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Set up: What are multi-armed bandits?

◮ simple models for sequential decision making under uncertainty

◮ m slot machines with random rewards that are machine-dependent

� one machine is “best” (has highest average reward)

◮ gambler plays to maximize profits

either over infinite horizon (discounted) or finite horizon

◮ gambler does not know identity of “best” machine...

� needs to “test” and figure out which one is best...

� ... but each wrong pull gives suboptimal reward
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Set up: What are multi-armed bandits?

◮ simple models for sequential decision making under uncertainty

◮ m slot machines with random rewards that are machine-dependent

� one machine is “best” (has highest average reward)

◮ gambler plays to maximize profits

either over infinite horizon (discounted) or finite horizon

◮ gambler does not know identity of “best” machine...

� needs to “test” and figure out which one is best...

� ... but each wrong pull gives suboptimal reward

Q. What strategy maximizes cumulative profits?

classical tradeoff between exploration and exploitation



Application areas

applications in adaptive control, economics, statistics, machine learning...

◮ clinical trials (original motivation, and focus of many papers)

◮ economics (pricing with unknown demand curve)

◮ auctions (posted price auctions, ad-word auctions)

◮ operations management (dynamic assortment planning problems)

◮ marketing (customized advertising)

◮ online advertising and behavioral targeting

◮ wireless communications and cognitive radio



Two armed bandits: Problem formulation

◮ setup:

� two statistical populations (arms) with densities f(x; θi), i = 1, 2

� parameters θ1, θ2 are unknown to decision maker...

� each time t, sample Y
(i)
t from one of the populations

◮ strategy π = (π1, π2, . . .)

� πt ∈ {1, 2}

� determines next “pull” based on past actions and observations

[ adapted to history ]

◮ objective: maximize expected cumulative returns



Problem formulation (cont’d)

Formulation I: Bayesian, infinite horizon setup

◮ have prior dist’n λi over parameter θi i = 1, 2

◮ objective: maximize infinite horizon discounted cumulative rewards

max

∫ {
Eθ

∞∑

t=1

Y
(πt)
t βt

}
λ(dθ)

over admissible policies π

� β ∈ (0, 1) is discount factor



Problem formulation (cont’d)

Formulation II: non-Bayesian, finite horizon

◮ total rewards up to time n under strategy π

rn(π, θ) = Eθ

n∑

t=1

Y
(πt)
t ,

◮ benchmark: oracle rule π∗ that knows the parameters

r∗n(θ) = n ·max{µ1, µ2} where µi := EY
(i)
t



Problem formulation (cont’d)

Formulation II: non-Bayesian, finite horizon

◮ total rewards up to time n under strategy π

rn(π, θ) = Eθ

n∑

t=1

Y
(πt)
t ,

◮ benchmark: oracle rule π∗ that knows the parameters

r∗n(θ) = n ·max{µ1, µ2} where µi := EY
(i)
t

◮ regret: loss due to not having “full information”

Rn(π, θ) = r∗n(θ)− rn(π, θ)

◮ objective: minimize regret over all admissible policies π



An abridged history of the subject

◮ first formulated by Thompson (1933) / Robbins (1952)
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An abridged history of the subject

◮ first formulated by Thompson (1933) / Robbins (1952)

� inspired by applications in clinical trials

� focus was on finite horizon non-Bayesian problem

◮ voluminous literature with many entries across numerous fields/disciplines

◮ can classify roughly into three categories (formulation and analysis-wise)

� Bayesian, dynamic programming (DP), seek optimal solutions

� Frequentist, non-DP, seek asymptotically optimal solutions

� Adversarial (mostly CS lit.), non-DP, seek approximate solutions
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◮ Bayesian infinite horizon discounted formulation
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∫ {
Eθ

∑τ
t=1 Y

(i)
t βt

}
λi(dθ)

∫ {
Eθ

∑τ
t=1 β

t

}
λi(dθ)

� use current posterior update of λi at each stage...

� optimize over all stopping times τ



An abridged history (cont’d)

The first major breakthrough: Gittins and Jones (1974)

◮ Bayesian infinite horizon discounted formulation

◮ characterized optimal policy [ index rule / Gittins index ]

� takes simple form: at each stage solve

ν(λi) = sup
τ ≥ 1

∫ {
Eθ

∑τ
t=1 Y

(i)
t βt

}
λi(dθ)

∫ {
Eθ

∑τ
t=1 β

t

}
λi(dθ)

� use current posterior update of λi at each stage...

� optimize over all stopping times τ

◮ requires solving an optimal stopping problem

� outside of special cases [ simple dist’ns, conjugate priors ]

can be quite hard...
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Pitfalls of optimal policies

Key observation: Rothschild (1974), McLennan (1984), Brezzi and Lai

(2000)

◮ optimal policy ( just discussed ) has some interesting “features”

– it almost surely samples from

all but one population only finitely many times

– with positive probability it samples from

the best population only finitely many times

incomplete learning

◮ intuition: consider a “one armed bandit problem...

� whenever stop sampling the “unknown arm” never go back to it...

� can find set of realizations so that with pos. probab. that happens



Pitfalls of optimal policies (cont’d)

◮ simple [ mean-variance] approximation/ bounds for Gittins index:

∫
µi(θ)λi(dθ) ≤ ν(λi) ≤

∫
µi(θ)λi(dθ) +

∫
σi(θ)λi(dθ) ·

β

1− β

� lower bound achieved by taking τ ≡ 1

� upper bound uses C-S inequality and βτ ≤ β for all τ ≥ 1

◮ suggests connection to myopic rules [ to be revisited shortly... ]

� these may also suffer from incomplete learning...

[ Harrison, Keskin and Z (2011 ]



Pitfalls of optimal policies (cont’d)

◮ simple [ mean-variance] approximation/ bounds for Gittins index:

∫
µi(θ)λi(dθ) ≤ ν(λi) ≤

∫
µi(θ)λi(dθ) +

∫
σi(θ)λi(dθ) ·

β

1− β

� lower bound achieved by taking τ ≡ 1

� upper bound uses C-S inequality and βτ ≤ β for all τ ≥ 1

◮ suggests connection to myopic rules [ to be revisited shortly... ]

� these may also suffer from incomplete learning...

[ Harrison, Keskin and Z (2011 ]

many interesting economic / game theoretic interpretations...
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An abridged history of the subject (cont’d)

The second major breakthrough: Lai and Robbins (1985)

◮ non-Bayesian, finite horizon formulation

◮ characterized asymptotically optimal policies

“reasonable” policies should satisfy

Rn(π, θ) = o(n)

� are long run average optimal...

◮ proposed a strategy π̂ such that

Rn(π̂, θ) ≤ [C(θ) + o(1)] logn, n → ∞

� C(θ) depends on “how far apart” are the two populations...

◮ showed that no “reasonable” policy can have better regret than π̂.

� policy is asymptotically optimal



An abridged history of the subject (cont’d)

A major contribution in CS literature: Auer et al (2002)

◮ adversarial setting

� policy has to do well regardless of possible sequence of rewards

� the rewards are non-random...

◮ see recent book by Cesa-Bianchi and Lugosi (2006)

◮ allows to incorporate non-stationarities

� identity of “best” arm changes over time

� related to restless bandits line of work [ Whittle (1988) ]

� “too hard” unless opponent is restricted in various ways



Other strands of work

continuum armed bandit problems: Agarwal (1995), several recent papers...

� uncountable number of arms X

� essentially a sequential (continuous) stochastic optimization problem...

◮ pulling an arm x ∈ X at time t

� observe Yt = f(x; εt) [ typically f(x) + εt... ]

◮ policy seeks to find x∗ ∈ argmax{f(x)}



Other strands of work

continuum armed bandit problems: Agarwal (1995), several recent papers...

� uncountable number of arms X

� essentially a sequential (continuous) stochastic optimization problem...

◮ pulling an arm x ∈ X at time t

� observe Yt = f(x; εt) [ typically f(x) + εt... ]

◮ policy seeks to find x∗ ∈ argmax{f(x)}

◮ if function is strongly concave then

� can use standard stochastic approximation type algorithms

◮ if function is weakly concave then

� need to use search (partition) based sampling...

◮ if neither [ can have multiple maxima ]

� can use discretization of standard bandit algorithms



Other strands of work (cont’d)

correlated multi-armed bandits: Mersereau et al (2009)

◮ arms are not independent

� a common random variable affects all outcomes

Y
(i)
t = θ

(i)
0 + θ

(i)
1 Z + εt

� Z is common to all arms, its distribution is not known

� the other parameters are known

◮ useful when number of arms very large

� performance typically degrades linearly with number of arms

� above structure can be exploited to control for that...



Discussion of Lai-Robbins results

◮ simple manipulation shows that

Rn(π, θ) = number of “pulls” of inferior arm · (µ1 − µ2)

= Eθ

n∑

t=1

I{πt 6= π∗} · (µ1 − µ2)

� µ1 > µ2 are the means of the two arms...

◮ L-R prove that only need about logn wrong pulls...

� price of exploration is very small ( relative to n )



Discussion of Lai-Robbins (cont’d)

◮ LR proposed ( roughly ) the following index

νt(i) =

∑t

τ=1 Y
(i)
τ I{πτ = i}

Ti(t)
+

√
C log t

Ti(t)

where Ti(t) = number of pulls in arms i up until time t

Ti(t) =

t∑

τ=1

I{πτ = i}

◮ at each time t pull arm with highest index value



Discussion of Lai-Robbins (cont’d)

◮ LR proposed ( roughly ) the following index

νt(i) =

∑t

τ=1 Y
(i)
τ I{πτ = i}

Ti(t)
+

√
C log t

Ti(t)

where Ti(t) = number of pulls in arms i up until time t

Ti(t) =

t∑

τ=1

I{πτ = i}

◮ at each time t pull arm with highest index value

◮ almost myopic

� maximize { mean reward to date + “fudge” factor }

� fudge factor can be interpreted as upper confidence bound

◮ recall connection to upper bound on optimal index rule...



Discussion of Lai-Robbins (cont’d)

◮ simpler variation on L-R policy: given horizon length n

� pull each arm initially logn times

� look at average reward obtained in each arm

� pick arm with highest mean and pull it exclusively until time n



Discussion of Lai-Robbins (cont’d)

◮ simpler variation on L-R policy: given horizon length n

� pull each arm initially logn times

� look at average reward obtained in each arm

� pick arm with highest mean and pull it exclusively until time n

◮ Intuition: hypothesis testing problem...

Rn(π, θ) = Eθ

n∑

t=1

I{πt 6= π∗} · (µ1 − µ2)

=

n∑

t=1

Pθ{πt 6= π∗} · (µ1 − µ2)

� Pr{error} decays exponentially if hypotheses “well separated”

� logn pulls in each arm => Pr{error} decays polynomially

� contribution to regret can be made “small”



Discussion of Lai-Robbins (cont’d)

illustrative example: arm distributions are Gaussian N (µi, σ
2)

◮ using the “forced sampling” startegy:

Rn(π, θ) = (µ1 − µ2) ·
n∑

t=1

Pθ{πt 6= π∗}

≤ (µ1 − µ2) · κ logn + (µ1 − µ2) ·
n∑

t=2κ logn

Pθ{πt 6= π∗}



Discussion of Lai-Robbins (cont’d)

illustrative example: arm distributions are Gaussian N (µi, σ
2)

◮ using the “forced sampling” startegy:

Rn(π, θ) = (µ1 − µ2) ·
n∑

t=1

Pθ{πt 6= π∗}

≤ (µ1 − µ2) · κ logn + (µ1 − µ2) ·
n∑

t=2κ logn

Pθ{πt 6= π∗}

◮ bounding Pr{error} for t ≥ 2κ logn

Pθ{πt 6= π∗} = Pθ





κ logn∑

τ=1

Y (1)
τ <

κ logn∑

τ=1

Y (2)
τ





≤ exp

{
−κ logn

(µ1 − µ2)
2

2σ2

}

� quantity in exponent is Kullback-Leibler divergence K(θ1‖θ2)



Discussion of Lai-Robbins (cont’d)

illustrative example: arm distributions are Gaussian N (µi, σ
2)

◮ using the “forced sampling” startegy:

Rn(π, θ) = (µ1 − µ2) ·
n∑

t=1

Pθ{πt 6= π∗}

≤ (µ1 − µ2) · κ logn + (µ1 − µ2) ·
n∑

t=2κ logn

Pθ{πt 6= π∗}

◮ bounding Pr{error} for t ≥ 2κ logn

Pθ{πt 6= π∗} = Pθ





κ logn∑

τ=1

Y (1)
τ <

κ logn∑

τ=1

Y (2)
τ





≤ exp

{
−κ logn

(µ1 − µ2)
2

2σ2

}

� quantity in exponent is Kullback-Leibler divergence K(θ1‖θ2)

◮ choose κ = 1/K to balance the regret contributions...



Why is this rate of regret best possible?

◮ for any strategy π

Rn(π, θ) = (µ1 − µ2) · Eθ

n∑

t=1

I{πt 6= π∗}

=: (µ1 − µ2) · EθTinf(n)

� Tinf(n) = number of times the inferior arm is pulled...



Why is this rate of regret best possible?

◮ for any strategy π

Rn(π, θ) = (µ1 − µ2) · Eθ

n∑

t=1

I{πt 6= π∗}

=: (µ1 − µ2) · EθTinf(n)

� Tinf(n) = number of times the inferior arm is pulled...

◮ a “reasonable” policy needs to work well for all parameter configurations

� can encode that objective using a minimax formulation

sup
θ

{EθTinf(n)}
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Why is this rate of regret best possible?

◮ the following result is from Goldenshluger and Z (2011)

sup
(θ1,θ2)

EθTinf(n) ≥
1

4

n∑

t=1

exp{−Kt(θ1‖θ2)}

≥
1

4

n∑

t=1

exp{−2EθTinf(t) K(θ1‖θ2)}

≥
1

4

n∑

t=1

exp

{
−2 sup

θ

{EθTinf(t)} K(θ1‖θ2)

}

≥
1

4
n exp

{
−2 sup

θ

{EθTinf(n)} K(θ1‖θ2)

}

� first step uses Fano’s ineq. on probab. of error in hypothesis testing



Why is this rate of regret best possible?

◮ the following result is from Goldenshluger and Z (2011)

sup
(θ1,θ2)

EθTinf(n) ≥
1

4

n∑

t=1

exp{−Kt(θ1‖θ2)}

≥
1

4

n∑

t=1

exp{−2EθTinf(t) K(θ1‖θ2)}

≥
1

4

n∑

t=1

exp

{
−2 sup

θ

{EθTinf(t)} K(θ1‖θ2)

}

≥
1

4
n exp

{
−2 sup

θ

{EθTinf(n)} K(θ1‖θ2)

}

� first step uses Fano’s ineq. on probab. of error in hypothesis testing

◮ observe that we have

Ln ≥
1

4
n exp{−2K Ln}



Why is this rate of regret best possible?

◮ recall, we had

Ln ≥
1

4
n exp{−2K Ln}

so

Ln ≥
1

2K
log n



Why is this rate of regret best possible?

◮ recall, we had

Ln ≥
1

4
n exp{−2K Ln}

so

Ln ≥
1

2K
log n

◮ hence we have proved that any policy π must satisfy

sup
θ

{EθTinf(n)} ≥
1

2K
log n
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� patients enter sequentially

� receive one of two possible treatments

� treatment efficacy is yet to be determined...

� objective: allocate the “better” treatment to each patient
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Limitations of the standard Bandit formulation

Example 1: Allocating treatments in clinical trials

� patients enter sequentially

� receive one of two possible treatments

� treatment efficacy is yet to be determined...

� objective: allocate the “better” treatment to each patient

Example 2: Interactive Marketing

� there are two unique marketing messages

� marketer can dynamically allocate message to each customer

� objective: maximize return over course of marketing campaign

Main issue: response/reward is non-homogenous and depends on particulars

of patient/consumer



Multi-armed bandits revisited...

◮ mean response/reward: function fi(x), i = 1, 2

� function is unknown to decision maker

◮ observable information and realized reward: each time t

� observe side information Xt

� select arm i and receive Y i
t = fi(Xt) + εt
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Multi-armed bandits revisited...

◮ mean response/reward: function fi(x), i = 1, 2

� function is unknown to decision maker

◮ observable information and realized reward: each time t

� observe side information Xt

� select arm i and receive Y i
t = fi(Xt) + εt

◮ strategy π based on past actions, side information and rewards.

◮ total reward: rn(π, f) = Ef

n∑

t=1

Y πt

t

◮ regret: loss relative to oracle... R(π, f) = r∗n(f)− rn(π, f)

◮ minimax regret objective: seek policy π to minimize

sup
f∈F

R(π, f)



Illustrative example – Linear response

◮ mean response/reward: αix+ βi i = 1, 2

� θi = (αi, βi) unknown...

◮ observable information and realized reward: each time t

� observe covariate Xt

� select arm i and receive Y i
t = αiXt + βi + εt
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Illustrative example – Linear response

◮ mean response/reward: αix+ βi i = 1, 2

� θi = (αi, βi) unknown...

◮ observable information and realized reward: each time t

� observe covariate Xt

� select arm i and receive Y i
t = αiXt + βi + εt

◮ see Goldenshluger and Z (2012) for analysis...
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◮ basic idea goes back to Woodroofe [1979]
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� or select arm 2 and receive Y
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Further simplification: One-armed bandit

◮ basic idea goes back to Woodroofe [1979]

◮ observation structure and realized reward: each time t

� observe side information Xt [ i.i.d]

� select arm 1 and receive Y
(1)
t = f(Xt; θ) + εt

� or select arm 2 and receive Y
(2)
t

≡ 0 [ known benchmark ]

◮ strategy π depends on past actions, side info, and rewards

◮ regret: loss relative to oracle... R(π, f) = r∗n(f)− rn(π, f)

◮ minimax regret objective: seek policy π to minimize

sup
f∈F

R(π, f)



Illustrative example [ to indicate subtlety... ]

◮ mean response/reward: f(x; θ) = x− θ

◮ observable information and realized reward: each time t

� observe Xt

� select arm 1 and receive Yt = Xt − θ + εt

� or select arm 2 and receive Yt ≡ 0 [ benchmark ]



Illustrative example [ to indicate subtlety... ]

◮ mean response/reward: f(x; θ) = x− θ

◮ observable information and realized reward: each time t

� observe Xt

� select arm 1 and receive Yt = Xt − θ + εt

� or select arm 2 and receive Yt ≡ 0 [ benchmark ]

obvious strategy:

◮ estimate unknown arm parameter θ̂

� select arm 1 if Xt ≥ θ̂

� select arm 2 if Xt < θ̂

◮ simple myopic rule...



Numerical illustration

Xt uniform on [−1, 1]
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Numerical illustration

Xt = ±1 with probability p = 1/2

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

1

2

3

4

5

6

7

L
o

g
−

R
e

g
re

t

Horizon

 

 

Nearly myopic

Forced

Myopic



Boxplots
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Algorithm 1: A nearly myopic rule

◮ Initialize: pull arm 1 twice

◮ Estimate parameter: based on Xt and response Yt for t = 1, 2.



Algorithm 1: A nearly myopic rule

◮ Initialize: pull arm 1 twice

◮ Estimate parameter: based on Xt and response Yt for t = 1, 2.

◮ Arm selection:

� if

Xt ≥ θ̂t − δt [ sequence δt is history dependent ]

then pull arm 1

� o.w. pull arm 2 [ benchmark action ]



Algorithm 1: A nearly myopic rule

◮ Initialize: pull arm 1 twice

◮ Estimate parameter: based on Xt and response Yt for t = 1, 2.

◮ Arm selection:

� if

Xt ≥ θ̂t − δt [ sequence δt is history dependent ]

then pull arm 1

� o.w. pull arm 2 [ benchmark action ]

◮ Update estimates: At each time t

� update parameter estimates θ̂t 7→ θ̂t+1...

◮ Repeat



Algorithm 2: Forced (randomized) sampling

◮ Initialize: pull arm 1 twice
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Algorithm 2: Forced (randomized) sampling

◮ Initialize: pull arm 1 twice

◮ Estimate parameter: based on Xt and response Yt for t = 1, 2.

◮ Arm selection: at each step t

� with probability 1 − γt: follow myopic rule

� with probability γt: sample from arm 1...

◮ Update estimates: At each time t

� update parameter estimates θ̂t 7→ θ̂t+1...

� update randomization sequence γt 7→ γt+1.

◮ Repeat
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Analysis of proposed algorithms

Q. Why do we have two algorithms?

Thm. If distribution of side information is discrete, then regret

of Algorithm 1 is bounded [ independent of horizon n ].

Thm. If distribution of side information is continuous, then

regret of Algorithm 2 is of order logn

◮ # of wrong pulls ≈
√
n...

� contrast with logn in L-R case
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Optimality of the algorithm?

Thm. Regret cannot diminish faster than Clogn uniformly over

target class

Logic is very different than L-R problem... [ see Goldenshulger and Z (2009) ]

Proof (ideas).

◮ reduce to Bayesian estimation problem

� under mean squared error criterion

◮ use the van Trees inequality (1968)

� Bayesian version of Cramer-Rao inequality

� pointwise bound is Θ(1/t)...

� so sum over horizon n is Θ(log n)
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Final comments

Simple extensions: [ Goldenshluger and Z (2012) ]

◮ Multi-armed problem has some similar flavor...

◮ Higher dimensions also works the same

Not-so-simple extensions:

◮ Nonparametric case

Tomorrow: applications to on-line advertising

◮ MAB with side information

◮ several added twists and turns...


