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Model

Linear Binary Optimization Problem

set of feasible solutions S ⊆ {0, 1}n

solution x = (x1, . . . , xn) ∈ S consists of n binary variables

linear objective function
max cT x = c1x1 + · · ·+ cnxn

S can encode arbitrary combinatorial structure, e.g., for a given graph,
all paths from s to t , all Hamiltonian cycles, all spanning trees, . . .

Knapsack Problem: variable xi ∈ {0, 1} for each item i
S = {x | w1x1 + · · ·+ wnxn ≤ t}

TSP: variable xe ∈ {0, 1} for each e ∈ E
S = {x | x encodes Hamiltonian cycle}
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Smoothed Analysis

Worst-case Analysis: Adversary chooses S and ci ∈ [−1, 1].

Smoothed Analysis:
Adversary chooses S and a probability density
fi : [−1, 1]→ [0, φ] for every ci and some φ ≥ 1.
Every ci is drawn independently according to fi .

Remarks:

φ large ≈ worst case
φ small ≈ average case

S is not perturbed!
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Main Result

Theorem [Beier, Vöcking (STOC 2004)]

linear binary opt. problem has polynomial smoothed complexity
⇐⇒

pseudo-polynomial time poly(n,max{|ci |}) in the worst case

Knapsack Problem: Can be solved in time O(n2P),
where P is the largest profit.
⇒ polynomial smoothed complexity

TSP: strongly NP-hard
(even if all edge lengths are 1 or 2)
⇒ no polynomial smoothed complexity
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Theorem [Beier, Vöcking (STOC 2004)]

linear binary opt. problem has polynomial smoothed complexity
⇐⇒

pseudo-polynomial time poly(n,max{|ci |}) in the worst case

Knapsack Problem: Can be solved in time O(n2P),
where P is the largest profit.
⇒ polynomial smoothed complexity

TSP: strongly NP-hard
(even if all edge lengths are 1 or 2)
⇒ no polynomial smoothed complexity
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Polynomial Smoothed Complexity

A = algorithm

In = set of inputs of length n

perφ(I) = perturbation of instance I

TA(I) = running time of A on instance I

Definition (first attempt):
Polyn. smoothed compl. ⇐⇒ maxI∈In E

[
TA(perφ(I))

]
= poly(n, φ)

Problem: Not robust against change of machine model.

Definition
Algorithm A has polynomial smoothed complexity if there exist α > 0
and β > 0 with

max
I∈In

E
[
TA(perφ(I))α

]
≤ βnφ.
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Winner Gap

Idea: Round coefficients ci and apply pseudo-polyn. algo

∆ = cT x∗ − cT x∗∗

R = max. change due to rounding

Rounding after the b-th bit⇒ |ci − [ci ]| ≤ 2−b

⇒ ∀x ∈ S : |cT x − [c]T x | ≤ n2−b = R

∆ > 2R⇒ rounding does not change optimal solution
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Heiko Röglin Smoothed Analysis of Algorithms



Isolation Lemma

Isolation Lemma

For all S and all densities fi : [−1, 1]→ [0, φ]

Pr [∆ < ε] ≤ 2nφε.

Corollary

For every p ∈ (0, 1] and b ≥ log
( n2φ

p

)
+ 2,

Pr [rounding changes optimal solution] ≤ p.

pseudo-polynomial algorithm⇒ polynomial smoothed complexity

Round coefficients after a logarithmic number of bits and call
pseudo-polynomial algorithm.

If necessary, increase precision and repeat.
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Heiko Röglin Smoothed Analysis of Algorithms



Isolation Lemma

Isolation Lemma

For all S and all densities fi : [−1, 1]→ [0, φ]

Pr [∆ < ε] ≤ 2nφε.

Corollary

For every p ∈ (0, 1] and b ≥ log
(n2φ

p

)
+ 2,

Pr [rounding changes optimal solution] ≤ p.

pseudo-polynomial algorithm⇒ polynomial smoothed complexity

Round coefficients after a logarithmic number of bits and call
pseudo-polynomial algorithm.

If necessary, increase precision and repeat.
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Proof of Isolation Lemma

Lemma

For ε ≥ 0, Pr [∆ < ε] ≤ 2nφε.

cTx

x∗

∆

x∗∗ S

xi = 1xi = 0

Say x∗i = 1 and x∗∗i = 0 for some i .

Then x∗ = arg max
x∈S
xi=1

cT x and x∗∗ = arg max
x∈S
xi=0

cT x .

Principle of deferred decisions: Fix all cj for j 6= i .

⇒ Identity of x∗ and x∗∗ fixed.

⇒ ∆ = cT x∗ − cT x∗∗ = κ+ ci for constant κ

Pr [∆ ∈ [0, ε])] = Pr [ci ∈ [−κ,−κ+ ε])] ≤ εφ
Union Bound over all n choices for i . �
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Extensions

Theorem [Beier, Vöcking (STOC 2004)]

linear binary opt. problem has polynomial smoothed complexity
⇐⇒

pseudo-polynomial time poly(n,max{|ci |}) in the worst case

[Beier, Vöcking (STOC 2004)]
Theorem remains true if linear constraints are perturbed.

[R., Vöcking (IPCO 2005)]
Theorem remains true for integer optimization problems.
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Optimization Problems

Single-criterion Optimization Problem: min f (x) subject to x ∈ S.

Example:
Shortest Path Problem

1

3

1
1

10

9

1

9

8
2

s t

Real-life logistical problems often involve multiple objectives.
(travel time, fare, departure time, etc.)

Multiobjective Opt. Problem: min f1(x), . . . , min fd (x) s.t. x ∈ S.
Usually, there is no solution that is simultaneously optimal for all fi .

Question
What can we do algorithmically to support the decision maker?
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Pareto-optimal Solutions

Multiobjective Opt. Problem: min w1(x), . . . , min wd (x) s.t. x ∈ S
x ∈ S dominates y ∈ S ⇐⇒
∀i : w i(x) ≤ w i(y) and
∃i : w i(x) < w i(y)

x ∈ S Pareto-optimal ⇐⇒
6 ∃y ∈ S : y dominates x

travel time

fare

x

y

Often the Pareto curve is generated:

Pareto curve limits options for decision maker.

Monotone functions are optimized by Pareto-optimal solutions,
e.g., λ1w1(x) + . . .+ λd wd (x) or w1(x) · · · · · wd (x).

Tool for solving single-criterion problems

Central Question
How large is the Pareto curve?
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Model

Linear Binary Optimization Problem

set of feasible solutions S ⊆ {0, 1}n

solution x = (x1, . . . , xn) ∈ S consists of n binary variables

d linear objective functions:
∀i ∈ {1, . . . , d} : min w i(x) = w i

1x1 + · · ·+ w i
nxn

How large is the Pareto curve?

Exponential in the worst case for almost all problems.

In practice, often few Pareto optimal solutions.
Example: Train Connections
w.r.t. travel time, fare, number of train changes
[Müller-Hannemann, Weihe 2001]
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Results (Bicriteria Optimization)

Adversary chooses S and a probability density
f i
j : [−1, 1]→ [0, φ] for every w i

j and some φ ≥ 1.
Every w i

j is drawn independently according to f i
j .

Pd (n, φ) = max
S,f i

j

E
[
number of Pareto-optimal sol. for S and f i

j

]

Bicriteria Optimization (d = 2):

Theorem [Beier, Vöcking (STOC 2003)]

P2(n, φ) = O(n4φ) P2(n, φ) = Ω(n2)

Theorem [Beier, R., Vöcking (IPCO 2007)]

P2(n, φ) = O(n2φ)
extension to integer optimization problems

Heiko Röglin Smoothed Analysis of Algorithms



Results (Bicriteria Optimization)

Adversary chooses S and a probability density
f i
j : [−1, 1]→ [0, φ] for every w i

j and some φ ≥ 1.
Every w i

j is drawn independently according to f i
j .

Pd (n, φ) = max
S,f i

j

E
[
number of Pareto-optimal sol. for S and f i

j

]
Bicriteria Optimization (d = 2):

Theorem [Beier, Vöcking (STOC 2003)]

P2(n, φ) = O(n4φ) P2(n, φ) = Ω(n2)

Theorem [Beier, R., Vöcking (IPCO 2007)]
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Results (Multiobjective Optimization)

Multiobjective Optimization (d arbitrary constant):

Theorem [R., Teng (FOCS 2009)]

Pd(n, φ) = O((nφ)h(d)) for some function h

Theorem [Moitra, O’Donnell (STOC 2011)]

Pd(n, φ) = O(n2dφΘ(d2))

Theorem [Brunsch, R. (TAMC 2011, STOC 2012)]

Pd(n, φ) = O(n2dφd) Pd(n, φ) = Ω(nd−1.5φd)
extension to non-linear objective functions
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Bicriteria Optimization

Beier, R., Vöcking (IPCO 2007)

min w1(x) = w1x1 + · · ·+ wnxn and min w2(x)

subject to x ∈ S ⊆ {0, 1}n, S arbitrary

wj drawn according to fj : [0, 1]→ [0, φ] for φ ≥ 1

P2(n, φ) = O(n2φ)

E [|P|]

=
k−1∑
i=0

E
[
{x ∈ P : w1(x) ∈ [ti , ti+1)}

]

w1

w2

n0
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Loser Gap

Pr
[
∃x ∈ P : w1(x) ∈ [t, t + ε)

]
w1

w2

t t + ε

single-criterion problem: min w2(x) s.t. w1(x) ≤ t and x ∈ S
winner: x? = optimal solution

loser set: L = all solutions x ∈ S with w2(x) < w2(x?)

loser gap: Λ(t) = distance of loser set L from t

∃x ∈ P : w1(x) ∈ [t, t + ε) ⇐⇒ Λ(t) ≤ ε

Lemma [Beier, Vöcking (STOC 2004)]

For every ε ≥ 0 and t ∈ R, Pr [Λ(t) ≤ ε] ≤ nφε.
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Bicriteria Optimization – Proof

Lemma [Beier, Vöcking (STOC 2004)]

For every ε ≥ 0 and t ∈ R, Pr [Λ(t) ≤ ε] ≤ nφε.

P2(n, φ)

≤ lim
k→∞

k−1∑
i=0

Pr
[
∃x ∈ P : w1(x) ∈ [ti , ti+1)

]

≤ lim
k→∞

k−1∑
i=0

Pr
[
Λ(ti) ≤

n
k

]
≤ lim

k→∞

k−1∑
i=0

n2φ

k
= n2φ.

�

w1

w2

n0 t1 t2 t3 t4 t5 t6t0 = = tk

Beier, R., Vöcking (IPCO 2007)

P2(n, φ) = O(n2φ)
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Beier, R., Vöcking (IPCO 2007)

P2(n, φ) = O(n2φ)
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Outline

Outline
1 Binary Optimization Problems

When does a binary optimization problem have polynomial
smoothed complexity?

2 Multiobjective Optimization
How many Pareto-optimal solutions do usually exist?

3 Conclusions
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Conclusions

Summary
Smoothed analysis is a promising framework for a more realistic
theory of algorithms. It explains success of simplex algorithm, 2-Opt,
and many other algorithms.

Open Questions

analyze other pivot rules for simplex method

improve exponents of smoothed running time for 2-Opt etc.

analyze your favorite problem/algo that is hard in the worst case

use insights to develop better algorithms

explore other frameworks for realistic theory
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