian cycle

We partition the set of all labeled walks into two disjoint classes,
the “good” class and the “bad” class.

I A labeled walk is good if the labeling is bijective and the walk
is a path.

I Otherwise a labeled walk is bad.

Important: the good class is nonempty if and only if the graph has
a Hamiltonian path from s to t.

Sieve filtering
out bad walks

Randomized algorithm

All labelled
walks

A “witness” from the good class remains with
fair probability whenever the good class is

nonempty

Sieve construction

Each good hash value
appears once

'hash' labelled walks so that
every bad hash value appeared

even number of times

Hash

The hash of a labeled walk is the multiset that consists of all the
elements visited by a walk, together with their labels (if any).

a
1
AeCb

3
DfBa

4
BfFc

2
Hh .

Hash:
{A,B,B,C,D, F,H, a

1
, a
4
, b
3
, c
2
, e, f, f, h} .

I We cannot reconstruct a labeled walk from its hash value.

I However, every bijectively labeled path—that is, every good
labeled walk—can be reconstructed from its hash value.

Each good labeled walk has a unique hash value!

Sieve construction

Each good hash value
appears once

'hash' labelled walks so that
every bad hash value appeared

even number of times

bijectively labeled
non-paths

non-bijectively
labeled walks

Sieve construction

Case A. Counting bijectively labeled non-paths. Let W be a
bijectively labeled non-path.

I We want to map it with a b.l.n-p. W ′ of the same hash value.

I Take the first minimal closed subwalk in W .

For example, for
a
1
AeCb

3
DfBa

4
BfFc

2
Hh .

we take
a
1
AeCb

3
DfBa

4

Sieve construction

Case A1. If the repeated vertex is in V1, then swap labels

a
1
AeCb

3
DfBa

4
BfFc

2
Hh → a

4
AeCb

3
DfBa

1
BfFc

2
Hh

Case A2. If the repeated vertex is in V2, then reverse the subwalk

a
1
BfDb

3
EgGc

4
FfFc

2
Hh→ a

1
BfFc

4
GgEb

3
DfFc

2
Hh .

I W and W ′ have the same hash values.

Sieve construction

I Is W 6= W ′?

Case A1. Yes
Case A2. If the repeated vertex is in V2, then reverse the subwalk

a
1
BfDb

3
EgGc

4
FfFc

2
Hh→ a

1
BfFc

4
GgEb

3
DfFc

2
Hh .

In general, reversing the first closed subwalk will not result in a
different labeled walk – it may be a palindrome

a
1
AeCb

2
CeAa

3
BfFc

4
Hh .

Fortunately, because of bijective labeling, the only possible pitfall is
a palindrome of length 5 that starts at V2, visits a vertex in V1,
and returns to the same vertex in V2!!!

Sieve construction

Each good hash value
appears once

'hash' labelled walks so that
every bad hash value appeared

even number of times

bijectively labeled
non-paths non-bijectively

labeled walks

For every such walk W
(with small exception),

we found a matching walk
W'

Sieve construction

Case B. Counting non-bijectively labeled walks.

I Each non-bijectively labeled walk W avoids at least one label
from the set of all labels L. In particular, if W avoids exactly
a labels, there are exactly 2a sets A ⊆ L such that W avoids
every label in A (and possibly some other labels outside A).

I For each subset A ⊆ L, we insert into the sieve the hash value
of each labeled walk that avoids every label in A.

I After all subsets A have been considered, a hash value occurs
with odd multiplicity in the sieve if and only if it originates
from a good labeled walk.

Sieve construction

'hash' labelled walks so that
every bad hash value appeared

even number of times

bijectively labeled
non-paths

non-bijectively
labeled walks

For every such walk W
(with small exception),

we found a matching walk
W'

Inclusion-
exclusion over
subsets of

labels

Second key idea

I There are too many hash values, so instead of sieving hash
values explicitly, we sieve only their weights.

I Assign an integer weight in the interval 1, 2, . . . , n(n+ 1)
independently and uniformly at random to each of the
n/2 + n/2 · n/2 + n/2 · n/2 = (n+ 1)n/2 elements that may
occur in a hash value.

I The weight of a hash value is the sum of the weights of its
elements.

Second key idea

I When running the sieve, instead of tracking the (partial) walks
and their (partial) hash values by dynamic programming, we
only track the number of hash values of each weight.

I This enables us to process each fixed A ⊆ L in time
polynomial in n.

I The number of all sets A ⊆ L is 2|L| ≤ 2n/2 < 1.42n. Thus
the total running time of the above procedure is O(1.42n).

Sieve construction

What we have:

I Each bad hash value gets inserted into the sieve an even
number of times, and in particular contributes an even
increment to the counter corresponding to the weight of the
hash value.

I Thus, an odd counter can arise only if a good hash value was
inserted into the sieve; that is, the graph has a Hamiltonian
path.

The presence of an odd counter implies the existence of a
Hamiltonian path!!!

Algorithm

I Assign an integer weight in the interval 1, 2, . . . , n(n+ 1)
independently and uniformly at random to each of the
(n+ 1)n/2 elements that may occur in a hash value.

I Implement sieve

I When the sieve terminates, we assert that the input graph has
a Hamiltonian path if the counter for the number of hash
values of at least one weight is odd; otherwise we assert that
the graph has no Hamiltonian path.

Isolation Lemma

I What is the probability of failure?

Lemma (Isolation Lemma, Mulmuley, Vazirani, and Vazirani
1987)

For any set family over a base set of m elements, if we assign a
weight independently and uniformly at random from 1, 2, . . . , r to
each element of the base set, there will be a unique set of the
minimum weight in the family with probability at least 1−m/r.

Isolation Lemma

Lemma (Isolation Lemma, Mulmuley, Vazirani, and Vazirani
1987)

For any set family over a base set of m elements, if we assign a
weight independently and uniformly at random from 1, 2, . . . , r to
each element of the base set, there will be a unique set of the
minimum weight in the family with probability at least 1−m/r.

If we consider the set family of good hash values—indeed, each
good hash value is a set—there is a unique such hash value of the
minimum weight—and hence an odd counter in the sieve—with
probability at least 1/2.

Conclusion

Our randomized algorithm is

I detecting Hamiltonian paths in bipartite graphs in time
O(1.42n),

I gives no false positives, and gives a false negative with
probability at most 1/2.

The algorithm could be extended to graphs that are not bipartite
with running time O(1.66n) by partitioning the vertices randomly
into V1 and V2 and employing a bijective labeling also for the
edges with both ends in V2.

Historic notes

I The breakthrough for Hamiltonian cycle by [Andreas
Björklund, FOCS 2010].

I We followed the line of the proof used by [Cygan, Nederlof,
Pilipczuk, Pilipczuk, van Rooij, and Wojtaszczyk, FOCS 2011]
for a related problem.

Other techniques

I Local search for k-SAT [Dantsin, Goerdt, Hirsch, Kannan,
Kleinberg, Papadimitriou, Raghavan, & Schöning, TCS 2002],

I Split & List for MAX-2-SAT or MAX-CUT [Williams, TCS
2005]

I More, more, more...

Concrete open problems

I All techniques fail on SAT so far. Is it possible to solve SAT
in time O((2− ε)n +m) for some ε > 0? (n -number of
variables, m - number of clauses.)

I TSP in time O((2− ε)n)?

I Is it possible to derandomize Bjorklund’s algorithm?

I Graph Coloring in time O((2− ε)n)?

I Chromatic index, subgraph isomorphism, hundreds of
scheduling problems, ...

Challenge

I Complexity theory for exponential algorithms

Conclusion

The area of moderately exponential time algorithms is still in
nascent stage and there is a lot to discover.

Choose your favorite problem hard problem and try to get an exact
algorithm for it. Enjoy!

Conclusion

The area of moderately exponential time algorithms is still in
nascent stage and there is a lot to discover.

Choose your favorite problem hard problem and try to get an exact
algorithm for it. Enjoy!

	Titlepage
	General background
	How many?

	Inclusion-Exclusion

