Multi-Armed Bandits: Applications to Online Advertising

Assaf Zeevi*

Graduate School of Business

Columbia University

*Based on joint work with Denis Saure

source: Interactive Advertisement Bureau Internet Advertisement Revenue Report (by PricewaterhouseCoopers)

Online Advertisement: Industry Overview

% of 2009 Second-Quarter Revenues

source: Interactive Advertisement Bureau Internet Advertisement Revenue Report (by PricewaterhouseCoopers)

Online Advertisement: Industry Overview

% of 2009 Second-Quarter Revenues

source: Interactive Advertisement Bureau Internet Advertisement Revenue Report (by PricewaterhouseCoopers)

Ad-mix

Profit maximization

- ad pool
 - user information
- ad/user performance

pricing model...

Ad-mix

Profit maximization

- ad pool
 - user information
- ad/user performance

pricing model...

1. cost per mille (CPM)

Ad-mix

Profit maximization

- ad pool
 - user information
- ad/user performance

pricing model...

- 1. cost per mille (CPM)
- 2. cost per click (CPC)

Ad-mix

Profit maximization

- ad pool
 - user information
- ad/user performance

pricing model...

- 1. cost per mille (CPM)
- 2. cost per click (CPC)

source: Interactive Advertisement Bureau Internet Advertisement Revenue Report (by PricewaterhouseCoopers)

anonymity on the Internet

"On the Internet, nobody knows you're a dog."

July 1993, The New Yorker

- anonymity on the Internet
- common practice
 - internet cookies
 - list of categories of interest
 - adaptive to "behavior"

"On the Internet, nobody knows you're a dog."

July 1993, The New Yorker

- anonymity on the Internet
- common practice
 - internet cookies
 - list of categories of interest
 - adaptive to "behavior"

id=c51781920000060||t=1253117509|et=730

July 1993, The New Yorker

- anonymity on the Internet
- common practice
 - internet cookies
 - list of categories of interest
 - adaptive to "behavior"

dog food	frisbees	squirrels
id=c51781920000	060 t=125311750)9 et=730

July 1993, The New Yorker

- anonymity on the Internet
- common practice
 - internet cookies
 - list of categories of interest
 - adaptive to "behavior"

dog food	frisbees	squirrels
id=c51781920000	0060 t=1253	117509 et=730

- user information
 - behavioral, geographical, demographical data ...

July 1993, The New Yorker

Advent of the Internet has transformed consumer experience of advertisements and media...

dynamic/customized advertisement display

- one-to-one interaction with users...
- contracts (CPC) are increasingly performance-based
- customization to individual users exploiting side information
- dynamic decision making to balance learning and profits

Focus: Publisher's display decision in dynamic environment

- I. Customization in online advertisement
 - publisher's problem definition
 - need for dynamic learning of ad performance
- II. Stylized model for display-based online advertisement
 - limit of achievable performance
 - policy construction and guarantees
- III. Insights and takeaway messages

- 1. direct revenue: cost per click (cpc)
- 2. click probability:

user profile + ad mix \rightarrow click probability

- 1. direct revenue: cost per click (cpc)
- 2. click probability:

```
user profile + ad mix \rightarrow click probability
```

use historical data on profiles, display and click

- 1. direct revenue: cost per click (cpc)
- 2. click probability:

user profile + ad mix \rightarrow click probability

- use historical data on profiles, display and click
- natural approach... fit a choice model

 $\mathbb{P}\left\{\text{user clicks on ad}\right\} = f(\text{ad, user profile, ad mix}, \beta)$ model parameters —

- 1. direct revenue: cost per click (cpc)
- 2. click probability:

user profile + ad mix \rightarrow click probability

- use historical data on profiles, display and click
- natural approach... fit a choice model

 $\mathbb{P}\left\{\text{user clicks on ad}\right\} = f(\text{ad, user profile, ad mix}, \beta)$ model parameters —

additional considerations: display capacity...

maximize expected revenue from interaction with users

$$\max_{\text{ad mix}} \left\{ \sum_{\text{ad in mix}} cpc(ad) \cdot f(\text{ad, user profile, ad mix}, \beta) \right\}$$

maximize expected revenue from interaction with users

$$\max_{\text{ad mix}} \left\{ \sum_{\text{ad in mix}} cpc(ad) \cdot f(\text{ad, user profile, ad mix}, \beta) \right\}$$

... dynamic environment

maximize expected revenue from interaction with users

$$\max_{\text{ad mix}} \left\{ \sum_{\text{ad in mix}} cpc(ad) \cdot f(\text{ad, user profile, ad mix}, \beta) \right\}$$

... dynamic environment

new contracts: limited or no history of past interaction...

maximize expected revenue from interaction with users

$$\max_{\text{ad mix}} \left\{ \sum_{\text{ad in mix}} cpc(ad) \cdot f(\text{ad, user profile, ad mix}, \beta) \right\}$$

... dynamic environment

new contracts: limited or no history of past interaction...

contract expiration ...

maximize expected revenue from interaction with users

$$\max_{\text{ad mix}} \left\{ \sum_{\text{ad in mix}} cpc(ad) \cdot f(\text{ad, user profile, ad mix}, \beta) \right\}$$

... dynamic environment

new contracts: limited or no history of past interaction...

contract expiration ...

estimation accuracy vs profit maximization

Learning approach to interactive marketing

- Gooley and Lattin (2000)
 - message customization
- Bertsimas and Mersereau (2007)
 - solve for each segment separately

Learning approach to interactive marketing

- Gooley and Lattin (2000)
 - message customization
- Bertsimas and Mersereau (2007)
 - solve for each segment separately

Multi Armed Bandit (MAB) Literature

- Slivkins (2009), Lu et al (2009)
 - side information: MAB in metric spaces

II. Stylized model for display-based online advertisement

III. Insights and takeaway messages

Stylized model for display-based online advertisement

- finite users (T) arrive sequentially
- finite pool of ads (\mathcal{N}) with given profit margins (w_i)
- ad-mix $(s \in \mathcal{S})$...

ad-slots are interchangeable, no budget constraints

- objective: maximize revenue by suitable ad display policy
- user clicks on at most one ad ...
- users are utility maximizers

$U(user profile, ad) + ad-mix \rightarrow click decision$

Logit model with user-specific mean utility

Logit model with user-specific mean utility

utility of ad i $U_i = \beta_i \cdot x + \epsilon_i$ ad factors $\int \int user profile (unobserved...)$

Logit model with user-specific mean utility

Logit model with user-specific mean utility

utility of ad i , for a i , we have $U_i = \beta_i \cdot x + \epsilon_i$ ad factors \mathcal{J} , user profile

user profile x is d-dimensional vector [observed]
ad factors β_i is d-dimensional vector [to be estimated]

 $\begin{array}{c} x \\ \left(\begin{array}{c} 0.4 \\ 0.9 \\ 35 \\ 1 \end{array} \right) & \begin{array}{c} \text{sport affinity} \\ \text{prob. male} \\ \text{exp. age} \\ \text{dummy} \end{array} \right.$

Logit model with user-specific mean utility

Logit model with user-specific mean utility

utility of ad i i for the formula i for the formula is consistent of the formula in the formula is consistent with the formula in the formula is consistent with the formula is cons

- user profile x is d-dimensional vector [observed]
- ad factors β_i is *d*-dimensional vector [to be estimated]

our approach: Logistic regression (profiles) $f_i(s, x, \beta) = \frac{\exp \{\beta_i \cdot x\}}{1 + \sum_{j \in s} \exp \{\beta_j \cdot x\}}$ ad mix • expected revenue from displaying ad mix s to user profile x:

$$r(s, x, \beta) = \sum_{i \in s} w_i \cdot \left(\frac{\exp\left\{\beta_i \cdot x\right\}}{1 + \sum_{j \in s} \exp\left\{\beta_j \cdot x\right\}} \right)$$

ad profit margin $\int \int \int \log t \operatorname{click} \operatorname{prob}$.

expected revenue from displaying ad mix s to user profile x:

$$r(s, x, \beta) = \sum_{i \in s} w_i \cdot \left(\frac{\exp\left\{\beta_i \cdot x\right\}}{1 + \sum_{j \in s} \exp\left\{\beta_j \cdot x\right\}} \right)$$

ad profit margin

profile X_t drawn from a finite set \mathcal{X} according to distribution G

- finite number of user segments...
- G reflects histogram of population

expected revenue from displaying ad mix s to user profile x:

$$r(s, x, \beta) = \sum_{i \in s} w_i \cdot \left(\frac{\exp\left\{\beta_i \cdot x\right\}}{1 + \sum_{j \in s} \exp\left\{\beta_j \cdot x\right\}} \right)$$

ad profit margin

profile X_t drawn from a finite set \mathcal{X} according to distribution G

- finite number of user segments...
- G reflects histogram of population

ad *i* factors β_i initially unknown for all ads

Suppose publisher knows β a priori

formulate and solve an optimization problem

$$J^{*}(T|\beta) := \sup_{s(\cdot)} \mathbb{E} \left[\sum_{t=1}^{T} r(s(t), X_{t}, \beta) \right]$$
known parameters f (expected revenue expected revenue)

Suppose publisher knows β a priori

formulate and solve an optimization problem

$$J^{*}(T|\beta) := \sup_{s(\cdot)} \mathbb{E} \left[\sum_{t=1}^{T} r(s(t), X_{t}, \beta) \right]$$
known parameters f expected revenue expected revenue

Oracle policy: offer $s^*(X_t, \beta)$ to user t

$$s^*(x,\beta) \in \operatorname{argmax} \left\{ r(s,x,\beta) : s \in \mathcal{S} \right\}$$
expected revenue \int

- ad mix decision for feasible policies based on history of past interaction and current user profile
- performance of ad mix policy π :

revenue loss relative to oracle policy

$$\mathcal{R}(\pi, T) := J^*(T|\boldsymbol{\beta}) - \mathbb{E}\left[\sum_{t=1}^T r(s^{\pi}(t), X_t, \boldsymbol{\beta})\right]$$
expected revenue

- ad mix decision for feasible policies based on history of past interaction and current user profile
- Performance of ad mix policy π :

revenue loss relative to oracle policy

$$\mathcal{R}(\pi, T) := J^*(T|\boldsymbol{\beta}) - \mathbb{E}\left[\sum_{t=1}^T r(s^{\pi}(t), X_t, \boldsymbol{\beta})\right]$$
expected revenue

Main Q: how small can we make this revenue loss? structure of an optimal policy? Theorem [Saure and Z (2012)] Any *good* policy π must incur revenue loss

$$\mathcal{R}(\pi, T) \ge \sum_{i \in \mathcal{N}} K_i \log T$$

i is "Interesting"

Theorem [Saure and Z (2012)] Any good policy π must incur revenue loss $\mathcal{R}(\pi, T) \ge \sum_{i \in \mathcal{N}} K_i \log T$

Theorem [Saure and Z (2012)]
$$K_i \sim rank(\mathcal{X}_i) - rank(O_i)$$

Any good policy π must incur revenue loss
 $\mathcal{R}(\pi, T) \geq \sum_{i \in \mathcal{N}} K_i \log T$

• Fix ad
$$i \in \mathcal{N}$$
 :

- for a given ad, there is no need to estimate mean utilities for every profile
 - need to assess performance only on some profiles (\mathcal{X}_i)
 - use information on set spanning such profiles

- for a given ad, there is no need to estimate mean utilities for every profile
 - need to assess performance only on some profiles (\mathcal{X}_i)
 - use information on set spanning such profiles
- use information that does not contribute to revenue loss
 - use profiles for which an ad is optimal

- for a given ad, there is no need to estimate mean utilities for every profile
 - need to assess performance only on some profiles (\mathcal{X}_i)
 - use information on set spanning such profiles
- use information that does not contribute to revenue loss
 - use profiles for which an ad is optimal
- information contributing to revenue loss must be capped
 - performed on order $\log T$ users...

Intuition: force right frequency of ad *i* experimentation on suitable estimation-set $(E_i \in \mathcal{X})$
Construction:

 \blacksquare estimate model parameter for ad i using only information on profiles in E_i

Construction:

• estimate model parameter for ad *i* using only information on profiles in E_i

 $\frac{\mathbb{E} \# \text{ clicks on ad } i \text{ for profile } x}{\mathbb{E} \# \text{ no clicks and ad } i \text{ offered for profile } x} = \exp(\beta_i \cdot x)$

Construction:

• estimate model parameter for ad i using only information on profiles in E_i

 $\frac{\# \text{ clicks on ad } i \text{ for profile } x}{\# \text{ no clicks and ad } i \text{ offered for profile } x} \approx \exp(\beta_i \cdot x)$

Construction:

 \blacksquare estimate model parameter for ad i using only information on profiles in E_i

 $\frac{\# \text{ clicks on ad } i \text{ for profile } x}{\# \text{ no clicks and ad } i \text{ offered for profile } x} \approx \exp(\beta_i \cdot x) \,, \, x \in E_i$

Construction:

 \blacksquare estimate model parameter for ad i using only information on profiles in E_i

$$\widehat{\beta}_i \in \left\{ \rho \in \mathbb{R}^d \, : \, \frac{\# \text{ clicks on ad } i \text{ for profile } x}{\# \text{ no clicks and ad } i \text{ offered for profile } x} = \exp(\rho \cdot x) \,, \, x \in E_i \right\}$$

spanning \mathcal{X}_i ,

Construction:

 \blacksquare estimate model parameter for ad i using only information on profiles in E_i

$$\widehat{\beta}_i \in \left\{ \rho \in \mathbb{R}^d \, : \, \frac{\# \text{ clicks on ad } i \text{ for profile } x}{\# \text{ no clicks and ad } i \text{ offered for profile } x} = \exp(\rho \cdot x) \,, \, x \in E_i \right\}$$

spanning \mathcal{X}_i ,

Construction:

 \blacksquare estimate model parameter for ad i using only information on profiles in E_i

$$\widehat{\beta}_i \in \left\{ \rho \in \mathbb{R}^d \, : \, \frac{\# \text{ clicks on ad } i \text{ for profile } x}{\# \text{ no clicks and ad } i \text{ offered for profile } x} = \exp(\rho \cdot x) \,, \, x \in E_i \right\}$$

• adapt E_i to span a proxy for $\mathcal{X}_i \dots$

spanning \mathcal{X}_i , including O_i

Construction:

 \blacksquare estimate model parameter for ad i using only information on profiles in E_i

$$\widehat{\beta}_i \in \left\{ \rho \in \mathbb{R}^d \, : \, \frac{\# \text{ clicks on ad } i \text{ for profile } x}{\# \text{ no clicks and ad } i \text{ offered for profile } x} = \exp(\rho \cdot x) \,, \, x \in E_i \right\}$$

• adapt E_i to span a proxy for $\mathcal{X}_i \dots$

spanning \mathcal{X}_i , including O_i

Construction:

 \blacksquare estimate model parameter for ad i using only information on profiles in E_i

$$\widehat{\beta}_i \in \left\{ \rho \in \mathbb{R}^d : \frac{\# \text{ clicks on ad } i \text{ for profile } x}{\# \text{ no clicks and ad } i \text{ offered for profile } x} = \exp(\rho \cdot x) \,, \, x \in E_i \right\}$$

• adapt E_i to span a proxy for $\mathcal{X}_i \dots$ use most explored profiles

order $\log T$ users

Intuition: force right frequency of ad *i* experimentation on suitable estimation-set $(E_i \in \mathcal{X})$

spanning \mathcal{X}_i , including O_i

Construction:

 \blacksquare estimate model parameter for ad i using only information on profiles in E_i

$$\widehat{\beta}_i \in \left\{ \rho \in \mathbb{R}^d : \frac{\# \text{ clicks on ad } i \text{ for profile } x}{\# \text{ no clicks and ad } i \text{ offered for profile } x} = \exp(\rho \cdot x) \,, \, x \in E_i \right\}$$

• adapt E_i to span a proxy for $\mathcal{X}_i \dots$ use most explored profiles

order $\log T$ users

Intuition: force right frequency of ad *i* experimentation on suitable estimation-set $(E_i \in \mathcal{X})$

spanning \mathcal{X}_i , including O_i

Construction:

 \blacksquare estimate model parameter for ad i using only information on profiles in E_i

$$\widehat{\beta}_i \in \left\{ \rho \in \mathbb{R}^d \ : \ \frac{\# \text{ clicks on ad } i \text{ for profile } x}{\# \text{ no clicks and ad } i \text{ offered for profile } x} = \exp(\rho \cdot x) \,, \, x \in E_i \right\}$$

• adapt E_i to span a proxy for $\mathcal{X}_i \dots$ use most explored profiles

for user t force order- $(\log t)$ exploration on E_i

• Initialize exploration sets E_i for all ad i

- Initialize exploration sets E_i for all ad i
- for every user *t*:

- Initialize exploration sets E_i for all ad i
- for every user *t*:
 - for ad *i*: get estimate for β_i using exploration set E_i

- Initialize exploration sets E_i for all ad i
- for every user *t*:
 - for ad *i*: get estimate for β_i using exploration set E_i
 - for ad i: use $\widehat{\beta}$ to update E_i to span $\widehat{\mathcal{X}}_i$ (most explored)

- Initialize exploration sets E_i for all ad i
- for every user *t*:
 - for ad *i*: get estimate for β_i using exploration set E_i
 - for ad i: use $\widehat{\beta}$ to update E_i to span $\widehat{\mathcal{X}}_i$ (most explored)
 - EXPLORE on ads for which user *t* profile:
 - 1. is useful for estimation $(X_t \in E_i)$
 - 2. is under-tested (displayed to $\leq \kappa \log t$ such users)

- Initialize exploration sets E_i for all ad i
- for every user *t*:
 - for ad *i*: get estimate for β_i using exploration set E_i
 - for ad i: use $\widehat{\beta}$ to update E_i to span $\widehat{\mathcal{X}}_i$ (most explored)
 - EXPLORE on ads for which user *t* profile:
 - 1. is useful for estimation $(X_t \in E_i)$
 - 2. is under-tested (displayed to $\leq \kappa \log t$ such users)
 - otherwise, EXPLOIT approximate oracle solution $s^*(X_t, \hat{\beta})$

Theorem [Saure and Z (2012)]

For suitable chosen tuning parameter κ ,

$$\mathcal{R}(\pi^*, T) \leq \overline{K} \sum_{i \in \mathcal{N}} (rank(\mathcal{X}_i) - rank(O_i)) \log T + K,$$

where \overline{K} , K > 0 are finite constants

Theorem [Saure and Z (2012)]

For suitable chosen tuning parameter κ ,

$$\mathcal{R}(\pi^*, T) \leq \overline{K} \sum_{i \in \mathcal{N}} (rank(\mathcal{X}_i) - rank(O_i)) \log T + K,$$

where \overline{K} , K > 0 are finite constants

policy is essentially optimal

Theorem [Saure and Z (2012)]

For suitable chosen tuning parameter κ ,

$$\mathcal{R}(\pi^*, T) \leq \overline{K} \sum_{i \in \mathcal{N}} (rank(\mathcal{X}_i) - rank(O_i)) \log T + K,$$

where \overline{K} , K > 0 are finite constants

policy is essentially optimal

Key results: for each profile

- uninteresting ads displayed to finite (independent of T) number of users
- ads in the optimal mix displayed outside that mix finitely many times

discrete nature of optimization problem

discrete nature of optimization problem

min optimality gap across profiles + $\begin{array}{c} \text{continuity of expected} \\ \text{revenue w.r.t } \beta \end{array}$ + $\begin{array}{c} \text{threshold on} \\ \text{estimation error} \end{array}$

discrete nature of optimization problem

■ parameter estimation with
$$O(\log t)$$
 tests
threshold error $finite{} finite{} fin$

balance exploration and exploitation error $(\kappa > c^{-1})$

5

$$\mathcal{R}(\pi^*, T) \le O\left(\kappa \log T + \sum_{t=1}^T \frac{1}{t^{c\kappa}}\right)$$

4 products, 3 two-dimensional profiles
feasible set S := {s ⊂ N : |s| ≤ 2}, κ = 40

$$\beta = \begin{pmatrix} -1.30 & 2.00 & 2.75 & 3.00 \\ 3.00 & 2.00 & 2.75 & -1.30 \end{pmatrix} \qquad \mathcal{X} = \begin{pmatrix} 0.1 & 0.5 & 0.9 \\ 0.9 & 0.5 & 0.1 \end{pmatrix}$$

profile	x_1	x_2	x_3
opt. mix	$\{1, 2\}$	$\{2, 3\}$	$\{2,4\}$
opt. revenue	0.587	0.546	0.578
uninteresting	{3}	-	{3}

4 products, 3 two-dimensional profiles
feasible set S := {s ⊂ N : |s| ≤ 2}, κ = 40

$$\beta = \begin{pmatrix} -1.30 & 2.00 & 2.75 & 3.00 \\ 3.00 & 2.00 & 2.75 & -1.30 \end{pmatrix} \qquad \mathcal{X} = \begin{pmatrix} 0.1 & 0.5 & 0.9 \\ 0.9 & 0.5 & 0.1 \end{pmatrix}$$

profile	x_1	x_2	x_3
opt. mix	$\{1, 2\}$	$\{2, 3\}$	$\{2,4\}$
opt. revenue	0.587	0.546	0.578
uninteresting	{3}	-	{3}

4 products, 3 two-dimensional profiles
feasible set S := {s ⊂ N : |s| ≤ 2}, κ = 40

$$\beta = \begin{pmatrix} -1.30 & 2.00 & 2.75 & 3.00 \\ 3.00 & 2.00 & 2.75 & -1.30 \end{pmatrix} \qquad \mathcal{X} = \begin{pmatrix} 0.1 & 0.5 & 0.9 \\ 0.9 & 0.5 & 0.1 \end{pmatrix}$$

profile	x_1	x_2	x_3
opt. mix	$\{1, 2\}$	$\{2, 3\}$	$\{2,4\}$
opt. revenue	0.587	0.546	0.578
uninteresting	{3}	-	{3}

• 4 products, 3 two-dimensional profiles • feasible set $S := \{s \subset \mathcal{N} : |s| \le 2\}$, $\kappa = 40$

$$\beta = \begin{pmatrix} -1.30 & 2.00 & 2.75 & 3.00 \\ 3.00 & 2.00 & 2.75 & -1.30 \end{pmatrix} \qquad \mathcal{X} = \begin{pmatrix} 0.1 & 0.5 & 0.9 \\ 0.9 & 0.5 & 0.1 \end{pmatrix}$$

profile	x_1	x_2	x_3
opt. mix	$\{1, 2\}$	$\{2, 3\}$	$\{2,4\}$
opt. revenue	0.587	0.546	0.578
uninteresting	{3}	-	{3}

4 products, 3 two-dimensional profiles
feasible set S := {s ⊂ N : |s| ≤ 2}, κ = 40

$$\beta = \begin{pmatrix} -1.30 & 2.00 & 2.75 & 3.00 \\ 3.00 & 2.00 & 2.75 & -1.30 \end{pmatrix} \qquad \mathcal{X} = \begin{pmatrix} 0.1 & 0.5 & 0.9 \\ 0.9 & 0.5 & 0.1 \end{pmatrix}$$

profile	x_1	x_2	x_3
opt. mix	$\{1, 2\}$	$\{2, 3\}$	$\{2,4\}$
opt. revenue	0.587	0.546	0.578
uninteresting	{3}	-	$\{3\}$
anon. mix	$\{1, 2\}$	$\{1, 2\}$	$\{1, 2\}$
anon. revenue	0.587	0.543	0.525

I. Customization in online advertisement

II. Stylized model for display-based online advertisement

III. Insights and takeaway messages

- value of customization
 - speed of learning
 - misspecification risk

- value of customization
 - speed of learning
 - misspecification risk

- value of customization
 - speed of learning
 - misspecification risk

- cost of information
 - "suboptimal" exploration
 - dependence on structure

- value of customization
 - speed of learning
 - misspecification risk

- cost of information
 - "suboptimal" exploration
 - dependence on structure

- concepts
 - semi-myopic type policies [avoid incomplete learning]
 - minimal exploration needed
 - significant gains from customizing policies to application

Final Thoughts

- concepts
 - semi-myopic type policies [avoid incomplete learning]
 - minimal exploration needed
 - significant gains from customizing policies to application
- analysis tools / machinery
 - information theoretic inequalities [lower bounds]
 - martingale methods, large deviation bounds [analysis of policies]
 - sequential hypothesis testing
- concepts
 - semi-myopic type policies [avoid incomplete learning]
 - minimal exploration needed
 - significant gains from customizing policies to application
- analysis tools / machinery
 - information theoretic inequalities [lower bounds]
 - martingale methods, large deviation bounds [analysis of policies]
 - sequential hypothesis testing
- related recent applications of MAB
 - dynamic content referral [Besbes, Gur and Z (2012a)]
 - temperature tracking and restless bandits [Besbes and Z (2012b)]
 - personalization (Pandora, various recommendation systems etc)
 - dynamic design of experiments / screening
 - cognitive radio [Lai et al (2011)]
 - mechanism design formulation [Kakade et al (2012)]