Smoothed Analysis of Algorithms Part II: Binary and Multiobjective Optimization

Heiko Röglin
Department of Computer Science
universitätbonn

16 January 2013

Outline

Outline

(1) Binary Optimization Problems

When does a binary optimization problem have polynomial smoothed complexity?
(2) Multiobjective Optimization How many Pareto-optimal solutions do usually exist?
(3) Conclusions

Outline

Outline

(1) Binary Optimization Problems

When does a binary optimization problem have polynomial smoothed complexity?
(2) Multiobjective Optimization

How many Pareto-optimal solutions do usually exist?
(3) Conclusions

Model

Linear Binary Optimization Problem

- set of feasible solutions $\mathcal{S} \subseteq\{0,1\}^{n}$ solution $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{S}$ consists of n binary variables
- linear objective function $\max c^{T} x=c_{1} x_{1}+\cdots+c_{n} x_{n}$

Model

Linear Binary Optimization Problem

- set of feasible solutions $\mathcal{S} \subseteq\{0,1\}^{n}$ solution $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{S}$ consists of n binary variables
- linear objective function $\max c^{\top} x=c_{1} x_{1}+\cdots+c_{n} x_{n}$
\mathcal{S} can encode arbitrary combinatorial structure, e.g., for a given graph, all paths from s to t, all Hamiltonian cycles, all spanning trees, ...

- Knapsack Problem: variable $x_{i} \in\{0,1\}$ for each item i

$$
\mathcal{S}=\left\{x \mid w_{1} x_{1}+\cdots+w_{n} x_{n} \leq t\right\}
$$

- TSP: variable $x_{e} \in\{0,1\}$ for each $e \in E$ $\mathcal{S}=\{x \mid x$ encodes Hamiltonian cycle $\}$

Smoothed Analysis

Worst-case Analysis: Adversary chooses \mathcal{S} and $c_{i} \in[-1,1]$.

Smoothed Analysis

Worst-case Analysis: Adversary chooses \mathcal{S} and $c_{i} \in[-1,1]$.

Smoothed Analysis:

Adversary chooses \mathcal{S} and a probability density
$f_{i}:[-1,1] \rightarrow[0, \phi]$ for every c_{i} and some $\phi \geq 1$.
Every c_{i} is drawn independently according to f_{i}.

Smoothed Analysis

Worst-case Analysis: Adversary chooses \mathcal{S} and $c_{i} \in[-1,1]$.

Smoothed Analysis:

Adversary chooses \mathcal{S} and a probability density
$f_{i}:[-1,1] \rightarrow[0, \phi]$ for every c_{i} and some $\phi \geq 1$.
Every c_{i} is drawn independently according to f_{i}.

Remarks:

- ϕ large \approx worst case
ϕ small \approx average case

Smoothed Analysis

Worst-case Analysis: Adversary chooses \mathcal{S} and $c_{i} \in[-1,1]$.

Smoothed Analysis:

Adversary chooses \mathcal{S} and a probability density
$f_{i}:[-1,1] \rightarrow[0, \phi]$ for every c_{i} and some $\phi \geq 1$.
Every c_{i} is drawn independently according to f_{i}.

Remarks:

- ϕ large \approx worst case
ϕ small \approx average case

Smoothed Analysis

Worst-case Analysis: Adversary chooses \mathcal{S} and $c_{i} \in[-1,1]$.

Smoothed Analysis:

Adversary chooses \mathcal{S} and a probability density
$f_{i}:[-1,1] \rightarrow[0, \phi]$ for every c_{i} and some $\phi \geq 1$.
Every c_{i} is drawn independently according to f_{i}.

Remarks:

- ϕ large \approx worst case
ϕ small \approx average case
- \mathcal{S} is not perturbed!

Main Result

Theorem [Beier, Vöcking (STOC 2004)]

linear binary opt. problem has polynomial smoothed complexity

pseudo-polynomial time $\operatorname{poly}\left(n, \max \left\{\left|c_{i}\right|\right\}\right)$ in the worst case

Main Result

Theorem [Beier, Vöcking (STOC 2004)]
linear binary opt. problem has polynomial smoothed complexity

pseudo-polynomial time $\operatorname{poly}\left(n, \max \left\{\left|c_{i}\right|\right\}\right)$ in the worst case

- Knapsack Problem: Can be solved in time $O\left(n^{2} P\right)$, where P is the largest profit.
\Rightarrow polynomial smoothed complexity

Main Result

Theorem [Beier, Vöcking (STOC 2004)]
linear binary opt. problem has polynomial smoothed complexity

pseudo-polynomial time $\operatorname{poly}\left(n, \max \left\{\left|c_{i}\right|\right\}\right)$ in the worst case

- Knapsack Problem: Can be solved in time $O\left(n^{2} P\right)$, where P is the largest profit.
\Rightarrow polynomial smoothed complexity

- TSP: strongly NP-hard
(even if all edge lengths are 1 or 2)
\Rightarrow no polynomial smoothed complexity

Polynomial Smoothed Complexity

- $A=$ algorithm
- $\mathcal{I}_{n}=$ set of inputs of length n
- $\operatorname{per}_{\phi}(I)=$ perturbation of instance I
- $T_{A}(I)=$ running time of A on instance I

Polynomial Smoothed Complexity

- $A=$ algorithm
- $\mathcal{I}_{n}=$ set of inputs of length n
- $\operatorname{per}_{\phi}(I)=$ perturbation of instance I
- $T_{A}(I)=$ running time of A on instance I

Definition (first attempt):

Polyn. smoothed compl. $\Longleftrightarrow \max _{I \in \mathcal{I}_{n}} \mathbf{E}\left[T_{A}\left(\operatorname{per}_{\phi}(I)\right)\right]=\operatorname{poly}(n, \phi)$

Polynomial Smoothed Complexity

- $A=$ algorithm
- $\mathcal{I}_{n}=$ set of inputs of length n
- $\operatorname{per}_{\phi}(I)=$ perturbation of instance I
- $T_{A}(I)=$ running time of A on instance I

Definition (first attempt):

Polyn. smoothed compl. $\Longleftrightarrow \max _{I \in \mathcal{I}_{n}} \mathbf{E}\left[T_{A}\left(\operatorname{per}_{\phi}(I)\right)\right]=\operatorname{poly}(n, \phi)$ Problem: Not robust against change of machine model.

Polynomial Smoothed Complexity

- $A=$ algorithm
- $\mathcal{I}_{n}=$ set of inputs of length n
- $\operatorname{per}_{\phi}(I)=$ perturbation of instance I
- $T_{A}(I)=$ running time of A on instance I

Definition (first attempt):

Polyn. smoothed compl. $\Longleftrightarrow \max _{I \in \mathcal{I}_{n}} \mathbf{E}\left[T_{A}\left(\operatorname{per}_{\phi}(I)\right)\right]=\operatorname{poly}(n, \phi)$ Problem: Not robust against change of machine model.

Definition

Algorithm A has polynomial smoothed complexity if there exist $\alpha>0$ and $\beta>0$ with

$$
\max _{I \in \mathcal{I}_{n}} \mathbf{E}\left[T_{A}\left(\operatorname{per}_{\phi}(I)\right)^{\alpha}\right] \leq \beta n \phi .
$$

Winner Gap

Idea: Round coefficients c_{i} and apply pseudo-polyn. algo

Winner Gap

Idea: Round coefficients c_{i} and apply pseudo-polyn. algo

Winner Gap

Idea: Round coefficients c_{i} and apply pseudo-polyn. algo

Winner Gap

Idea: Round coefficients c_{i} and apply pseudo-polyn. algo

- Rounding after the b-th bit $\Rightarrow\left|c_{i}-\left[c_{i}\right]\right| \leq 2^{-b}$

$$
\Rightarrow \forall x \in \mathcal{S}:\left|c^{T} x-[c]^{T} x\right| \leq n 2^{-b}=R
$$

Winner Gap

Idea: Round coefficients c_{i} and apply pseudo-polyn. algo

- Rounding after the b-th bit $\Rightarrow\left|c_{i}-\left[c_{i}\right]\right| \leq 2^{-b}$ $\Rightarrow \forall x \in \mathcal{S}:\left|c^{T} x-[c]^{\top} x\right| \leq n 2^{-b}=R$
- $\Delta>2 R \Rightarrow$ rounding does not change optimal solution

Isolation Lemma

Isolation Lemma
For all \mathcal{S} and all densities $f_{i}:[-1,1] \rightarrow[0, \phi]$

$$
\operatorname{Pr}[\Delta<\varepsilon] \leq 2 n \phi \varepsilon
$$

Isolation Lemma

Isolation Lemma

For all \mathcal{S} and all densities $f_{i}:[-1,1] \rightarrow[0, \phi]$

$$
\operatorname{Pr}[\Delta<\varepsilon] \leq 2 n \phi \varepsilon .
$$

Corollary

For every $p \in(0,1]$ and $b \geq \log \left(\frac{n^{2} \phi}{p}\right)+2$,
$\operatorname{Pr}[$ rounding changes optimal solution] $\leq p$.

Isolation Lemma

Isolation Lemma

For all \mathcal{S} and all densities $f_{i}:[-1,1] \rightarrow[0, \phi]$

$$
\operatorname{Pr}[\Delta<\varepsilon] \leq 2 n \phi \varepsilon
$$

Corollary

For every $p \in(0,1]$ and $b \geq \log \left(\frac{n^{2} \phi}{p}\right)+2$,
$\operatorname{Pr}[$ rounding changes optimal solution $] \leq p$.
pseudo-polynomial algorithm \Rightarrow polynomial smoothed complexity

Isolation Lemma

Isolation Lemma

For all \mathcal{S} and all densities $f_{i}:[-1,1] \rightarrow[0, \phi]$

$$
\operatorname{Pr}[\Delta<\varepsilon] \leq 2 n \phi \varepsilon
$$

Corollary

For every $p \in(0,1]$ and $b \geq \log \left(\frac{n^{2} \phi}{p}\right)+2$,
$\operatorname{Pr}[$ rounding changes optimal solution] $\leq p$.
pseudo-polynomial algorithm \Rightarrow polynomial smoothed complexity

- Round coefficients after a logarithmic number of bits and call pseudo-polynomial algorithm.

Isolation Lemma

Isolation Lemma

For all \mathcal{S} and all densities $f_{i}:[-1,1] \rightarrow[0, \phi]$

$$
\operatorname{Pr}[\Delta<\varepsilon] \leq 2 n \phi \varepsilon
$$

Corollary

For every $p \in(0,1]$ and $b \geq \log \left(\frac{n^{2} \phi}{p}\right)+2$,
$\operatorname{Pr}[$ rounding changes optimal solution] $\leq p$.
pseudo-polynomial algorithm \Rightarrow polynomial smoothed complexity

- Round coefficients after a logarithmic number of bits and call pseudo-polynomial algorithm.
- If necessary, increase precision and repeat.

Proof of Isolation Lemma

Lemma

For $\varepsilon \geq 0, \operatorname{Pr}[\Delta<\varepsilon] \leq 2 n \phi \varepsilon$.

Proof of Isolation Lemma

Lemma

For $\varepsilon \geq 0, \operatorname{Pr}[\Delta<\varepsilon] \leq 2 n \phi \varepsilon$.

- Say $x_{i}^{*}=1$ and $x_{i}^{* *}=0$ for some i.

Proof of Isolation Lemma

Lemma

For $\varepsilon \geq 0, \operatorname{Pr}[\Delta<\varepsilon] \leq 2 n \phi \varepsilon$.

- Say $x_{i}^{*}=1$ and $x_{i}^{* *}=0$ for some i.
- Then $x^{*}=\arg \max c^{\top} x$ and $x^{* *}=\arg \max c^{\top} x$.

$$
\begin{array}{cr}
x \in \mathcal{S} & x \in \mathcal{S} \\
x_{i}=1 & x_{i}=0
\end{array}
$$

Proof of Isolation Lemma

Lemma

For $\varepsilon \geq 0, \operatorname{Pr}[\Delta<\varepsilon] \leq 2 n \phi \varepsilon$.

- Say $x_{i}^{*}=1$ and $x_{i}^{* *}=0$ for some i.
- Then $x^{*}=\arg \max c^{\top} x$ and $x^{* *}=\arg \max c^{\top} x$.

$$
\begin{array}{ll}
\begin{array}{l}
x \in \mathcal{S} \\
x_{i}=1
\end{array} & \begin{array}{c}
x \in \mathcal{S} \\
x_{i}=0
\end{array}
\end{array}
$$

- Principle of deferred decisions: Fix all c_{j} for $j \neq i$.

Proof of Isolation Lemma

Lemma

For $\varepsilon \geq 0, \operatorname{Pr}[\Delta<\varepsilon] \leq 2 n \phi \varepsilon$.

- Say $x_{i}^{*}=1$ and $x_{i}^{* *}=0$ for some i.
- Then $x^{*}=\arg \max c^{\top} x$ and $x^{* *}=\arg \max c^{\top} x$.

$$
\begin{array}{ll}
x \in \mathcal{S} & \begin{array}{l}
x \in \mathcal{S} \\
x_{i}=1
\end{array} \\
x_{i}=0
\end{array}
$$

- Principle of deferred decisions: Fix all c_{j} for $j \neq i$.
- \Rightarrow Identity of x^{*} and $x^{* *}$ fixed.

Proof of Isolation Lemma

Lemma

For $\varepsilon \geq 0, \operatorname{Pr}[\Delta<\varepsilon] \leq 2 n \phi \varepsilon$.

- Say $x_{i}^{*}=1$ and $x_{i}^{* *}=0$ for some i.
- Then $x^{*}=\operatorname{argmax} c^{\top} x$ and $x^{* *}=\operatorname{argmax} c^{\top} x$.

$$
\begin{array}{ll}
\begin{array}{l}
x \in \mathcal{S} \\
x_{i}=1
\end{array} & \begin{array}{c}
x \in \mathcal{S} \\
x_{i}=0
\end{array}
\end{array}
$$

- Principle of deferred decisions: Fix all c_{j} for $j \neq i$.
- \Rightarrow Identity of x^{*} and $x^{* *}$ fixed.
- $\Rightarrow \Delta=c^{\top} x^{*}-c^{\top} x^{* *}=\kappa+c_{i}$ for constant κ

Proof of Isolation Lemma

Lemma

For $\varepsilon \geq 0, \operatorname{Pr}[\Delta<\varepsilon] \leq 2 n \phi \varepsilon$.

- Say $x_{i}^{*}=1$ and $x_{i}^{* *}=0$ for some i.
- Then $x^{*}=\arg \max c^{\top} x$ and $x^{* *}=\arg \max c^{\top} x$.

$$
\begin{array}{ll}
x \in \mathcal{S} \\
x_{i}=1 & \begin{array}{l}
x \in \mathcal{S} \\
x_{i}=0
\end{array}
\end{array}
$$

- Principle of deferred decisions: Fix all c_{j} for $j \neq i$.
- \Rightarrow Identity of x^{*} and $x^{* *}$ fixed.
- $\Rightarrow \Delta=c^{\top} x^{*}-c^{T} x^{* *}=\kappa+c_{i}$ for constant κ
- $\left.\operatorname{Pr}[\Delta \in[0, \varepsilon])]=\operatorname{Pr}\left[c_{i} \in[-\kappa,-\kappa+\varepsilon]\right)\right] \leq \varepsilon \phi$

Proof of Isolation Lemma

Lemma

For $\varepsilon \geq 0, \operatorname{Pr}[\Delta<\varepsilon] \leq 2 n \phi \varepsilon$.

- Say $x_{i}^{*}=1$ and $x_{i}^{* *}=0$ for some i.
- Then $x^{*}=\arg \max c^{\top} x$ and $x^{* *}=\arg \max c^{\top} x$.

$$
\begin{array}{ll}
x \in \mathcal{S} \\
x_{i}=1 & \begin{array}{r}
x \in \mathcal{S} \\
x_{i}=0
\end{array}
\end{array}
$$

- Principle of deferred decisions: Fix all c_{j} for $j \neq i$.
- \Rightarrow Identity of x^{*} and $x^{* *}$ fixed.
- $\Rightarrow \Delta=c^{\top} x^{*}-c^{\top} x^{* *}=\kappa+c_{i}$ for constant κ
- $\left.\operatorname{Pr}[\Delta \in[0, \varepsilon])]=\operatorname{Pr}\left[c_{i} \in[-\kappa,-\kappa+\varepsilon]\right)\right] \leq \varepsilon \phi$
- Union Bound over all n choices for i.

Extensions

Theorem [Beier, Vöcking (STOC 2004)]
linear binary opt. problem has polynomial smoothed complexity

pseudo-polynomial time $\operatorname{poly}\left(n, \max \left\{\left|c_{i}\right|\right\}\right)$ in the worst case
[Beier, Vöcking (STOC 2004)]
Theorem remains true if linear constraints are perturbed.
[R., Vöcking (IPCO 2005)]
Theorem remains true for integer optimization problems.

Outline

Outline
(1) Binary Optimization Problems When does a binary optimization problem have polynomial smoothed complexity?
(2) Multiobjective Optimization How many Pareto-optimal solutions do usually exist?
(3) Conclusions

Optimization Problems

Single-criterion Optimization Problem: $\min f(x)$ subject to $x \in \mathcal{S}$.

Example:
Shortest Path Problem

Optimization Problems

Single-criterion Optimization Problem: $\min f(x)$ subject to $x \in \mathcal{S}$.

Example:
Shortest Path Problem

Real-life logistical problems often involve multiple objectives.
(travel time, fare, departure time, etc.)

Optimization Problems

Single-criterion Optimization Problem: $\min f(x)$ subject to $x \in \mathcal{S}$.

Real-life logistical problems often involve multiple objectives.
(travel time, fare, departure time, etc.)
Multiobjective Opt. Problem: $\min f_{1}(x), \ldots, \min f_{d}(x)$ s.t. $x \in \mathcal{S}$. Usually, there is no solution that is simultaneously optimal for all f_{i}.

Question

What can we do algorithmically to support the decision maker?

Pareto-optimal Solutions

Multiobjective Opt. Problem: $\min w^{1}(x), \ldots, \min w^{d}(x)$ s.t. $x \in \mathcal{S}$
$x \in \mathcal{S}$ dominates $y \in \mathcal{S} \Longleftrightarrow$
$\forall i: w^{i}(x) \leq w^{i}(y)$ and
$\exists i: w^{i}(x)<w^{i}(y)$

Pareto-optimal Solutions

Multiobjective Opt. Problem: $\min w^{1}(x), \ldots, \min w^{d}(x)$ s.t. $x \in \mathcal{S}$
$x \in \mathcal{S}$ dominates $y \in \mathcal{S} \Longleftrightarrow$
$\forall i: w^{i}(x) \leq w^{i}(y)$ and
$\exists i: w^{i}(x)<w^{i}(y)$
$x \in \mathcal{S}$ Pareto-optimal

$\nexists y \in \mathcal{S}: y$ dominates x

Pareto-optimal Solutions

Multiobjective Opt. Problem: $\min w^{1}(x), \ldots, \min w^{d}(x)$ s.t. $x \in \mathcal{S}$
$x \in \mathcal{S}$ dominates $y \in \mathcal{S} \Longleftrightarrow$
$\forall i: w^{i}(x) \leq w^{i}(y)$ and
$\exists i: w^{i}(x)<w^{i}(y)$
$x \in \mathcal{S}$ Pareto-optimal
$\nexists y \in \mathcal{S}: y$ dominates x

Often the Pareto curve is generated:

- Pareto curve limits options for decision maker.
- Monotone functions are optimized by Pareto-optimal solutions, e.g., $\lambda_{1} w^{1}(x)+\ldots+\lambda_{d} w^{d}(x)$ or $w^{1}(x) \cdots \cdot w^{d}(x)$.
- Tool for solving single-criterion problems

Pareto-optimal Solutions

Multiobjective Opt. Problem: $\min w^{1}(x), \ldots, \min w^{d}(x)$ s.t. $x \in \mathcal{S}$
$x \in \mathcal{S}$ dominates $y \in \mathcal{S} \Longleftrightarrow$
$\forall i: w^{i}(x) \leq w^{i}(y)$ and
$\exists i: w^{i}(x)<w^{i}(y)$
$x \in \mathcal{S}$ Pareto-optimal
$\nexists y \in \mathcal{S}: y$ dominates x

Often the Pareto curve is generated:

- Pareto curve limits options for decision maker.
- Monotone functions are optimized by Pareto-optimal solutions, e.g., $\lambda_{1} w^{1}(x)+\ldots+\lambda_{d} w^{d}(x)$ or $w^{1}(x) \cdots \cdot w^{d}(x)$.
- Tool for solving single-criterion problems

Central Question

How large is the Pareto curve?

Model

Linear Binary Optimization Problem

- set of feasible solutions $\mathcal{S} \subseteq\{0,1\}^{n}$ solution $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{S}$ consists of n binary variables
- d linear objective functions:
$\forall i \in\{1, \ldots, d\}: \min w^{i}(x)=w_{1}^{i} x_{1}+\cdots+w_{n}^{i} x_{n}$

Model

Linear Binary Optimization Problem

- set of feasible solutions $\mathcal{S} \subseteq\{0,1\}^{n}$ solution $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{S}$ consists of n binary variables
- d linear objective functions:
$\forall i \in\{1, \ldots, d\}: \min w^{i}(x)=w_{1}^{i} x_{1}+\cdots+w_{n}^{i} x_{n}$

How large is the Pareto curve?

- Exponential in the worst case for almost all problems.
- In practice, often few Pareto optimal solutions.

Example: Train Connections
w.r.t. travel time, fare, number of train changes
[Müller-Hannemann, Weihe 2001]

Results (Bicriteria Optimization)

Adversary chooses \mathcal{S} and a probability density
$f_{j}^{i}:[-1,1] \rightarrow[0, \phi]$ for every w_{j}^{i} and some $\phi \geq 1$.
Every w_{j}^{i} is drawn independently according to f_{j}^{i}.

$$
\left.P_{d}(n, \phi)=\max _{\mathcal{S}, f^{i}} \mathbf{E} \text { [number of Pareto-optimal sol. for } \mathcal{S} \text { and } f_{j}^{i}\right]
$$

Results (Bicriteria Optimization)

Adversary chooses \mathcal{S} and a probability density
$f_{j}^{i}:[-1,1] \rightarrow[0, \phi]$ for every w_{j}^{i} and some $\phi \geq 1$.
Every w_{j}^{i} is drawn independently according to f_{j}^{i}.

$$
P_{d}(n, \phi)=\max _{\mathcal{S}, f_{j}^{j}} \mathbf{E}\left[\text { number of Pareto-optimal sol. for } \mathcal{S} \text { and } f_{j}^{i}\right]
$$

Bicriteria Optimization ($d=2$):
Theorem [Beier, Vöcking (STOC 2003)]

$$
P_{2}(n, \phi)=O\left(n^{4} \phi\right) \quad P_{2}(n, \phi)=\Omega\left(n^{2}\right)
$$

Results (Bicriteria Optimization)

Adversary chooses \mathcal{S} and a probability density
$f_{j}^{i}:[-1,1] \rightarrow[0, \phi]$ for every w_{j}^{i} and some $\phi \geq 1$.
Every w_{j}^{i} is drawn independently according to f_{j}^{i}.

$$
P_{d}(n, \phi)=\max _{\mathcal{S}, f_{j}^{j}} \mathbf{E}\left[\text { number of Pareto-optimal sol. for } \mathcal{S} \text { and } f_{j}^{i}\right]
$$

Bicriteria Optimization ($d=2$):
Theorem [Beier, Vöcking (STOC 2003)]
$P_{2}(n, \phi)=O\left(n^{4} \phi\right) \quad P_{2}(n, \phi)=\Omega\left(n^{2}\right)$

Theorem [Beier, R., Vöcking (IPCO 2007)]

$$
P_{2}(n, \phi)=O\left(n^{2} \phi\right)
$$

extension to integer optimization problems

Results (Multiobjective Optimization)

Multiobjective Optimization (d arbitrary constant):

Theorem [R., Teng (FOCS 2009)]
$\boldsymbol{P}_{d}(\boldsymbol{n}, \phi)=\mathbf{O}\left((\boldsymbol{n} \phi)^{\boldsymbol{h}(d)}\right)$ for some function h

Results (Multiobjective Optimization)

Multiobjective Optimization (d arbitrary constant):

Theorem [R., Teng (FOCS 2009)]
$\boldsymbol{P}_{d}(\boldsymbol{n}, \phi)=\mathbf{O}\left((\boldsymbol{n} \phi)^{\boldsymbol{h}(d)}\right)$ for some function h

Theorem [Moitra, O'Donnell (STOC 2011)]
$P_{d}(n, \phi)=O\left(n^{2 d} \phi^{\Theta\left(d^{2}\right)}\right)$

Results (Multiobjective Optimization)

Multiobjective Optimization (d arbitrary constant):
Theorem [R., Teng (FOCS 2009)]
$P_{d}(n, \phi)=O\left((n \phi)^{h(d)}\right)$ for some function h
Theorem [Moitra, O'Donnell (STOC 2011)]
$P_{d}(n, \phi)=O\left(n^{2 d} \phi^{\Theta\left(d^{2}\right)}\right)$
Theorem [Brunsch, R. (TAMC 2011, STOC 2012)]
$P_{d}(n, \phi)=O\left(n^{2 d} \phi^{d}\right) \quad P_{d}(n, \phi)=\Omega\left(n^{d-1.5} \phi^{d}\right)$
extension to non-linear objective functions

Bicriteria Optimization

Beier, R., Vöcking (IPCO 2007)

- $\min w^{1}(x)=w_{1} x_{1}+\cdots+w_{n} x_{n}$ and $\min w^{2}(x)$
- subject to $x \in \mathcal{S} \subseteq\{0,1\}^{n}, \mathcal{S}$ arbitrary
- w_{j} drawn according to $f_{j}:[0,1] \rightarrow[0, \phi]$ for $\phi \geq 1$

$$
\mathrm{P}_{2}(\mathrm{n}, \phi)=\mathbf{O}\left(\mathrm{n}^{2} \phi\right)
$$

Bicriteria Optimization

Beier, R., Vöcking (IPCO 2007)

- $\min w^{1}(x)=w_{1} x_{1}+\cdots+w_{n} x_{n}$ and $\min w^{2}(x)$
- subject to $x \in \mathcal{S} \subseteq\{0,1\}^{n}, \mathcal{S}$ arbitrary
- w_{j} drawn according to $f_{j}:[0,1] \rightarrow[0, \phi]$ for $\phi \geq 1$

$$
\mathrm{P}_{2}(\mathrm{n}, \phi)=\mathrm{O}\left(\mathrm{n}^{2} \phi\right)
$$

$$
\begin{aligned}
& \mathbf{E}[|\mathcal{P}|] \\
= & \sum_{i=0}^{k-1} \mathbf{E}\left[\left\{x \in \mathcal{P}: w^{1}(x) \in\left[t_{i}, t_{i+1}\right)\right\}\right]
\end{aligned}
$$

Bicriteria Optimization

Beier, R., Vöcking (IPCO 2007)

- $\min w^{1}(x)=w_{1} x_{1}+\cdots+w_{n} x_{n}$ and $\min w^{2}(x)$
- subject to $x \in \mathcal{S} \subseteq\{0,1\}^{n}, \mathcal{S}$ arbitrary
- w_{j} drawn according to $f_{j}:[0,1] \rightarrow[0, \phi]$ for $\phi \geq 1$

$$
\mathrm{P}_{2}(\mathrm{n}, \phi)=\mathbf{O}\left(\mathrm{n}^{2} \phi\right)
$$

$$
\begin{aligned}
& \mathbf{E}[|\mathcal{P}|] \\
= & \sum_{i=0}^{k-1} \mathbf{E}\left[\left\{x \in \mathcal{P}: w^{1}(x) \in\left[t_{i}, t_{i+1}\right)\right\}\right] \\
\approx & \sum_{i=0}^{k-1} \operatorname{Pr}\left[\exists x \in \mathcal{P}: w^{1}(x) \in\left[t_{i}, t_{i+1}\right)\right]
\end{aligned}
$$

Bicriteria Optimization

Beier, R., Vöcking (IPCO 2007)

- $\min w^{1}(x)=w_{1} x_{1}+\cdots+w_{n} x_{n}$ and $\min w^{2}(x)$
- subject to $x \in \mathcal{S} \subseteq\{0,1\}^{n}, \mathcal{S}$ arbitrary
- w_{j} drawn according to $f_{j}:[0,1] \rightarrow[0, \phi]$ for $\phi \geq 1$

$$
\mathrm{P}_{2}(\mathrm{n}, \phi)=\mathbf{O}\left(\mathrm{n}^{2} \phi\right)
$$

$$
\begin{aligned}
& \mathbf{E}[|\mathcal{P}|] \\
= & \sum_{i=0}^{k-1} \mathbf{E}\left[\left\{x \in \mathcal{P}: w^{1}(x) \in\left[t_{i}, t_{i+1}\right)\right\}\right] \\
= & \lim _{k \rightarrow \infty} \sum_{i=0}^{k-1} \operatorname{Pr}\left[\exists x \in \mathcal{P}: w^{1}(x) \in\left[t_{i}, t_{i+1}\right)\right]{ }_{t_{0}=0} t_{t_{1}} t_{2} \\
t_{3} & t_{4}
\end{aligned} t_{5} \quad t_{6} \quad n=t_{k}
$$

Loser Gap

Loser Gap

- single-criterion problem: $\min w^{2}(x)$ s.t. $w^{1}(x) \leq t$ and $x \in \mathcal{S}$
- winner: $x^{\star}=$ optimal solution

Loser Gap

- single-criterion problem: $\min w^{2}(x)$ s.t. $w^{1}(x) \leq t$ and $x \in \mathcal{S}$
- winner: $x^{\star}=$ optimal solution
- Ioser set: $\mathcal{L}=$ all solutions $x \in \mathcal{S}$ with $w^{2}(x)<w^{2}\left(x^{\star}\right)$

Loser Gap

- single-criterion problem: $\min w^{2}(x)$ s.t. $w^{1}(x) \leq t$ and $x \in \mathcal{S}$
- winner: $x^{\star}=$ optimal solution
- Ioser set: $\mathcal{L}=$ all solutions $x \in \mathcal{S}$ with $w^{2}(x)<w^{2}\left(x^{\star}\right)$
- loser gap: $\Lambda(t)=$ distance of loser set \mathcal{L} from t

Loser Gap

- single-criterion problem: $\min w^{2}(x)$ s.t. $w^{1}(x) \leq t$ and $x \in \mathcal{S}$
- winner: $x^{\star}=$ optimal solution
- Ioser set: $\mathcal{L}=$ all solutions $x \in \mathcal{S}$ with $w^{2}(x)<w^{2}\left(x^{\star}\right)$
- loser gap: $\Lambda(t)=$ distance of loser set \mathcal{L} from t

$$
\exists x \in \mathcal{P}: w^{1}(x) \in[t, t+\varepsilon) \Longleftrightarrow \Lambda(t) \leq \varepsilon
$$

Loser Gap

- single-criterion problem: $\min w^{2}(x)$ s.t. $w^{1}(x) \leq t$ and $x \in \mathcal{S}$
- winner: $x^{\star}=$ optimal solution
- Ioser set: $\mathcal{L}=$ all solutions $x \in \mathcal{S}$ with $w^{2}(x)<w^{2}\left(x^{\star}\right)$
- loser gap: $\Lambda(t)=$ distance of loser set \mathcal{L} from t

$$
\exists x \in \mathcal{P}: w^{1}(x) \in[t, t+\varepsilon) \Longleftrightarrow \Lambda(t) \leq \varepsilon
$$

Loser Gap

$$
\operatorname{Pr}\left[\exists x \in \mathcal{P}: w^{1}(x) \in[t, t+\varepsilon)\right]
$$

- single-criterion problem: $\min w^{2}(x)$ s.t. $w^{1}(x) \leq t$ and $x \in \mathcal{S}$
- winner: $x^{\star}=$ optimal solution
- Ioser set: $\mathcal{L}=$ all solutions $x \in \mathcal{S}$ with $w^{2}(x)<w^{2}\left(x^{\star}\right)$
- loser gap: $\Lambda(t)=$ distance of loser set \mathcal{L} from t

$$
\exists x \in \mathcal{P}: w^{1}(x) \in[t, t+\varepsilon) \Longleftrightarrow \Lambda(t) \leq \varepsilon
$$

Lemma [Beier, Vöcking (STOC 2004)]
For every $\varepsilon \geq 0$ and $t \in \mathbb{R}, \operatorname{Pr}[\Lambda(t) \leq \varepsilon] \leq n \phi \varepsilon$.

Bicriteria Optimization - Proof

Lemma [Beier, Vöcking (STOC 2004)]
For every $\varepsilon \geq 0$ and $t \in \mathbb{R}, \operatorname{Pr}[\Lambda(t) \leq \varepsilon] \leq n \phi \varepsilon$.

$$
\begin{aligned}
& P_{2}(n, \phi) \\
& \leq \lim _{k \rightarrow \infty} \sum_{i=0}^{k-1} \operatorname{Pr}\left[\exists x \in \mathcal{P}: w^{1}(x) \in\left[t_{i}, t_{i+1}\right)\right]
\end{aligned}
$$

Bicriteria Optimization - Proof

Lemma [Beier, Vöcking (STOC 2004)]
For every $\varepsilon \geq 0$ and $t \in \mathbb{R}, \operatorname{Pr}[\Lambda(t) \leq \varepsilon] \leq n \phi \varepsilon$.

$$
\begin{aligned}
& P_{2}(n, \phi) \\
\leq & \lim _{k \rightarrow \infty} \sum_{i=0}^{k-1} \operatorname{Pr}\left[\exists x \in \mathcal{P}: w^{1}(x) \in\left[t_{i}, t_{i+1}\right)\right] \\
\leq & \lim _{k \rightarrow \infty} \sum_{i=0}^{k-1} \operatorname{Pr}\left[\Lambda\left(t_{i}\right) \leq \frac{n}{k}\right]
\end{aligned}
$$

Bicriteria Optimization - Proof

Lemma [Beier, Vöcking (STOC 2004)]

For every $\varepsilon \geq 0$ and $t \in \mathbb{R}, \operatorname{Pr}[\Lambda(t) \leq \varepsilon] \leq n \phi \varepsilon$.

$$
\begin{aligned}
& P_{2}(n, \phi) \\
\leq & \lim _{k \rightarrow \infty} \sum_{i=0}^{k-1} \operatorname{Pr}\left[\exists x \in \mathcal{P}: w^{1}(x) \in\left[t_{i}, t_{i+1}\right)\right] \\
\leq & \lim _{k \rightarrow \infty} \sum_{i=0}^{k-1} \operatorname{Pr}\left[\Lambda\left(t_{i}\right) \leq \frac{n}{k}\right] \\
\leq & \lim _{k \rightarrow \infty} \sum_{i=0}^{k-1} \frac{n^{2} \phi}{k}=n^{2} \phi .
\end{aligned}
$$

Beier, R., Vöcking (IPCO 2007)

$$
\mathbf{P}_{\mathbf{2}}(\mathbf{n}, \phi)=\mathbf{O}\left(\mathbf{n}^{2} \phi\right)
$$

Outline

Outline

(1) Binary Optimization Problems

When does a binary optimization problem have polynomial
smoothed complexity?
(2) Multiobjective Optimization

How many Pareto-optimal solutions do usually exist?
(3) Conclusions

Conclusions

Summary

Smoothed analysis is a promising framework for a more realistic theory of algorithms. It explains success of simplex algorithm, 2-Opt, and many other algorithms.

Conclusions

Summary

Smoothed analysis is a promising framework for a more realistic theory of algorithms. It explains success of simplex algorithm, 2-Opt, and many other algorithms.

Open Questions

- analyze other pivot rules for simplex method
- improve exponents of smoothed running time for 2-Opt etc.
- analyze your favorite problem/algo that is hard in the worst case
- use insights to develop better algorithms
- explore other frameworks for realistic theory

