
Smoothed Analysis of Algorithms
Part I: Simplex Method and Local Search

Heiko Röglin
Department of Computer Science

16 January 2013

Heiko Röglin Smoothed Analysis of Algorithms



Discrete Optimization

Many problems and algorithms seem well understood.

Linear Programming
efficient algorithms (ellipsoid, interior point)

Simplex method performs well in practice.

Knapsack Problem (KP)
NP-hard, FPTAS exists

very easy problem, solvable in almost linear time

Traveling Salesperson Problem (TSP)
NP-hard, even hard to approximate

local search methods yield very good solutions

⇒ big gap between theory and practice

Heiko Röglin Smoothed Analysis of Algorithms



Discrete Optimization

Many problems and algorithms seem well understood.

Linear Programming
efficient algorithms (ellipsoid, interior point)
Simplex method performs well in practice.

Knapsack Problem (KP)
NP-hard, FPTAS exists
very easy problem, solvable in almost linear time

Traveling Salesperson Problem (TSP)
NP-hard, even hard to approximate
local search methods yield very good solutions

⇒ big gap between theory and practice

Heiko Röglin Smoothed Analysis of Algorithms



Discrete Optimization

Many problems and algorithms seem well understood.

Linear Programming
efficient algorithms (ellipsoid, interior point)
Simplex method performs well in practice.

Knapsack Problem (KP)
NP-hard, FPTAS exists
very easy problem, solvable in almost linear time

Traveling Salesperson Problem (TSP)
NP-hard, even hard to approximate
local search methods yield very good solutions

⇒ big gap between theory and practice

Heiko Röglin Smoothed Analysis of Algorithms



Outline

Outline
1 Linear Programming

Why is the simplex method usually efficient?
Smoothed Analysis – analysis of algorithms beyond worst case

2 Traveling Salesperson Problem
Why is local search successful?

3 Smoothed Analysis
Overview of known results

Heiko Röglin Smoothed Analysis of Algorithms



Outline

Outline
1 Linear Programming

Why is the simplex method usually efficient?
Smoothed Analysis – analysis of algorithms beyond worst case

2 Traveling Salesperson Problem
Why is local search successful?

3 Smoothed Analysis
Overview of known results

Heiko Röglin Smoothed Analysis of Algorithms



Linear Programming

Linear Programs (LPs)

variables: x1, . . . , xn ∈ R
linear objective function:
max cT x = c1x1 + . . .+ cnxn

m linear constraints:

a1,1x1 + . . .+ a1,nxn ≤ b1

...

am,1x1 + . . .+ am,nxn ≤ bm

c

x∗

Complexity of LPs

LPs can be solved in polynomial time by the ellipsoid method
[Khachiyan 1979] and the interior point method [Karmarkar 1984].

Heiko Röglin Smoothed Analysis of Algorithms



Linear Programming

Linear Programs (LPs)

variables: x1, . . . , xn ∈ R
linear objective function:
max cT x = c1x1 + . . .+ cnxn

m linear constraints:

a1,1x1 + . . .+ a1,nxn ≤ b1

...

am,1x1 + . . .+ am,nxn ≤ bm

c

x∗

Complexity of LPs

LPs can be solved in polynomial time by the ellipsoid method
[Khachiyan 1979] and the interior point method [Karmarkar 1984].

Heiko Röglin Smoothed Analysis of Algorithms



Simplex Algorithm

c

Simplex Algorithm

Start at some vertex of the
polytope.

Walk along the edges of the
polytope in the direction of the
objective function cT x .

local optimum = global optimum

c Pivot Rules
Which vertex is chosen if there are
multiple options?

Different pivot rules suggested:
random, steepest descent, shadow
vertex pivot rule, . . .

Heiko Röglin Smoothed Analysis of Algorithms



Simplex Algorithm

c

Simplex Algorithm

Start at some vertex of the
polytope.

Walk along the edges of the
polytope in the direction of the
objective function cT x .

local optimum = global optimum

c Pivot Rules
Which vertex is chosen if there are
multiple options?

Different pivot rules suggested:
random, steepest descent, shadow
vertex pivot rule, . . .

Heiko Röglin Smoothed Analysis of Algorithms



Simplex Algorithm

c

Simplex Algorithm

Start at some vertex of the
polytope.

Walk along the edges of the
polytope in the direction of the
objective function cT x .

local optimum = global optimum

c Pivot Rules
Which vertex is chosen if there are
multiple options?

Different pivot rules suggested:
random, steepest descent, shadow
vertex pivot rule, . . .

Heiko Röglin Smoothed Analysis of Algorithms



Simplex Algorithm

c

Simplex Algorithm

Start at some vertex of the
polytope.

Walk along the edges of the
polytope in the direction of the
objective function cT x .

local optimum = global optimum

c Pivot Rules
Which vertex is chosen if there are
multiple options?

Different pivot rules suggested:
random, steepest descent, shadow
vertex pivot rule, . . .

Heiko Röglin Smoothed Analysis of Algorithms



Simplex Algorithm

c

Simplex Algorithm

Start at some vertex of the
polytope.

Walk along the edges of the
polytope in the direction of the
objective function cT x .

local optimum = global optimum

c Pivot Rules
Which vertex is chosen if there are
multiple options?

Different pivot rules suggested:
random, steepest descent, shadow
vertex pivot rule, . . .

Heiko Röglin Smoothed Analysis of Algorithms



Simplex Algorithm – Shadow Vertex Pivot Rule

Shadow Vertex Pivot Rule
Let x0 be some vertex of the
polytope.

Compute u ∈ Rd such that
x0 maximizes uT x .

Project the polytope onto the
plane spanned by c and u.

Start at x0 and follow the edges
of the shadow.

cu

x0

x∗

The shadow is a polygon.

x0 is a vertex of the shadow.

x∗ is a vertex of the shadow.

Edges of the shadow correspond to edges of the polytope.

Heiko Röglin Smoothed Analysis of Algorithms



Simplex Algorithm – Shadow Vertex Pivot Rule

Shadow Vertex Pivot Rule
Let x0 be some vertex of the
polytope.

Compute u ∈ Rd such that
x0 maximizes uT x .

Project the polytope onto the
plane spanned by c and u.

Start at x0 and follow the edges
of the shadow.

cu

x0

x∗

The shadow is a polygon.

x0 is a vertex of the shadow.

x∗ is a vertex of the shadow.

Edges of the shadow correspond to edges of the polytope.

Heiko Röglin Smoothed Analysis of Algorithms



Simplex Algorithm – Shadow Vertex Pivot Rule

Shadow Vertex Pivot Rule
Let x0 be some vertex of the
polytope.

Compute u ∈ Rd such that
x0 maximizes uT x .

Project the polytope onto the
plane spanned by c and u.

Start at x0 and follow the edges
of the shadow.

cu

x0

x∗

The shadow is a polygon.

x0 is a vertex of the shadow.

x∗ is a vertex of the shadow.

Edges of the shadow correspond to edges of the polytope.

Heiko Röglin Smoothed Analysis of Algorithms



Simplex Algorithm – Shadow Vertex Pivot Rule

Shadow Vertex Pivot Rule
Let x0 be some vertex of the
polytope.

Compute u ∈ Rd such that
x0 maximizes uT x .

Project the polytope onto the
plane spanned by c and u.

Start at x0 and follow the edges
of the shadow.

cu

x0

x∗

x∗x0

The shadow is a polygon.

x0 is a vertex of the shadow.

x∗ is a vertex of the shadow.

Edges of the shadow correspond to edges of the polytope.

Heiko Röglin Smoothed Analysis of Algorithms



Simplex Algorithm – Shadow Vertex Pivot Rule

Shadow Vertex Pivot Rule
Let x0 be some vertex of the
polytope.

Compute u ∈ Rd such that
x0 maximizes uT x .

Project the polytope onto the
plane spanned by c and u.

Start at x0 and follow the edges
of the shadow.

cu

x0

x∗

x∗x0

The shadow is a polygon.

x0 is a vertex of the shadow.

x∗ is a vertex of the shadow.

Edges of the shadow correspond to edges of the polytope.

Heiko Röglin Smoothed Analysis of Algorithms



Simplex Algorithm – Shadow Vertex Pivot Rule

Shadow Vertex Pivot Rule
Let x0 be some vertex of the
polytope.

Compute u ∈ Rd such that
x0 maximizes uT x .

Project the polytope onto the
plane spanned by c and u.

Start at x0 and follow the edges
of the shadow. cu

x0

x∗

x∗x0

The shadow is a polygon.

x0 is a vertex of the shadow.

x∗ is a vertex of the shadow.

Edges of the shadow correspond to edges of the polytope.

Heiko Röglin Smoothed Analysis of Algorithms



Simplex Algorithm – Shadow Vertex Pivot Rule

Shadow Vertex Pivot Rule
Let x0 be some vertex of the
polytope.

Compute u ∈ Rd such that
x0 maximizes uT x .

Project the polytope onto the
plane spanned by c and u.

Start at x0 and follow the edges
of the shadow. cu

x0

x∗

x∗x0

The shadow is a polygon.

x0 is a vertex of the shadow.

x∗ is a vertex of the shadow.

Edges of the shadow correspond to edges of the polytope.

Heiko Röglin Smoothed Analysis of Algorithms



Simplex Algorithm – Shadow Vertex Pivot Rule

Shadow Vertex Pivot Rule
Let x0 be some vertex of the
polytope.

Compute u ∈ Rd such that
x0 maximizes uT x .

Project the polytope onto the
plane spanned by c and u.

Start at x0 and follow the edges
of the shadow. cu

x0

x∗

x∗x0

The shadow is a polygon.

x0 is a vertex of the shadow.

x∗ is a vertex of the shadow.

Edges of the shadow correspond to edges of the polytope.

Heiko Röglin Smoothed Analysis of Algorithms



Simplex Algorithm – Shadow Vertex Pivot Rule

Shadow Vertex Pivot Rule
Let x0 be some vertex of the
polytope.

Compute u ∈ Rd such that
x0 maximizes uT x .

Project the polytope onto the
plane spanned by c and u.

Start at x0 and follow the edges
of the shadow. cu

x0

x∗

x∗x0

The shadow is a polygon.

x0 is a vertex of the shadow.

x∗ is a vertex of the shadow.

Edges of the shadow correspond to edges of the polytope.

Heiko Röglin Smoothed Analysis of Algorithms



Simplex Algorithm – Shadow Vertex Pivot Rule

Shadow Vertex Pivot Rule
Let x0 be some vertex of the
polytope.

Compute u ∈ Rd such that
x0 maximizes uT x .

Project the polytope onto the
plane spanned by c and u.

Start at x0 and follow the edges
of the shadow. cu

x0

x∗

x∗x0

The shadow is a polygon.

x0 is a vertex of the shadow.

x∗ is a vertex of the shadow.

Edges of the shadow correspond to edges of the polytope.

Heiko Röglin Smoothed Analysis of Algorithms



Simplex Algorithm – Shadow Vertex Pivot Rule

Shadow Vertex Pivot Rule
Let x0 be some vertex of the
polytope.

Compute u ∈ Rd such that
x0 maximizes uT x .

Project the polytope onto the
plane spanned by c and u.

Start at x0 and follow the edges
of the shadow. cu

x0

x∗

x∗x0

The shadow is a polygon.

x0 is a vertex of the shadow.

x∗ is a vertex of the shadow.

Edges of the shadow correspond to edges of the polytope.

Heiko Röglin Smoothed Analysis of Algorithms



Simplex Algorithm – Running Time

Theoreticians say. . .

shadow vertex pivot rule requires
exponential number of steps

no pivot rule with sub-exponential
number of steps known

ellipsoid and interior point methods are
efficient

Engineers say. . .

simplex method usually fastest algorithm
in practice

requires usually only Θ(m) steps

clearly outperforms ellipsoid method

Heiko Röglin Smoothed Analysis of Algorithms



Simplex Algorithm – Running Time

Theoreticians say. . .

shadow vertex pivot rule requires
exponential number of steps

no pivot rule with sub-exponential
number of steps known

ellipsoid and interior point methods are
efficient

Engineers say. . .

simplex method usually fastest algorithm
in practice

requires usually only Θ(m) steps

clearly outperforms ellipsoid method

Heiko Röglin Smoothed Analysis of Algorithms



Reason for Gap between Theory and Practice

Reason for Gap between Theory and Practice

Worst-case complexity is too pessimistic!

There are (artificial) worst-case LPs on which
the simplex method is not efficient. These LPs,
however, do not occur in practice.
e.g., a1,i = 2i ,

∑
i a2,i ≡ 3 mod 5, . . .

This phenomenon occurs not only for the
simplex method, but also for many other
problems and algorithms.

Adversary

“I will trick
your
algorithm!”

Goal
Find a more realistic performance measure that is not just based on
the worst case.

Heiko Röglin Smoothed Analysis of Algorithms



Reason for Gap between Theory and Practice

Reason for Gap between Theory and Practice

Worst-case complexity is too pessimistic!

There are (artificial) worst-case LPs on which
the simplex method is not efficient. These LPs,
however, do not occur in practice.
e.g., a1,i = 2i ,

∑
i a2,i ≡ 3 mod 5, . . .

This phenomenon occurs not only for the
simplex method, but also for many other
problems and algorithms.

Adversary

“I will trick
your
algorithm!”

Goal
Find a more realistic performance measure that is not just based on
the worst case.

Heiko Röglin Smoothed Analysis of Algorithms



Reason for Gap between Theory and Practice

Reason for Gap between Theory and Practice

Worst-case complexity is too pessimistic!

There are (artificial) worst-case LPs on which
the simplex method is not efficient. These LPs,
however, do not occur in practice.
e.g., a1,i = 2i ,

∑
i a2,i ≡ 3 mod 5, . . .

This phenomenon occurs not only for the
simplex method, but also for many other
problems and algorithms.

Adversary

“I will trick
your
algorithm!”

Goal
Find a more realistic performance measure that is not just based on
the worst case.

Heiko Röglin Smoothed Analysis of Algorithms



Smoothed Analysis

Observation: In worst-case analysis, the adversary is too powerful.
Idea: Let’s weaken him!

Perturbed LPs

Step 1: Adversary specifies arbitrary LP:
max cT x subject to aT

1 x ≤ b1 . . . aT
n x ≤ bn.

W. l. o. g. ‖(ai , bi)‖ = 1.

Step 2: Add Gaussian random variable with standard deviation σ
to each coefficient in the constraints.

Smoothed Running Time
= worst expected running time the adversary can achieve

Heiko Röglin Smoothed Analysis of Algorithms



Smoothed Analysis

Observation: In worst-case analysis, the adversary is too powerful.
Idea: Let’s weaken him!

Perturbed LPs

Step 1: Adversary specifies arbitrary LP:
max cT x subject to aT

1 x ≤ b1 . . . aT
n x ≤ bn.

W. l. o. g. ‖(ai , bi)‖ = 1.

Step 2: Add Gaussian random variable with standard deviation σ
to each coefficient in the constraints.

Smoothed Running Time
= worst expected running time the adversary can achieve

Heiko Röglin Smoothed Analysis of Algorithms



Smoothed Analysis

Observation: In worst-case analysis, the adversary is too powerful.
Idea: Let’s weaken him!

Perturbed LPs

Step 1: Adversary specifies arbitrary LP:
max cT x subject to aT

1 x ≤ b1 . . . aT
n x ≤ bn.

W. l. o. g. ‖(ai , bi)‖ = 1.

Step 2: Add Gaussian random variable with standard deviation σ
to each coefficient in the constraints.

Smoothed Running Time
= worst expected running time the adversary can achieve

Heiko Röglin Smoothed Analysis of Algorithms



Smoothed Analysis

Observation: In worst-case analysis, the adversary is too powerful.
Idea: Let’s weaken him!

Perturbed LPs

Step 1: Adversary specifies arbitrary LP:
max cT x subject to aT

1 x ≤ b1 . . . aT
n x ≤ bn.

W. l. o. g. ‖(ai , bi)‖ = 1.

Step 2: Add Gaussian random variable with standard deviation σ
to each coefficient in the constraints.

Smoothed Running Time
= worst expected running time the adversary can achieve

Heiko Röglin Smoothed Analysis of Algorithms



Smoothed Analysis

Step 1:
Adversary
chooses input I

Step 2: Random
perturbation
I → perσ(I)

Formal Definition:
LP(n,m) = set of LPs with n variables and m constraints
T (I) = number of steps of simplex method on LP I

smoothed run time T smooth(n,m, σ) = maxI∈LP(n,m)E [T (perσ(I))]

Why do we consider this model?

First step models unknown structure of the input.

Second step models random influences, e.g., measurement
errors, numerical imprecision, rounding, . . .

smoothed running time low⇒ bad instances are unlikely to occur

σ determines the amount of randomness

Heiko Röglin Smoothed Analysis of Algorithms



Smoothed Analysis

Step 1:
Adversary
chooses input I

Step 2: Random
perturbation
I → perσ(I)

Formal Definition:
LP(n,m) = set of LPs with n variables and m constraints
T (I) = number of steps of simplex method on LP I
smoothed run time T smooth(n,m, σ) = maxI∈LP(n,m)E [T (perσ(I))]

Why do we consider this model?

First step models unknown structure of the input.

Second step models random influences, e.g., measurement
errors, numerical imprecision, rounding, . . .

smoothed running time low⇒ bad instances are unlikely to occur

σ determines the amount of randomness

Heiko Röglin Smoothed Analysis of Algorithms



Smoothed Analysis

Step 1:
Adversary
chooses input I

Step 2: Random
perturbation
I → perσ(I)

Formal Definition:
LP(n,m) = set of LPs with n variables and m constraints
T (I) = number of steps of simplex method on LP I
smoothed run time T smooth(n,m, σ) = maxI∈LP(n,m)E [T (perσ(I))]

Why do we consider this model?

First step models unknown structure of the input.

Second step models random influences, e.g., measurement
errors, numerical imprecision, rounding, . . .

smoothed running time low⇒ bad instances are unlikely to occur

σ determines the amount of randomness

Heiko Röglin Smoothed Analysis of Algorithms



Smoothed Analysis of the Simplex Algorithm

Lemma [Spielman and Teng (STOC 2001)]

For every fixed plane and every LP the adversary
can choose, after the perturbation, the expected
number of edges on the shadow is

O
(
poly

(
n,m, σ−1)) . cu

x0

x∗

Theorem [Spielman and Teng (STOC 2001)]

The smoothed running time of the simplex algorithm with shadow
vertex pivot rule is O

(
poly

(
n,m, σ−1)) .

Already for small perturbations exponential running time is unlikely.

Main Difficulties in Proof of Theorem:

x0 is found in phase I→ no Gaussian distribution of coefficients

In phase II, the plane onto which the polytope is projected is not
independent of the perturbations.

Heiko Röglin Smoothed Analysis of Algorithms



Smoothed Analysis of the Simplex Algorithm

Lemma [Spielman and Teng (STOC 2001)]

For every fixed plane and every LP the adversary
can choose, after the perturbation, the expected
number of edges on the shadow is

O
(
poly

(
n,m, σ−1)) . cu

x0

x∗

Theorem [Spielman and Teng (STOC 2001)]

The smoothed running time of the simplex algorithm with shadow
vertex pivot rule is O

(
poly

(
n,m, σ−1)) .

Already for small perturbations exponential running time is unlikely.

Main Difficulties in Proof of Theorem:

x0 is found in phase I→ no Gaussian distribution of coefficients

In phase II, the plane onto which the polytope is projected is not
independent of the perturbations.

Heiko Röglin Smoothed Analysis of Algorithms



Smoothed Analysis of the Simplex Algorithm

Lemma [Spielman and Teng (STOC 2001)]

For every fixed plane and every LP the adversary
can choose, after the perturbation, the expected
number of edges on the shadow is

O
(
poly

(
n,m, σ−1)) . cu

x0

x∗

Theorem [Spielman and Teng (STOC 2001)]

The smoothed running time of the simplex algorithm with shadow
vertex pivot rule is O

(
poly

(
n,m, σ−1)) .

Already for small perturbations exponential running time is unlikely.

Main Difficulties in Proof of Theorem:

x0 is found in phase I→ no Gaussian distribution of coefficients

In phase II, the plane onto which the polytope is projected is not
independent of the perturbations.

Heiko Röglin Smoothed Analysis of Algorithms



Improved Analysis

Theorem [Vershynin (FOCS 2006)]

The smoothed number of steps of the simplex algorithm with shadow
vertex pivot rule is

O
(
poly

(
n, log m, σ−1)) .

only polylogarithmic in the number of constraints m

Phase I: add vertex x0 in random
direction. With constant prob. this does
not change optimal solution.
⇒ The plane is not correlated with the
perturbed polytope.

With high prob. no angle between
consecutive vertices is too small.

Heiko Röglin Smoothed Analysis of Algorithms



Improved Analysis

Theorem [Vershynin (FOCS 2006)]

The smoothed number of steps of the simplex algorithm with shadow
vertex pivot rule is

O
(
poly

(
n, log m, σ−1)) .

only polylogarithmic in the number of constraints m

cu

x0

x∗
Phase I: add vertex x0 in random
direction. With constant prob. this does
not change optimal solution.
⇒ The plane is not correlated with the
perturbed polytope.

With high prob. no angle between
consecutive vertices is too small.

Heiko Röglin Smoothed Analysis of Algorithms



Improved Analysis

Theorem [Vershynin (FOCS 2006)]

The smoothed number of steps of the simplex algorithm with shadow
vertex pivot rule is

O
(
poly

(
n, log m, σ−1)) .

only polylogarithmic in the number of constraints m

cu

x0

x∗

x∗x0

Phase I: add vertex x0 in random
direction. With constant prob. this does
not change optimal solution.
⇒ The plane is not correlated with the
perturbed polytope.

With high prob. no angle between
consecutive vertices is too small.

Heiko Röglin Smoothed Analysis of Algorithms



Outline

Outline
1 Linear Programming

Why is the simplex method usually efficient?
smoothed analysis – analysis of algorithms beyond worst case

2 Traveling Salesperson Problem
Why is local search successful?

3 Smoothed Analysis
Overview of known results

Heiko Röglin Smoothed Analysis of Algorithms



Traveling Salesperson Problem

Traveling Salesperson Problem (TSP)

Input: weighted (complete) graph
G = (V ,E , d) with d : E → R+

Goal: Find Hamiltonian cycle of
minimum length.

One of the most intensively studied problems in optimization
– both in theory and practice.

Metric TSP: APX-hard Euclidean TSP: PTAS exists

Heiko Röglin Smoothed Analysis of Algorithms



Traveling Salesperson Problem

Traveling Salesperson Problem (TSP)

Input: weighted (complete) graph
G = (V ,E , d) with d : E → R+

Goal: Find Hamiltonian cycle of
minimum length.

One of the most intensively studied problems in optimization
– both in theory and practice.

Metric TSP: APX-hard Euclidean TSP: PTAS exists

Heiko Röglin Smoothed Analysis of Algorithms



Traveling Salesperson Problem

Traveling Salesperson Problem (TSP)

Input: weighted (complete) graph
G = (V ,E , d) with d : E → R+

Goal: Find Hamiltonian cycle of
minimum length.

One of the most intensively studied problems in optimization
– both in theory and practice.

Metric TSP: APX-hard Euclidean TSP: PTAS exists

Heiko Röglin Smoothed Analysis of Algorithms



Traveling Salesperson Problem

Traveling Salesperson Problem (TSP)

Input: weighted (complete) graph
G = (V ,E , d) with d : E → R+

Goal: Find Hamiltonian cycle of
minimum length.

One of the most intensively studied problems in optimization
– both in theory and practice.

Metric TSP: APX-hard Euclidean TSP: PTAS exists

Heiko Röglin Smoothed Analysis of Algorithms



2-Opt Algorithm

Numerous Experimental
Studies:
(TSPLIB, DIMACS
Implementation Challenge)

The PTAS is too slow on
large instances.

The most successful
algorithms (w. r. t.
quality and running
time) in practice rely on
local search.

approximation ratio:
≈ 1.05
number of steps:
≤ n · log n

2-Opt:

1 Start with an arbitrary tour.
2 Remove two edges from the

tour.
3 Complete the tour by two other

edges.
4 Repeat steps 2 and 3 until no

local improvement is possible
anymore.

Heiko Röglin Smoothed Analysis of Algorithms



2-Opt Algorithm

Numerous Experimental
Studies:
(TSPLIB, DIMACS
Implementation Challenge)

The PTAS is too slow on
large instances.

The most successful
algorithms (w. r. t.
quality and running
time) in practice rely on
local search.

approximation ratio:
≈ 1.05
number of steps:
≤ n · log n

2-Opt:

1 Start with an arbitrary tour.

2 Remove two edges from the
tour.

3 Complete the tour by two other
edges.

4 Repeat steps 2 and 3 until no
local improvement is possible
anymore.

Heiko Röglin Smoothed Analysis of Algorithms



2-Opt Algorithm

Numerous Experimental
Studies:
(TSPLIB, DIMACS
Implementation Challenge)

The PTAS is too slow on
large instances.

The most successful
algorithms (w. r. t.
quality and running
time) in practice rely on
local search.

approximation ratio:
≈ 1.05
number of steps:
≤ n · log n

2-Opt:

1 Start with an arbitrary tour.
2 Remove two edges from the

tour.

3 Complete the tour by two other
edges.

4 Repeat steps 2 and 3 until no
local improvement is possible
anymore.

Heiko Röglin Smoothed Analysis of Algorithms



2-Opt Algorithm

Numerous Experimental
Studies:
(TSPLIB, DIMACS
Implementation Challenge)

The PTAS is too slow on
large instances.

The most successful
algorithms (w. r. t.
quality and running
time) in practice rely on
local search.

approximation ratio:
≈ 1.05
number of steps:
≤ n · log n

2-Opt:

1 Start with an arbitrary tour.
2 Remove two edges from the

tour.
3 Complete the tour by two other

edges.

4 Repeat steps 2 and 3 until no
local improvement is possible
anymore.

Heiko Röglin Smoothed Analysis of Algorithms



2-Opt Algorithm

Numerous Experimental
Studies:
(TSPLIB, DIMACS
Implementation Challenge)

The PTAS is too slow on
large instances.

The most successful
algorithms (w. r. t.
quality and running
time) in practice rely on
local search.

approximation ratio:
≈ 1.05
number of steps:
≤ n · log n

2-Opt:

1 Start with an arbitrary tour.
2 Remove two edges from the

tour.
3 Complete the tour by two other

edges.
4 Repeat steps 2 and 3 until no

local improvement is possible
anymore.

Heiko Röglin Smoothed Analysis of Algorithms



2-Opt Algorithm

Numerous Experimental
Studies:
(TSPLIB, DIMACS
Implementation Challenge)

The PTAS is too slow on
large instances.

The most successful
algorithms (w. r. t.
quality and running
time) in practice rely on
local search.

approximation ratio:
≈ 1.05
number of steps:
≤ n · log n

2-Opt:

1 Start with an arbitrary tour.
2 Remove two edges from the

tour.
3 Complete the tour by two other

edges.
4 Repeat steps 2 and 3 until no

local improvement is possible
anymore.

Heiko Röglin Smoothed Analysis of Algorithms



Smoothed Analysis

Worst Case [Englert, R., Vöcking (SODA 2007)]

Even for 2-dim. Euclidean instances, the worst-case run time is 2Ω(n).

Smoothed Analysis:
Adversary chooses for each point i a
probability density fi : [0, 1]d → [0, φ]
according to which it is chosen.

Adversary more powerful than before. He
determines also the type of noise. φ ∼ 1/σ

Smoothed Analysis [Englert, R., Vöcking (SODA 2007)]

The smoothed number of 2-Opt steps is Õ(n4.33 · φ2.67).

Heiko Röglin Smoothed Analysis of Algorithms



Smoothed Analysis

Worst Case [Englert, R., Vöcking (SODA 2007)]

Even for 2-dim. Euclidean instances, the worst-case run time is 2Ω(n).

Smoothed Analysis:
Adversary chooses for each point i a
probability density fi : [0, 1]d → [0, φ]
according to which it is chosen.

Adversary more powerful than before. He
determines also the type of noise. φ ∼ 1/σ

Smoothed Analysis [Englert, R., Vöcking (SODA 2007)]

The smoothed number of 2-Opt steps is Õ(n4.33 · φ2.67).

Heiko Röglin Smoothed Analysis of Algorithms



Smoothed Analysis

Worst Case [Englert, R., Vöcking (SODA 2007)]

Even for 2-dim. Euclidean instances, the worst-case run time is 2Ω(n).

1/
√
φ

1/
√
φ

Smoothed Analysis:
Adversary chooses for each point i a
probability density fi : [0, 1]d → [0, φ]
according to which it is chosen.

Adversary more powerful than before. He
determines also the type of noise. φ ∼ 1/σ

Smoothed Analysis [Englert, R., Vöcking (SODA 2007)]

The smoothed number of 2-Opt steps is Õ(n4.33 · φ2.67).

Heiko Röglin Smoothed Analysis of Algorithms



Smoothed Analysis

Worst Case [Englert, R., Vöcking (SODA 2007)]

Even for 2-dim. Euclidean instances, the worst-case run time is 2Ω(n).

1/
√
φ

1/
√
φ

Smoothed Analysis:
Adversary chooses for each point i a
probability density fi : [0, 1]d → [0, φ]
according to which it is chosen.

Adversary more powerful than before. He
determines also the type of noise. φ ∼ 1/σ

Smoothed Analysis [Englert, R., Vöcking (SODA 2007)]

The smoothed number of 2-Opt steps is Õ(n4.33 · φ2.67).

Heiko Röglin Smoothed Analysis of Algorithms



Smoothed Analysis

Worst Case [Englert, R., Vöcking (SODA 2007)]

Even for 2-dim. Euclidean instances, the worst-case run time is 2Ω(n).

1/
√
φ

1/
√
φ

Smoothed Analysis:
Adversary chooses for each point i a
probability density fi : [0, 1]d → [0, φ]
according to which it is chosen.

Adversary more powerful than before. He
determines also the type of noise. φ ∼ 1/σ

Smoothed Analysis [Englert, R., Vöcking (SODA 2007)]

The smoothed number of 2-Opt steps is Õ(n4.33 · φ2.67).

Heiko Röglin Smoothed Analysis of Algorithms



Simple Polynomial Bound

Theorem

The smoothed number of 2-Opt steps is O(n7φ3 log2 n).

Proof.

Consider a 2-Opt step (e1, e2)→ (e3, e4).

∆(e1, e2, e3, e4) = d(e1) + d(e2)− d(e3)− d(e4)

Every step decreases tour length by at least

∆ = min
e1,e2,e3,e4∈E

∆(e1,e2,e3,e4)>0

∆(e1, e2, e3, e4).

Initial tour has length at most
√

dn. Hence,

# 2-Opt Steps ≤
√

dn
∆

.

Union bound over O(n4) steps + calculations:
Pr[∆ ≤ ε] = O(n4 · φ3 · ε · log(1/ε))

Heiko Röglin Smoothed Analysis of Algorithms



Simple Polynomial Bound

Theorem

The smoothed number of 2-Opt steps is O(n7φ3 log2 n).

Proof.

Consider a 2-Opt step (e1, e2)→ (e3, e4).

∆(e1, e2, e3, e4) = d(e1) + d(e2)− d(e3)− d(e4)

Every step decreases tour length by at least

∆ = min
e1,e2,e3,e4∈E

∆(e1,e2,e3,e4)>0

∆(e1, e2, e3, e4).

Initial tour has length at most
√

dn. Hence,

# 2-Opt Steps ≤
√

dn
∆

.

Union bound over O(n4) steps + calculations:
Pr[∆ ≤ ε] = O(n4 · φ3 · ε · log(1/ε))

Heiko Röglin Smoothed Analysis of Algorithms



Simple Polynomial Bound

Theorem

The smoothed number of 2-Opt steps is O(n7φ3 log2 n).

Proof.

Consider a 2-Opt step (e1, e2)→ (e3, e4).

∆(e1, e2, e3, e4) = d(e1) + d(e2)− d(e3)− d(e4)

Every step decreases tour length by at least

∆ = min
e1,e2,e3,e4∈E

∆(e1,e2,e3,e4)>0

∆(e1, e2, e3, e4).

Initial tour has length at most
√

dn. Hence,

# 2-Opt Steps ≤
√

dn
∆

.

Union bound over O(n4) steps + calculations:
Pr[∆ ≤ ε] = O(n4 · φ3 · ε · log(1/ε))

Heiko Röglin Smoothed Analysis of Algorithms



Simple Polynomial Bound

Theorem

The smoothed number of 2-Opt steps is O(n7φ3 log2 n).

Proof.

Consider a 2-Opt step (e1, e2)→ (e3, e4).

∆(e1, e2, e3, e4) = d(e1) + d(e2)− d(e3)− d(e4)

Every step decreases tour length by at least

∆ = min
e1,e2,e3,e4∈E

∆(e1,e2,e3,e4)>0

∆(e1, e2, e3, e4).

Initial tour has length at most
√

dn. Hence,

# 2-Opt Steps ≤
√

dn
∆

.

Union bound over O(n4) steps + calculations:
Pr[∆ ≤ ε] = O(n4 · φ3 · ε · log(1/ε))

Heiko Röglin Smoothed Analysis of Algorithms



Simple Polynomial Bound

Theorem

The smoothed number of 2-Opt steps is O(n7φ3 log2 n).

Proof.

Consider a 2-Opt step (e1, e2)→ (e3, e4).

∆(e1, e2, e3, e4) = d(e1) + d(e2)− d(e3)− d(e4)

Every step decreases tour length by at least

∆ = min
e1,e2,e3,e4∈E

∆(e1,e2,e3,e4)>0

∆(e1, e2, e3, e4).

Initial tour has length at most
√

dn. Hence,

# 2-Opt Steps ≤
√

dn
∆

.

Union bound over O(n4) steps + calculations:
Pr[∆ ≤ ε] = O(n4 · φ3 · ε · log(1/ε))

Heiko Röglin Smoothed Analysis of Algorithms



Idea for Improvement

The bound is too pessimistic: Not every step yields the smallest
possible improvement ∆ ≈ 1/(n4 log n).

Consider two consecutive steps: They yield ∆ + ∆2 > 2∆.

Consider linked pair: (e1, e2)→ (e3, e4) and (e3, e5)→ (e6, e7).

Sequence of t consecutive steps, contains Ω(t) linked pairs:

S5S2 S3 S6 S7 S8S4S1 S9

(S1, S4) (S2, S5) (S6, S9)

∆Linked ≈ 1/(n3+1/3 log2/3 n).
worst and second worst step are unlikely to form a linked pair

This idea yields Õ(n4.33 · φ2.67).

Heiko Röglin Smoothed Analysis of Algorithms



Idea for Improvement

The bound is too pessimistic: Not every step yields the smallest
possible improvement ∆ ≈ 1/(n4 log n).

Consider two consecutive steps: They yield ∆ + ∆2 > 2∆.

Consider linked pair: (e1, e2)→ (e3, e4) and (e3, e5)→ (e6, e7).

Sequence of t consecutive steps, contains Ω(t) linked pairs:

S5S2 S3 S6 S7 S8S4S1 S9

(S1, S4) (S2, S5) (S6, S9)

∆Linked ≈ 1/(n3+1/3 log2/3 n).
worst and second worst step are unlikely to form a linked pair

This idea yields Õ(n4.33 · φ2.67).

Heiko Röglin Smoothed Analysis of Algorithms



Idea for Improvement

The bound is too pessimistic: Not every step yields the smallest
possible improvement ∆ ≈ 1/(n4 log n).

Consider two consecutive steps: They yield ∆ + ∆2 > 2∆.

Consider linked pair: (e1, e2)→ (e3, e4) and (e3, e5)→ (e6, e7).

Sequence of t consecutive steps, contains Ω(t) linked pairs:

S5S2 S3 S6 S7 S8S4S1 S9

(S1, S4) (S2, S5) (S6, S9)

∆Linked ≈ 1/(n3+1/3 log2/3 n).
worst and second worst step are unlikely to form a linked pair

This idea yields Õ(n4.33 · φ2.67).

Heiko Röglin Smoothed Analysis of Algorithms



Idea for Improvement

The bound is too pessimistic: Not every step yields the smallest
possible improvement ∆ ≈ 1/(n4 log n).

Consider two consecutive steps: They yield ∆ + ∆2 > 2∆.

Consider linked pair: (e1, e2)→ (e3, e4) and (e3, e5)→ (e6, e7).

Sequence of t consecutive steps, contains Ω(t) linked pairs:

S5S2 S3 S6 S7 S8S4S1 S9

(S1, S4) (S2, S5) (S6, S9)

∆Linked ≈ 1/(n3+1/3 log2/3 n).
worst and second worst step are unlikely to form a linked pair

This idea yields Õ(n4.33 · φ2.67).

Heiko Röglin Smoothed Analysis of Algorithms



Idea for Improvement

The bound is too pessimistic: Not every step yields the smallest
possible improvement ∆ ≈ 1/(n4 log n).

Consider two consecutive steps: They yield ∆ + ∆2 > 2∆.

Consider linked pair: (e1, e2)→ (e3, e4) and (e3, e5)→ (e6, e7).

Sequence of t consecutive steps, contains Ω(t) linked pairs:

S5S2 S3 S6 S7 S8S4S1 S9

(S1, S4) (S2, S5) (S6, S9)

∆Linked ≈ 1/(n3+1/3 log2/3 n).
worst and second worst step are unlikely to form a linked pair

This idea yields Õ(n4.33 · φ2.67).

Heiko Röglin Smoothed Analysis of Algorithms



Idea for Improvement

The bound is too pessimistic: Not every step yields the smallest
possible improvement ∆ ≈ 1/(n4 log n).

Consider two consecutive steps: They yield ∆ + ∆2 > 2∆.

Consider linked pair: (e1, e2)→ (e3, e4) and (e3, e5)→ (e6, e7).

Sequence of t consecutive steps, contains Ω(t) linked pairs:

S5S2 S3 S6 S7 S8S4S1 S9

(S1, S4) (S2, S5) (S6, S9)

∆Linked ≈ 1/(n3+1/3 log2/3 n).
worst and second worst step are unlikely to form a linked pair

This idea yields Õ(n4.33 · φ2.67).

Heiko Röglin Smoothed Analysis of Algorithms



Outline

Outline
1 Linear Programming

Why is the simplex method usually efficient?
smoothed analysis – analysis of algorithms beyond worst case

2 Traveling Salesperson Problem
Why is local search successful?

3 Smoothed Analysis
Overview of known results

Heiko Röglin Smoothed Analysis of Algorithms



Overview of Results on Smoothed Analsyis

Linear Programming
Simplex Method [Spielman, Teng (STOC 2001)]
→ Gödel Prize 2008, Fulkerson Prize 2009

Perceptron Algo [Blum, Dunagan (SODA 2002)]
Interior Point Algo [Dunagan, Spielman, Teng
(MathProg 2011)]

Combinatorial Optimization
Complexity of Binary Optimization Problems
[Beier, Vöcking (STOC 2004)]
2-Opt Algo for TSP
[Englert, R., Vöcking (SODA 2007)]
SSP Algo for Min-Cost Flow Problem
[Brunsch, Cornelissen, Manthey, R. (SODA
2013)]

Heiko Röglin Smoothed Analysis of Algorithms



Overview of Results on Smoothed Analsyis

Linear Programming
Simplex Method [Spielman, Teng (STOC 2001)]
→ Gödel Prize 2008, Fulkerson Prize 2009
Perceptron Algo [Blum, Dunagan (SODA 2002)]
Interior Point Algo [Dunagan, Spielman, Teng
(MathProg 2011)]

Combinatorial Optimization
Complexity of Binary Optimization Problems
[Beier, Vöcking (STOC 2004)]
2-Opt Algo for TSP
[Englert, R., Vöcking (SODA 2007)]
SSP Algo for Min-Cost Flow Problem
[Brunsch, Cornelissen, Manthey, R. (SODA
2013)]

Heiko Röglin Smoothed Analysis of Algorithms



Overview of Results on Smoothed Analsyis

Linear Programming
Simplex Method [Spielman, Teng (STOC 2001)]
→ Gödel Prize 2008, Fulkerson Prize 2009
Perceptron Algo [Blum, Dunagan (SODA 2002)]
Interior Point Algo [Dunagan, Spielman, Teng
(MathProg 2011)]

Combinatorial Optimization
Complexity of Binary Optimization Problems
[Beier, Vöcking (STOC 2004)]
2-Opt Algo for TSP
[Englert, R., Vöcking (SODA 2007)]
SSP Algo for Min-Cost Flow Problem
[Brunsch, Cornelissen, Manthey, R. (SODA
2013)]

Heiko Röglin Smoothed Analysis of Algorithms



Overview of Results on Smoothed Analsyis

Machine Learning
k -Means [Arthur, Manthey, R. (FOCS 2009)]
PAC-Learning [Kalai, Samorodnitsky, Teng
(FOCS 2009)]
Belief Propagation [Brunsch, Cornelissen,
Manthey, R. (WALCOM 2013)]
→ (more in Kamiel’s talk at 14.00)

Scheduling
Multilevel Feedback Algo [Becchetti, Leonardi,
Marchetti-Spaccamela, Schäfer, Vredeveld
(FOCS 2003)]
Local Search Algos [Brunsch, R., Rutten,
Vredeveld (ESA 2011)]

Heiko Röglin Smoothed Analysis of Algorithms



Overview of Results on Smoothed Analsyis

Machine Learning
k -Means [Arthur, Manthey, R. (FOCS 2009)]
PAC-Learning [Kalai, Samorodnitsky, Teng
(FOCS 2009)]
Belief Propagation [Brunsch, Cornelissen,
Manthey, R. (WALCOM 2013)]
→ (more in Kamiel’s talk at 14.00)

Scheduling
Multilevel Feedback Algo [Becchetti, Leonardi,
Marchetti-Spaccamela, Schäfer, Vredeveld
(FOCS 2003)]
Local Search Algos [Brunsch, R., Rutten,
Vredeveld (ESA 2011)]

Heiko Röglin Smoothed Analysis of Algorithms



Overview of Results on Smoothed Analsyis

Multiobjective Optimization
Number of Pareto optima
[Brunsch, R. (STOC 2012)]
Knapsack Problem [Beier, Vöcking (STOC 2003)]

Classical Algorithms and Data Structures
Quicksort [Fouz, Kufleitner, Manthey, Zeini
Jahromi (COCOON 2009)]
Binary Search Trees
[Manthey, Tantau (MFCS 2008)]
Gaussian Elimination [Sankar, Spielman, Teng
(SIAM. J. Matrix Anal. 2006)]

Many more results. . .

Heiko Röglin Smoothed Analysis of Algorithms



Overview of Results on Smoothed Analsyis

Multiobjective Optimization
Number of Pareto optima
[Brunsch, R. (STOC 2012)]
Knapsack Problem [Beier, Vöcking (STOC 2003)]

Classical Algorithms and Data Structures
Quicksort [Fouz, Kufleitner, Manthey, Zeini
Jahromi (COCOON 2009)]
Binary Search Trees
[Manthey, Tantau (MFCS 2008)]
Gaussian Elimination [Sankar, Spielman, Teng
(SIAM. J. Matrix Anal. 2006)]

Many more results. . .

Heiko Röglin Smoothed Analysis of Algorithms



Overview of Results on Smoothed Analsyis

Multiobjective Optimization
Number of Pareto optima
[Brunsch, R. (STOC 2012)]
Knapsack Problem [Beier, Vöcking (STOC 2003)]

Classical Algorithms and Data Structures
Quicksort [Fouz, Kufleitner, Manthey, Zeini
Jahromi (COCOON 2009)]
Binary Search Trees
[Manthey, Tantau (MFCS 2008)]
Gaussian Elimination [Sankar, Spielman, Teng
(SIAM. J. Matrix Anal. 2006)]

Many more results. . .

Heiko Röglin Smoothed Analysis of Algorithms


