Heiko Rdglin
Department of Computer Science

universitétbonnl

16 January 2013

Outline

Outline

@ Binary Optimization Problems
When does a binary optimization problem have polynomial
smoothed complexity?

© Multiobjective Optimization
How many Pareto-optimal solutions do usually exist?

© Conclusions

Heiko Réglin Smoothed Analysis of Algorithms

@ Binary Optimization Problems
When does a binary optimization problem have polynomial
smoothed complexity?

© Multiobjective Optimization
How many Pareto-optimal solutions do usually exist?

© Conclusions

@ set of feasible solutions S C {0,1}"
solution x = (xi,...,Xxp) € S consists of n binary variables

@ linear objective function
maxc’x = cixy + - - - + CnXpn

Model

Linear Binary Optimization Problem

@ set of feasible solutions S C {0,1}"
solution x = (x,...,xp) € S consists of n binary variables

@ linear objective function
maxc’x = ciXy + - - - + CnXpn

S can encode arbitrary combinatorial structure, e.g., for a given graph,
all paths from s to t, all Hamiltonian cycles, all spanning trees, ...

@ Knapsack Problem: variable x; € {0, 1} for each item i
S={x|wixi+- -+ whx, <t}

@ TSP: variable x, € {0,1} foreach e € E
S = {x | x encodes Hamiltonian cycle}

Heiko Réglin Smoothed Analysis of Algorithms

Worst-case Analysis: Adversary chooses S and ¢; € [—1,1].

Smoothed Analysis

Worst-case Analysis: Adversary chooses S and ¢; € [—1,1].

Smoothed Analysis:

Adversary chooses S and a probability density
fi: [=1,1] — [0, ¢] for every ¢; and some ¢ > 1.
Every c; is drawn independently according to f;.

Heiko Réglin Smoothed Analysis of Algorithms

Smoothed Analysis

Worst-case Analysis: Adversary chooses S and ¢; € [—1,1].

Smoothed Analysis:

Adversary chooses S and a probability density
fi: [=1,1] — [0, ¢] for every ¢; and some ¢ > 1.
Every c; is drawn independently according to f;.

Remarks:

@ ¢ large ~ worst case
¢ small =~ average case

0 /6 1.

Heiko Réglin Smoothed Analysis of Algorithms

Smoothed Analysis

Worst-case Analysis: Adversary chooses S and ¢; € [—1,1].

Smoothed Analysis:

Adversary chooses S and a probability density
fi: [=1,1] — [0, ¢] for every ¢; and some ¢ > 1.
Every c; is drawn independently according to f;.

Remarks: d1--------

@ ¢ large ~ worst case
¢ small =~ average case

0 o 1.

Heiko Réglin Smoothed Analysis of Algorithms

Smoothed Analysis

Worst-case Analysis: Adversary chooses S and ¢; € [—1,1].

Smoothed Analysis:

Adversary chooses S and a probability density
fi: [=1,1] — [0, ¢] for every ¢; and some ¢ > 1.
Every c; is drawn independently according to f;.

Remarks: d1--------

@ ¢ large ~ worst case
¢ small =~ average case

@ S is not perturbed!

0 o 1.

Heiko Réglin Smoothed Analysis of Algorithms

linear binary opt. problem has polynomial smoothed complexity
—
pseudo-polynomial time poly(n, max{|c;|}) in the worst case

Main Result

Theorem [Beier, Vocking (STOC 2004)]

linear binary opt. problem has polynomial smoothed complexity
=
pseudo-polynomial time poly(n, max{|c;|}) in the worst case

@ Knapsack Problem: Can be solved in time O(n?P),
where P is the largest profit.
= polynomial smoothed complexity

Heiko Réglin Smoothed Analysis of Algorithms

Main Result

Theorem [Beier, Vocking (STOC 2004)]

linear binary opt. problem has polynomial smoothed complexity
=
pseudo-polynomial time poly(n, max{|c;|}) in the worst case

@ Knapsack Problem: Can be solved in time O(n?P),
where P is the largest profit.
= polynomial smoothed complexity

@ TSP: strongly NP-hard
(even if all edge lengths are 1 or 2)
= no polynomial smoothed complexity

Heiko Réglin Smoothed Analysis of Algorithms

@ A= algorithm

@ 7, = set of inputs of length n

@ per,(/) = perturbation of instance /

@ T4(/) = running time of A on instance /

Polynomial Smoothed Complexity

@ A= algorithm
@ 7, = set of inputs of length n
@ per(/) = perturbation of instance /

@ Ta(/) = running time of A on instance /

Definition (first attempt):
Polyn. smoothed compl. <= maxez, E[Ta(per,(/))] = poly(n, ¢)

Heiko Réglin Smoothed Analysis of Algorithms

Polynomial Smoothed Complexity

@ A= algorithm
@ 7, = set of inputs of length n
@ per(/) = perturbation of instance /

@ Ta(/) = running time of A on instance /
Definition (first attempt):

Polyn. smoothed compl. <= maxez, E[Ta(per,(/))] = poly(n, ¢)
Problem: Not robust against change of machine model.

Heiko Réglin Smoothed Analysis of Algorithms

Polynomial Smoothed Complexity

@ A= algorithm
@ 7, = set of inputs of length n
@ per(/) = perturbation of instance /

@ Ta(/) = running time of A on instance /

Definition (first attempt):
Polyn. smoothed compl. <= maxez, E[Ta(per,(/))] = poly(n, ¢)
Problem: Not robust against change of machine model.

Definition
Algorithm A has polynomial smoothed complexity if there exist & > 0

and 3 > 0 with 52‘?} E[TA(perqs(/))a} < Bnag.

Heiko Réglin Smoothed Analysis of Algorithms

Idea: Round coefficients ¢; and apply pseudo-polyn. algo

Winner Gap

Idea: Round coefficients ¢; and apply pseudo-polyn. algo

AI ¢ = 0.8961235
,,,,,, oo = 0.2674321
03 = 0.3738725

0 e

¥ ¥ S

Heiko Réglin Smoothed Analysis of Algorithms

Idea: Round coefficients ¢; and apply pseudo-polyn. algo

¢y = 0.8961235
¢ = 0.2674321
c3 = 0.3738725
¢4 = 0.1902782

ok

x
A =clx* —cTx** R = max. change due to rounding

Idea: Round coefficients ¢; and apply pseudo-polyn. algo

¢y = 0.8961235
¢ = 0.2674321
c3 = 0.3738725
¢4 = 0.1902782

ok

X
A=cTx*—c'x

*x

R = max. change due to rounding

@ Rounding after the b-th bit = |¢; — [¢/]| <27°
=>WxeS:|c'x—[c]'x|<m?=R

~ HekoRogin Smoothed Analysis of Algorithms

Winner Gap

Idea: Round coefficients ¢; and apply pseudo-polyn. algo

¢y = 0.8961235
¢ = 0.2674321
c3 = 0.3738725
¢4 = 0.1902782

ok

x
A =clx* —cTx** R = max. change due to rounding

@ Rounding after the b-th bit = |¢; — [¢/]| <27°
=>WxeS:|c'x—[c]'x|<m?=R
@ A > 2R = rounding does not change optimal solution

Heiko Réglin Smoothed Analysis of Algorithms

For all S and all densities f; : [—1,1] — [0, ¢]

Pr[A < ¢] < 2n¢e.

For all S and all densities f; : [—1,1] — [0, ¢]

Pr[A < ¢] < 2n¢e.

For every p € (0,1] and b > log (%) L2

Pr[rounding changes optimal solution] < p.

For all S and all densities f; : [—1,1] — [0, ¢]

Pr[A < ¢] < 2n¢e.

For every p € (0,1] and b > log (%) L2

Pr[rounding changes optimal solution] < p.

pseudo-polynomial algorithm = polynomial smoothed complexity

Isolation Lemma

Isolation Lemma
For all S and all densities f; : [—1,1] — [0, ¢]

Pr[A < €] < 2n¢e.

Corollary

For every p € (0, 1] and b > log (%) +2

Pr[rounding changes optimal solution] < p.

pseudo-polynomial algorithm =- polynomial smoothed complexity

@ Round coefficients after a logarithmic number of bits and call
pseudo-polynomial algorithm.

Heiko Réglin Smoothed Analysis of Algorithms

Isolation Lemma

Isolation Lemma
For all S and all densities f; : [—1,1] — [0, ¢]

Pr[A < €] < 2n¢e.

Corollary

For every p € (0, 1] and b > log (%) +2

Pr[rounding changes optimal solution] < p.

pseudo-polynomial algorithm = polynomial smoothed complexity

@ Round coefficients after a logarithmic number of bits and call
pseudo-polynomial algorithm.

@ If necessary, increase precision and repeat.

Heiko Réglin Smoothed Analysis of Algorithms

CT.TL‘

— 2}
Fore > 0, Pr[A < €] < 2n¢e.

CT.TL‘

— 2}
Fore > 0, Pr[A < €] < 2n¢e.

@ Say x; = 1 and x* = 0 for some /.

CTI

— 2}
Fore > 0, Pr[A < €] < 2n¢e.

@ Say x; = 1 and x* = 0 for some /.

@ Then x* —argmaxc’x and x*™ =argmaxc’x.
xeS x€eS
xi=1 Xxi=0

ch

— 2}
Fore > 0, Pr[A < €] < 2n¢e.

@ Say x; = 1 and x* = 0 for some /.

@ Then x* —argmaxc’x and x*™ =argmaxc’x.
xeS x€eS
xi=1 Xxi=0

@ Principle of deferred decisions: Fix all ¢; for j # i.

ch

— 2}
Fore > 0, Pr[A < €] < 2n¢e.

@ Say x; = 1 and x* = 0 for some /.

@ Then x* —argmaxc’x and x*™ =argmaxc’x.
xeS x€eS
xi=1 Xxi=0

@ Principle of deferred decisions: Fix all ¢; for j # i.
@ = Identity of x* and x™* fixed.

ch

— 2}
Fore > 0, Pr[A < €] < 2n¢e.

@ Say x; = 1 and x* = 0 for some /.

@ Then x* —argmaxc’x and x*™ =argmaxc’x.
X€ES X€ES
xi=1 Xi=0

@ Principle of deferred decisions: Fix all ¢; for j # i.

@ = Identity of x* and x™* fixed.

@ = A =clx* —c"x* =k + ¢ for constant

Proof of Isolation Lemma

Lemma
Fore > 0, Pr[A < €] < 2n¢e. J

@ Say x; = 1 and x* = 0 for some /.

@ Then x* —argmaxc’x and x** =argmaxc’x.
XES XES
Xxi=1 Xx;=0

Principle of deferred decisions: Fix all ¢; for j # i.
= Identity of x* and x** fixed.

= A =c'x* — c¢"x* = k + ¢ for constant k
Pr[A € [0,¢])] =Prlci € [k, —k +¢])] < e¢

Heiko Réglin Smoothed Analysis of Algorithms

Proof of Isolation Lemma

Lemma
Fore > 0, Pr[A < €] < 2n¢e. J

@ Say x; = 1 and x* = 0 for some /.

@ Then x* —argmaxc’x and x** =argmaxc’x.
XES XES
Xxi=1 Xx;=0

Principle of deferred decisions: Fix all ¢; for j # i.
= Identity of x* and x** fixed.

Pr[A € [0,¢])] = Pr[ci € [k, —K + €])] < e¢

o

o

o = A =c'x* —cTx* = k + ¢ for constant x

°

@ Union Bound over all n choices for i. Il

Heiko Réglin Smoothed Analysis of Algorithms

Extensions

Theorem [Beier, Vocking (STOC 2004)]

linear binary opt. problem has polynomial smoothed complexity
<~
pseudo-polynomial time poly(n, max{|c;|}) in the worst case

[Beier, Vocking (STOC 2004)]
Theorem remains true if linear constraints are perturbed.

[R., Vécking (IPCO 2005)]
Theorem remains true for integer optimization problems.

Heiko Réglin Smoothed Analysis of Algorithms

@ Binary Optimization Problems
When does a binary optimization problem have polynomial
smoothed complexity?

© Multiobjective Optimization
How many Pareto-optimal solutions do usually exist?

© Conclusions

Optimization Problems

Single-criterion Optimization Problem: min f(x) subjectto x € S.

Example:
Shortest Path Problem

Heiko Réglin Smoothed Analysis of Algorithms

Optimization Problems

Single-criterion Optimization Problem: min f(x) subjectto x € S.

Maastricht Aachen
\\ Airport
1
Example: b
Shortest Path Problem ﬂ @
Maastricht
University 3

Frankfurt

Real-life logistical problems often involve multiple objectives.
(travel time, fare, departure time, etc.)

Heiko Réglin Smoothed Analysis of Algorithms

Optimization Problems

Single-criterion Optimization Problem: min f(x) subjectto x € S.

Maastricht Aachen
\\ Airport
1
Example: b
Shortest Path Problem ﬂ @
Maastricht
University 3

Frankfurt

Real-life logistical problems often involve multiple objectives.
(travel time, fare, departure time, etc.)

Multiobjective Opt. Problem: min fi(x), ..., min fy(x) s.t. x € S.
Usually, there is no solution that is simultaneously optimal for all f;.

Question
What can we do algorithmically to support the decision maker?

Heiko Réglin Smoothed Analysis of Algorithms

Pareto-optimal Solutions

Multiobjective Opt. Problem: minw'(x), ..., minw?(x) s.t. x € S
x € Sdominates y € § <= fare
Vi: w'(x) < w'(y) and

Ji: wi(x) < w(y)

<e

Ke

travel time

Heiko Réglin Smoothed Analysis of Algorithms

Pareto-optimal Solutions

Multiobjective Opt. Problem: minw'(x), ..., minw?(x) s.t. x € S
x € Sdominates y € § <= fare .

Vi: w'(x) < w'(y) and < el S,
Ji: wi(x) < wi(y) e L

x € S Pareto-optimal <> e Lt

Ay € S: y dominates x

travel time

Heiko Réglin Smoothed Analysis of Algorithms

Pareto-optimal Solutions

Multiobjective Opt. Problem: minw'(x), ..., minw?(x) s.t. x € S
x € Sdominates y € § < fare .

Vi: w'(x) < w'(y) and < el S,
Ji: wi(x) < wi(y) e L

x € S Pareto-optimal <> c e *.e

Ay € S: y dominates x

travel time
Often the Pareto curve is generated:
@ Pareto curve limits options for decision maker.
@ Monotone functions are optimized by Pareto-optimal solutions,
e.g, Mw' (X) + ...+ Agwd(x)or w'(x)----- w9(x).
@ Tool for solving single-criterion problems

Heiko Réglin Smoothed Analysis of Algorithms

Pareto-optimal Solutions

Multiobjective Opt. Problem: minw'(x), ..., minw?(x) s.t. x € S
x € Sdominates y € § < fare I

Vi: w'(x) < w'(y) and < el S,
Ji: wi(x) < wi(y) A

x € S Pareto-optimal <> c e *.e

Ay € §: y dominates x

travel time
Often the Pareto curve is generated:
@ Pareto curve limits options for decision maker.
@ Monotone functions are optimized by Pareto-optimal solutions,
e.g, Mw' (X) + ...+ Agwd(x)or w'(x)----- w9(x).
@ Tool for solving single-criterion problems

Central Question
How large is the Pareto curve? J

Heiko Réglin Smoothed Analysis of Algorithms

@ set of feasible solutions S C {0,1}"
solution x = (xi,...,Xp) € S consists of n binary variables

@ d linear objective functions:
Vie{1,...,d}: minw/(x) = wixqg + -+ wix,

Model

Linear Binary Optimization Problem

@ set of feasible solutions S C {0,1}"
solution x = (xi,...,xp) € S consists of n binary variables

@ d linear objective functions:
Vie{1,...,d}: minw/(x) = wixqg + -+ wix,

How large is the Pareto curve?
@ Exponential in the worst case for almost all problems.

@ In practice, often few Pareto optimal solutions.
Example: Train Connections

w.r.t. travel time, fare, number of train changes
[Mdller-Hannemann, Weihe 2001]

Heiko Réglin Smoothed Analysis of Algorithms

Results (Bicriteria Optimization)

Adversary chooses S and a probability density
fl: [-1,1] = [0, ¢] for every w; and some ¢ > 1.
Every wj’ is drawn independently according to rj’

Py(n. ¢) = max E [number of Pareto-optimal sol. for S and f
S, f!
v

Heiko Réglin Smoothed Analysis of Algorithms

Results (Bicriteria Optimization)

Adversary chooses S and a probability density
fl: [-1,1] — [0, ¢] for every w/ and some ¢ > 1.
Every wj’ is drawn independently according to rj’

Py(n. ¢) = max E [number of Pareto-optimal sol. for S and f
S, f!
v

Bicriteria Optimization (d = 2):
Theorem [Beier, Vocking (STOC 2003)]
Px(n, ¢) = O(n"¢) P2(n, ¢) = Q(n?)

Heiko Réglin Smoothed Analysis of Algorithms

Results (Bicriteria Optimization)

Adversary chooses S and a probability density
fl: [-1,1] = [0, ¢] for every w; and some ¢ > 1.
Every Wj" is drawn independently according to rj’

Py(n. ¢) = max E [number of Pareto-optimal sol. for S and f
S, f!
v

Bicriteria Optimization (d = 2):
Theorem [Beier, Vocking (STOC 2003)]
Px(n, ¢) = O(n"¢) Px(n, ¢) = Q(n?)

Theorem [Beier, R., Vécking (IPCO 2007)]
P2(n7 ¢) = O(n2¢)

extension to integer optimization problems

Heiko Réglin Smoothed Analysis of Algorithms

Multiobjective Optimization (d arbitrary constant):

Py(n, ¢) = O((n¢)"¥) for some function h I

Multiobjective Optimization (d arbitrary constant):

Py(n, ¢) = O((n¢)"¥) for some function h

Pa(n,) = O(n??¢°(*))

Results (Multiobjective Optimization)

Multiobjective Optimization (d arbitrary constant):
Theorem [R., Teng (FOCS 2009)]
Py(n, ¢) = O((ng)"(¥) for some function h

Theorem [Moitra, O’'Donnell (STOC 2011)]
Py(n,) = O(*43°()

Theorem [Brunsch, R. (TAMC 2011, STOC 2012)]
Pa(n, ¢) = O(n*?¢7) Pa(n, ¢) = Q(n"~"¢7)

extension to non-linear objective functions

Heiko Réglin Smoothed Analysis of Algorithms

@ minw'(x) = wixy + - - + Wpx, and min w?(x)
@ subjectto x € S C {0,1}", S arbitrary
@ w; drawn according to f;: [0,1] — [0, ¢] for ¢ > 1

Pz(“, ¢) = 0(n2¢)

Bicriteria Optimization

Beier, R., Vocking (IPCO 2007)
@ minw'(x) = wyx; + - -+ + Wpx, and min w?(x)
@ subjectto x € S C {0,1}", S arbitrary
@ w; drawn according to f;: [0,1] — [0, ¢] for ¢ > 1

P2(n, ¢) = O(n2¢)

E[IPI] 1 IRV
k1 e TS
=) E[{xeP:w'(x) € [t ti11)}] E'.E b e
=0 Lo e e

1 1 1 1 e | 1 .I 'LLYI

to=0 i ty s ti t5 tg n=l

Heiko Réglin Smoothed Analysis of Algorithms

Bicriteria Optimization

Beier, R., Vocking (IPCO 2007)
@ minw'(x) = wixg + - - + Wyx, and min w?(x)
@ subjectto x € S C {0,1}", S arbitrary
@ w; drawn according to f: [0,1] — [0, ¢] for ¢ > 1

P2(n$ ¢) = O(n2¢)

E[|P] T
- Stren T
=Y E[{xeP: w'(x) € [t ti1)}] T e
=0 et et
k=1 Loty e
%ZPr[EIxEP: W1(x)€[t,-,t;+1)] =0 t oty ti ot fg n=t
i=0

Heiko Réglin Smoothed Analysis of Algorithms

Bicriteria Optimization

Beier, R., Vocking (IPCO 2007)
@ minw'(x) = wixg + - - + Wyx, and min w?(x)
@ subjectto x € S C {0,1}", S arbitrary
@ w; drawn according to f: [0,1] — [0, ¢] for ¢ > 1

P2(n$ ¢) = O(n2¢)

E[|P] T
k—1 S Then ST
=Y E[{xeP: w'(x) € [t ti1)}] T e
i=0 1 1 I el 1® 1 g |
k—1 R A
= lim Priax € P: w'(X) € [ti,tipq)] 0=0 6 & &t b5t n=ic
k—o0 o

Heiko Réglin Smoothed Analysis of Algorithms

Pr[dx € P: w'(x) € [t,t +¢)]

Loser Gap

b e
Pr(3x € P: w'(x) € [t,t +¢)] oot e
z (] ° o:...
t t+e .wr

e single-criterion problem: min w?(x) st. w'(x) < tandx € S
@ winner: x* = optimal solution

Heiko Réglin Smoothed Analysis of Algorithms

Loser Gap

w e !
Pr(3x € P: w'(x) € [t,t +¢)] hoeeanns .'...?...:.: :
I: « * o: ..,Cé
i tte .'wl’

e single-criterion problem: min w?(x) st. w'(x) < tandx € S
@ winner: x* = optimal solution
e loser set: £ = all solutions x € S with w?(x) < w?(x*)

Heiko Réglin Smoothed Analysis of Algorithms

Loser Gap

Pr(3x € P: w'(x) € [t,t +¢)] ol .'T..?.... :

e single-criterion problem: min w?(x) st. w'(x) < tandx € S
@ winner: x* = optimal solution

e loser set: £ = all solutions x € S with w?(x) < w?(x*)

@ loser gap: A(t) = distance of loser set £ from t

Heiko Réglin Smoothed Analysis of Algorithms

Loser Gap

w e
Pr(3x € P: w'(x) € [t,t +¢)] ohernns S b, :
1‘*"5__.' ° .: .0£§
. .'»
Paw o T W
1

e single-criterion problem: min w?(x) st. w'(x) < tandx € S
@ winner: x* = optimal solution

e loser set: £ = all solutions x € S with w?(x) < w?(x*)

@ loser gap: A(t) = distance of loser set £ from t

IxeP:w'(x) €ftit+e) <= AIt)<e

Heiko Réglin Smoothed Analysis of Algorithms

Loser Gap

Pr(3x € P: w'(x) € [t,t +¢)] o

e single-criterion problem: min w?(x) st. w'(x) < tandx € S
@ winner: x* = optimal solution

e loser set: £ = all solutions x € S with w?(x) < w?(x*)

@ loser gap: A(t) = distance of loser set £ from t

IxeP:w'(x) €ftit+e) <= AIt)<e

Heiko Réglin Smoothed Analysis of Algorithms

Loser Gap

Pr(3x € P: w'(x) € [t,t +¢)] ol T SRR

e single-criterion problem: min w?(x) st. w'(x) < tandx € S
@ winner: x* = optimal solution

e loser set: £ = all solutions x € S with w?(x) < w?(x*)

@ loser gap: A(t) = distance of loser set £ from t

IxeP:w'(x) €ftit+e) <= AIt)<e

Lemma [Beier, Vécking (STOC 2004)]
Foreverye > 0andt € R, Pr[A(t) < ¢] < n¢e.

Heiko Réglin Smoothed Analysis of Algorithms

Foreverye > 0andt € R, Pr[A(t) < ¢] < n¢e. I

P2(n7¢)
k—1)
< dim Y Pr[3xePw'(x) € [tutigr)] b vy
k—00 4 i ol C g1 A BT
i= IR
L
T A R

Foreverye > 0andt € R, Pr[A(t) < ¢] < n¢e. I

P2(n7¢)
k—1)
< dim Y Pr[3xePw'(x) € [tutigr)] b vy
k—00 4 i ol C g1 A BT
= et e
k—1 n N
< Jim SprA@) < 7] EREEERT
o i=0 to:(l) tll tlz tI3 tl4 tls tla ;L:tf

Foreverye > 0andt € R, Pr[A(t) < ¢] < n¢e. '

P2(n7 ¢)
k—1
< Jim)y Pr3xePrwl(x) € [t tip1)]

k—o00
i=0 °

-Ze
.
L-e___@e_o_ _
o o
e ____

.

!

’Il]l

»
| 8

L
= to=(l) ti ty tz3 ty ls te TIL:tk

P2(n, ¢) = O(n2¢)
~ HekoRogin Smoothed Analysis of Algorittms

@ Binary Optimization Problems
When does a binary optimization problem have polynomial
smoothed complexity?

© Multiobjective Optimization
How many Pareto-optimal solutions do usually exist?

© Conclusions

Summary

Smoothed analysis is a promising framework for a more realistic
theory of algorithms. It explains success of simplex algorithm, 2-Opt,
and many other algorithms.

Conclusions

Summary

Smoothed analysis is a promising framework for a more realistic
theory of algorithms. It explains success of simplex algorithm, 2-Opt,
and many other algorithms.

Open Questions

analyze other pivot rules for simplex method

improve exponents of smoothed running time for 2-Opt etc.
analyze your favorite problem/algo that is hard in the worst case
use insights to develop better algorithms

explore other frameworks for realistic theory

Heiko Réglin Smoothed Analysis of Algorithms

