

Humanitarian logistics A challenge for operations research

Kenneth Sörensen

University of Antwerp Operations Research Group ANT/OR

kenneth.sorensen@ua.ac.be

Lunteren, 19 January 2012

Humanitarian logistics is important

- > 2010, Earthquake in Haiti, 316.000 victims
- 2004, Indian Ocean Tsunami, 230.000 310.000 victims
- ▶ 2008, Nargis Cyclone in Myanmar, 138.000 victims
- 2011, Tohoku earthquake and tsunami in Japan, 15.000 20.000 victims

► ...

Humanitarian logistics is important

- > 2010, Earthquake in Haiti, 316.000 victims
- 2004, Indian Ocean Tsunami, 230.000 310.000 victims
- ▶ 2008, Nargis Cyclone in Myanmar, 138.000 victims
- 2011, Tohoku earthquake and tsunami in Japan, 15.000 20.000 victims

▶ ...

P.A. Trunick (2005)

"Logistics accounts for 80% of the disaster relief effort"

Humanitarian logistics

Luk Van Wassenhove

Humanitarian logistics is like organizing the Olympic games

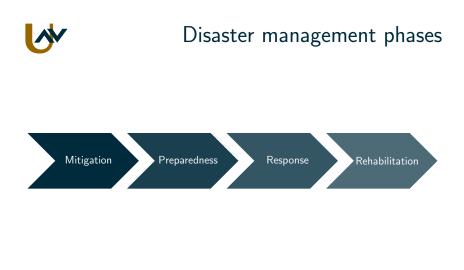
Humanitarian logistics

Luk Van Wassenhove

Humanitarian logistics is like organizing the Olympic games

- without knowing where they will take place,
- how many spectators to expect,
- how many competitors will be competing in which sports.

Humanitarian logistics

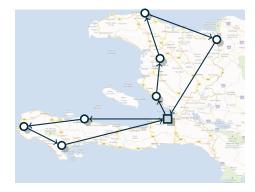

Luk Van Wassenhove

Humanitarian logistics is like organizing the Olympic games

- without knowing where they will take place,
- how many spectators to expect,
- how many competitors will be competing in which sports.

...and

co-organized by dozens of stakeholders, each with their own objectives.



- "vehicle routing"
- Strategic/tactical
 - "network design"
 - "location"
- Integrated

- "vehicle routing"
- Strategic/tactical
 - "network design"
 - "location"
- Integrated

- "vehicle routing"
- Strategic/tactical
 - "network design"
 - "location"
- Integrated

- "vehicle routing"
- Strategic/tactical
 - "network design"
 - "location"
- Integrated

- "vehicle routing"
- Strategic/tactical
 - "network design"
 - "location"
- Integrated

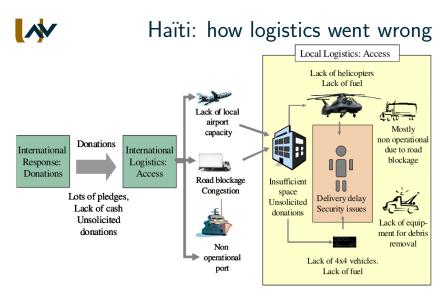
An example: Haïti

At the time of the disaster

- Poorest nation in the Western hemisphere
- ► 54% live on less than \$1 per day
- Illiteracy of 44%
- ▶ 46% do not have access to drinking water

An example: Haïti

At the time of the disaster


- Poorest nation in the Western hemisphere
- ▶ 54% live on less than \$1 per day
- Illiteracy of 44%
- ▶ 46% do not have access to drinking water
- \pm 10,000 NGOs active

An example: Haïti

At the time of the disaster

- Poorest nation in the Western hemisphere
- ▶ 54% live on less than \$1 per day
- Illiteracy of 44%
- ▶ 46% do not have access to drinking water
- \pm 10,000 NGOs active
- After the disaster
 - Lots of effort towards wrong actions (e.g., rapid disposal of bodies)
 - ► Donations of unnecessary items, overwhelming local aid (e.g., ± 500 tonnes of medicines in the first two weeks)
 - "Medical tourism"
 - Well-meaning volunteers with little skills

Source: Van Wassenhove, Pedraza Martinez and Stapleton (2010)

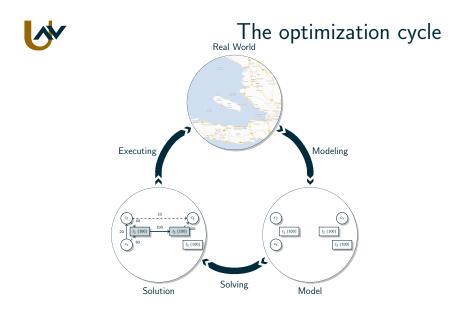
Some thoughts on the use of OR in humanitarian situations

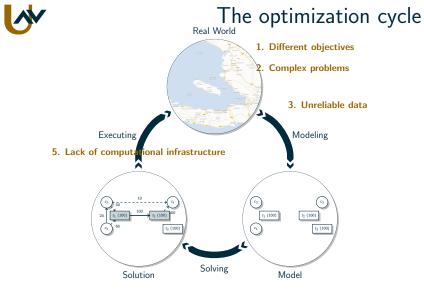
Operations Management is clearly useful

- Inventory policy
- Bottleneck identification
- Global sourcing strategies
- ▶ ...

Some thoughts on the use of OR in humanitarian situations

Operations Management is clearly useful

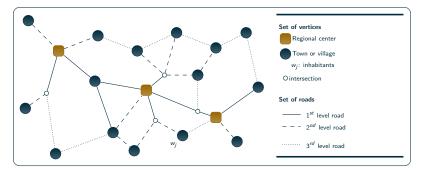

- Inventory policy
- Bottleneck identification
- Global sourcing strategies
- ▶ ...
- BUT: efficiency is often difficult to achieve
- Use of operations Research less clear



When can OR be useful

Strategic/tactical planning

- Before the disaster: preparedness, prepositioning of supplies and materials, building of humanitarian infrastructure (e.g., location of warehouses)
- After the disaster: rebuilding the infrastructure in a sustainable way
- Operational
 - Only after intense preparation
 - Perhaps: use rules of thumb derived from efficient algorithms


4. Changing/unpredictable situations

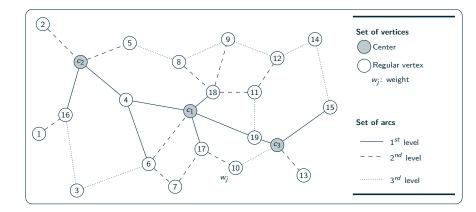
Challenges for OR

	Problem	Solution
1	Different objectives	Advanced modeling
2	Difficult problems	Advanced modeling
3	Unreliable data	Robust models, based on available data, pre-storing as much info as possible
4	Changing/unpredictable situations	Robust and flexible methods
5	Lack of computational infrastructure	Develop rules of thumb

The accessibility arc upgrading problem

A-AUP Accessibility arc upgrading problem

Find an optimal arc upgrading strategy that maximises the accessibility


Notation

Notation

- \mathcal{V} Set of vertices
 - \mathcal{V}_1 Centres
 - \mathcal{V}_2 regular vertices
- ${\mathcal E}$ Set of arcs
- w_j Weight of vertex j
- t_{el} Time to traverse the arc e at level l
- p_{el} Cost of upgrading the arc e to level l
- B Financial budget

Problem definition

How is accessibility defined?

Definition

Accessibility is the degree of ease with which people or communities can access locations to satisfy their basic social and economic needs

How is accessibility defined?

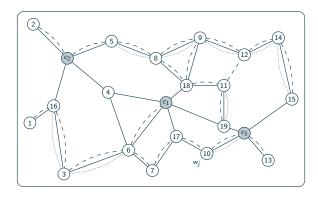
Definition

Accessibility is the degree of ease with which people or communities can access locations to satisfy their basic social and economic needs

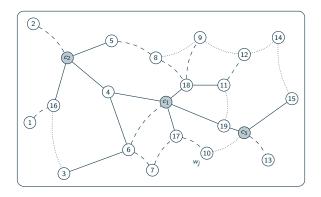
How do we measure accessibility?

Weighted sum of the time required to travel from each vertex j to its closest regional center

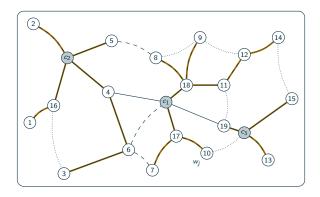
$$\sum_{j\in\mathcal{V}_2}\left\{w_j\times\min_{i\in\mathcal{V}_1}\{SP_{ij}\}\right\}$$



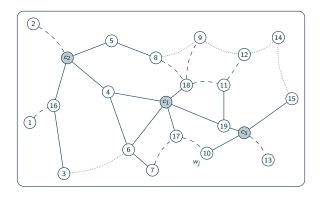
$$\begin{split} \min \sum_{j \in \mathcal{V}_2} \left(w_j \min_{i \in \mathcal{V}_1} \{ SP_{ij} \left(\mathbf{x} \right) \} \right) \\ \sum_{e \in \mathcal{E}} \sum_{l \in \mathcal{L}_e} p_{el} x_{el} \leq B \\ x_{el} \in \{0, 1\} \forall e \in \mathcal{E}, \quad \forall l \in \mathcal{L}_e \end{split}$$

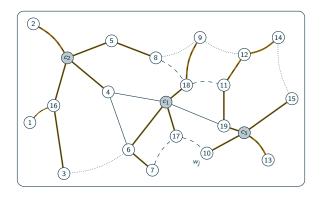

Two related decisions

- 1. Arcs to be upgraded
- 2. Paths to connect regular vertices to centres

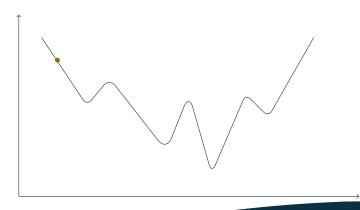


Example 1



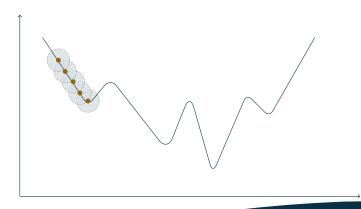


Example 2

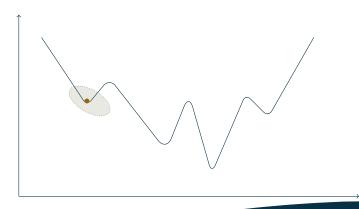

Variable neighbourhood search

Three moves are considered

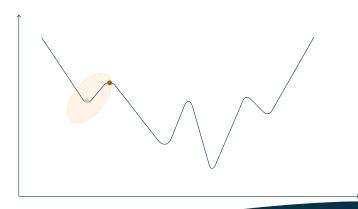
- 1. Upgrade
- 2. Downgrade
- 3. Combined move (Upgrade + Downgrade)
- Two procedures to move the search away from local optima
 - 1. Strategic oscillation
 - 2. Shaking



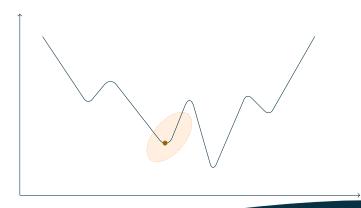
- Start from an initial feasible solution
- Iterate over the neighbourhoods



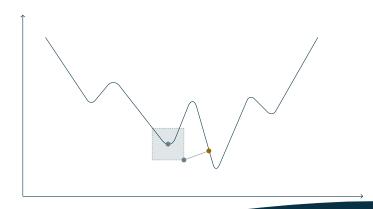
- Start from an initial feasible solution
- Iterate over the neighbourhoods



- Start from an initial feasible solution
- Iterate over the neighbourhoods



- Start from an initial feasible solution
- Iterate over the neighbourhoods



- Start from an initial feasible solution
- Iterate over the neighbourhoods

- Strategic oscillation: Allow infeasible solutions
- Recover feasibility

Special features of our VNS

- For a given upgrading strategy, the accessibility measure is computed by solving a MCFP
- Information from the MCFP is used to select the neighbouring solution
- As MCFPs are solved intensively, we have used re-optimisation techniques

VNS for the A-AUP

%budget	100	200	400
20	1.75	2.55	2.87
50	1.81	2.44	2.69
70	1.45	1.80	2.11
100	0.52	0.73	0.79

- ▶ The average gap to optimality is less than 3.0 %
- Instances with tight budget and large number of nodes have larger average gaps

Why is this study useful?

vertices	1(100		200		400	
%budget	Min.	Av.	Min.	Av.	Min.	Av.	
20	46.39	65.21	51.85	67.85	54.25	68.87	
50	67.20	88.02	79.12	89.05	78.98	89.70	
70	78.26	94.50	87.28	94.87	87.43	95.43	
100	90.83	98.65	94.11	98.66	94.64	98.92	

- Large improvements in accessibility can be obtained by allocating the scarce resources properly
- On average around 89 % of the improvement target is obtained with a budget level of 50 % of the total amount required

Application to Haïti

Conclusions and future research

- The Accessibility arc upgrading problem (A-AUP) is a potentially useful problem
- ▶ We develop and efficient VNS for it
 - ► The exact approach uses Cplex to solve a mathematical model
 - The VNS can be easily extended to consider additional constraints

Conclusions and future research

- The Accessibility arc upgrading problem (A-AUP) is a potentially useful problem
- ▶ We develop and efficient VNS for it
 - ► The exact approach uses Cplex to solve a mathematical model
 - The VNS can be easily extended to consider additional constraints
- How/who can we help?

Humanitarian logistics is a true challenge for OR

 Humanitarian logistics is a true challenge for OR (and humanitarian organization culture does not help)

- Humanitarian logistics is a true challenge for OR (and humanitarian organization culture does not help)
- OR is potentially useful

- Humanitarian logistics is a true challenge for OR (and humanitarian organization culture does not help)
- OR is *potentially useful* (BUT we need to rethink the way we do things somewhat)