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Linear/Convex Programming 

Heart of combinatorial optimization 

 

Discrete Problem   (E.g. Travelling Salesman, …) 

     

    Solve continuous relaxation                𝑥𝑖 ∈ {0,1}  [0,1]        

        (LP:  min  cx   s.t.  Ax <= b) 

     

    “Round” fractional solution  

 



Relax and Round 

By far the most powerful and ubiquitous technique. 

 

[Raghavendra 08 and others]: For several problems LPs/SDPs 

best among any polynomial time algorithm (assuming P ≠ NP) 

 

Our focus on Rounding: 

 

Polyhedral Combinatorics 

Geometry 

Probability 

… 

Two basic approaches 



Careful +/- Rounding 

Transform LP solution  to integral solution  by  careful updates  

(guided by problem structure) 

 

60 – 80s   Exact Algorithms  (Work of Edmonds) 

Combinatorial optimization. 

 

Various extensions in Approximation Algorithms. 



Bipartite Matching 

Given: 𝑛 × 𝑛 graph with edge costs 

Min 𝑐𝑒𝑥𝑒 

 𝑥𝑒𝑒∈𝛿(𝑣) =  1      integer 𝑏𝑣  in general   

 

Rounding: Fix Fractionality 

 

Either 𝛿 > 0 𝑜𝑟 < 0  good wrt cost. 

 

𝐿𝑃 =   0.5  𝐿𝑃 𝛿  + 0.5  𝐿𝑃 −𝛿  

Thm: Any LP = convex combination of matchings 

 

𝛿 

𝛿 

−𝛿 −𝛿 



Randomization 

View 𝑥𝑖 ∈ 0,1  as probabilities  

Randomized Rounding:  

Independently round each 𝑥𝑖 to 1 with probability 𝑥𝑖 . 

 

Suppose   𝑎𝑗𝑖𝑥𝑗𝑖  =  𝑏𝑖 

Then upon rounding,   E[  𝑎𝑗𝑖𝑖 𝑥 𝑗 ] = 𝑏𝑖 

 

Sharp concentration (Chernoff):   𝑎𝑗𝑖𝑖 𝑥 𝑗  = 𝑏𝑖 + “small error” 

 

Can handle several constraints +  possibly several objectives   



Randomization 

Raghavan Thompson 84 (Routing with congestion) 

Goal: Given 𝑠𝑖 − 𝑡𝑖 pairs. Find routes with congestion 1. 

 

 

LP: Find unit flow from 𝑠𝑖 − 𝑡𝑖 (s.t. edge capacity = 1) 

Flow = prob. distribution over paths. 

Pick one path at random for each flow. 

 

Expected congestion of any edge  ≤ 1 

Max. congestion = O(log n/log log n) 

𝑠𝑖 

𝑡𝑖 

𝑠𝑖 

𝑡𝑖 



Often at odds 

Matching:    𝑥𝑒𝑒∈𝛿(𝑣) =  1          

   

Picking 𝑥𝑒 at random 

 

Pr [vertex unmatched] = 1 −
1

𝑛

𝑛
≈ 1/𝑒 

 

Randomization is not the right thing here. 

1/n 

1/n 

1/n 

1/n 



Motivating Example 

Several cost functions  𝑐 𝑒
1 , 𝑐 𝑒

2 , … , 𝑐 𝑒
𝑘  

Cost (M)  = max  
𝑖

𝑐𝑖(𝑀) 

 

Suppose good fractional matching 𝑥  

i.e.  𝐶𝑖𝑥  ≤ 𝐶∗  for all i =1 … k. 

 

Two cost functions (blue and green) 

M1: (2,0)   M2: (0,2)     So,  Value = 2 

Fractional Matching (0.5 M1 + 0.5 M2):  (1,1) 

   



Matching: Multiple Costs 

Ideally: Pick each edge randomly. 

 Max cost (Chernoff) ≈  𝐶∗  +  𝑂 log 𝑘 ⋅  𝑠𝑡𝑑. deviation  

 

Naïve approaches: 

1. Sample from Convex Combination  (LP = Prob. over matchings) 

    LP = 1/k 𝑀1 + 𝑀2 + ⋯ 𝑀𝑘          𝑀𝑖 ∶  0, … , 0, 𝑘 𝐶∗, 0 , …  

    Each individual 𝑀𝑖  very bad (for some color)!   

 

2. Pick each edge randomly 

     Good wrt all costs. 

     Must sample  O(log n) times to ensure each vertex degree >= 1. 



Combined Approaches 

Very useful techniques developed in recent years. 

 

For matching with several costs. 

Can obtain Chernoff type bound [Arora Frieze Kaplan 96] 
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Dependent Rounding 

[Srinivasan 01; Gandhi-Khuller-Parathasarathy-Srinivasan 04]: 

Relevant for b-matchings  (b>1) 

 

Give a randomized algorithm s.t. 

For any node 

(i) Pick exactly b edges 

(ii) Prob. Edge e picked = 𝑥𝑒 

(iii) Cost of edges at each vertex concentrated around LP mean. 

 

Extremely useful: E.g. in load balancing  



Bipartite Rounding  

Alg:  Take an even cycle, randomly round up or down. 

 

Thm:  (i)  Pr [e chosen ]  = 𝑥𝑒 

           (ii) Degree 𝑏𝑣 exactly preserved 

           (iii) Edges on a vertex are Negatively Correlated. 

                     Pr  Π𝑒∈𝑆 𝑋𝑒 = 1  ≤ Π𝑒∈𝑆 Pr  𝑋𝑒 = 1  

 

Useful Fact: Negative Correlation implies  Chernoff bounds.  



Dependent Rounding 

Proof of thm:  

Inductively 𝐸  Π𝑒∈𝑆 𝑋𝑒   decreases over iterations. 

  At beginning t=0,  𝑥𝑒 = LP value.   

  At end it is  the 0-1 random variable.   

 

In S,  either update none, or 1 or 2 elements. 

  𝑋1𝑋2 …𝑋𝑘  
→ ½ 𝑋1 − 𝜖 𝑋2 + 𝜖  𝑋3… 𝑋𝑘  +  ½ 𝑋1 + 𝜖 𝑋2 − 𝜖 𝑋3 …𝑋𝑘 

 



Second Rounding 

 [Arora-Frieze-Kaplan 96]:  Implies Chernoff like bounds 

Guarantee:  1 + 𝜖 𝐶∗ + 𝑂 n ⋅ 𝑐_𝑚𝑎𝑥          c_max: max edge cost 

 

Alg:  Consider  LP  =   𝑖 𝛼𝑖𝑀𝑖 

Pick large k,   view as  𝑘𝛼𝑖   matchings 𝑀𝑖   (chosen to extent 1/k) 

 

Will reduce to k/2 matchings  (extent 2/k) and so on  

until get one Matching. 

 



Algorithm 

Given matchings 𝑀1, …𝑀𝑘,  pair them arbitrarily. 

Consider 𝑀1 ∪ 𝑀2.  Union of alternating even cycles. 

 

 

 

 

If insufficient randomness (e.g. union = single cycle) 

Break long cycles  (make of length <= 𝑛 ) 

 

Proof:  Whp  𝑐 Merge ≈  ½ 𝑐 𝑀1 +  𝑐 𝑀2  + tiny error 

 

 

 

 

 

For each cycle,  

pick one color randomly 



Algorithm 

Given matchings 𝑀1, …𝑀𝑘,  pair them arbitrarily. 

Consider 𝑀1 ∪ 𝑀2.  Union of alternating even cycles. 

 

 

 

 

If insufficient randomness (e.g. union = single cycle) 

Break long cycles  (make of length <= 𝑛 ) 

 

Proof:  Whp  𝑐 Merge ≈  ½ 𝑐 𝑀1 +  𝑐 𝑀2  + tiny error 

 

 

 

 

 

For each cycle,  

pick one color randomly 
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Spanning Trees 

Polyhedral Description 

Min   𝑒 𝑐𝑒𝑥𝑒 

  𝑒 𝑥𝑒  =  𝑛 − 1                              (n-1 edges) 

   𝑒∈𝐸(𝑆)  𝑥𝑒 ≤ 𝑆 − 1                   (for each subset S of vertices) 

 

Edmonds 65: 

Integral  (LP = convex combination of spanning trees) 

 

Sometimes prefer convex combination with stronger properties. 

 

 



General Degree Bounds 

Arbitrary subset bounds:  For subset S of edges, bound 𝑏𝑆. 

 

LP:   Spanning Tree constraints 

        +  Degree constraints 

 

Convex combination is useless  (the individual trees could 

have large maximum degrees) 



General Degree Bounds 

Thm:   1 + 𝜖 𝑏𝑆  +  𝑂𝜖(log 𝑘)       [exactly Chernoff bound] 

            k: number of degree bounds 

 

Proof: Will sample spanning tree with marginals 𝑥𝑒, 

           s.t.  edges are negatively correlated (can use Chernoff bounds) 

           

1. Max. Entropy Sampling [Asadpour-Goemans-Madry-OveisGharan-

Saberi 10].   Gave  O(log n/log log n)  for ATSP.  

 

2.  Randomized Matroid Rounding [Chekuri-Vondrak-Zenklusen 10]  

 



CVZ Matroid Rounding 

  𝑒∈𝐸[𝑆] 𝑥𝑒  ≤ 𝑆 − 1  

 

Apply  +/-  to candidate  𝑥𝑒 , 𝑥𝑓 

Trouble: Some tight set contains e but not f. 

Let g be other fractional element in S. 

May be some other set T complains. 

 

Look at S∩ 𝑇.  

Claim (uncrossing): If S and T tight, 𝑆 ∩ 𝑇 also tight  (so integral) 

Repeat, until find minimal tight set. 

e f g h 

S T 



Proof of Claim 

Claim: If S,T tight, then 𝑆 ∩ 𝑇 and 𝑆 ∪ 𝑇 also tight 

 
𝑥 𝐸 𝑆 + 𝑥 𝐸 𝑇 ≤ 𝑥 𝐸 𝑆 ∩ 𝑇 + 𝑥 𝐸 𝑆 ∪ 𝑇  

 

LHS = |S|-1  + |T|-1 

RHS ≤ 𝑆 ∩ 𝑇 − 1 + 𝑆 ∪ 𝑇 − 1 

           = |S| + |T| - 2 

S T 



More Applications (TSP) 

Christofedes (70’s): 3/2 approximation 

 TSP   ≤ Spanning Eulerian Subgraph 

            ≤   Min. Spanning Tree  +  Matching on odd degrees. 

              (at most  OPT TSP)          (at most ½ OPT TSP) 

 

Thm [Oveis,Saberi,Singh 11]: 1.5 - 𝜖  for “graphic” TSP 

Alg:  Pick Random spanning Tree. 

 

Directed Graphs:  Reduce to finding “thin spanning tree” 

Thm [Asadpour,Goemans,Madry,Oveis,Saberi 10]:  O(log n/log log n) 
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A General Question 

Given Ax = b   say with fractional 𝑥, say x ∈[0,1]. 

 

Want to round x to integer x   s.t.  error  𝐴𝑥 – 𝐴 𝑥 
∞
   is as 

small as possible. 

 

 

 

 

A = 

𝑥1𝑥2 … 𝑥𝑛 

Natural Idea:  Do +/-  updates on columns, s.t. low error added 

b 



Discrepancy 

Hereditary Discrepancy:  𝜆 

If for any subset S of columns, there is some (clever) +/- coloring 

of S,  s.t. each  row sum <= 𝜆 

 

Thm [Lovasz Spencer Vestzergombi 86]:  

There always exists rounding with error <  2 ⋅ Herdisc(A) 

 

Structure often implies low herdisc.     

(TU matrices = 1, geometric set systems, …)  [Discrepancy Theory]  

 

Existential result: How do we efficiently find the +/-  update? 

(in matchings: even cycles,  in spanning trees: two elements in a minimal set) 



Making the result Algorithmic 

Thm [Bansal 10]: Given any x, can round in polynomial time 

with error  Herdisc 𝐴 ⋅ 𝑂 log 𝑛  

 

Nothing previously known. 

 

And, instead of +/- updates, we will do Gaussian Updates. 

 

We will use SDPs to find these updates. 

 

 



Algorithm (at high level) 

Cube: {0,1}n 
start 

finish 

Each dimension: A variable 

Each vertex: A rounding 

Algorithm:  At step t,  update  𝑥𝑖(𝑡) =  𝑥𝑖 𝑡 − 1 + 𝛿𝑖(𝑡) 

                   Fix variable if reaches 0 or 1. 

 

Each 𝛿𝑖 𝑡  distributed as a Gaussian 

But the 𝛿𝑖’s are correlated  e. g.  𝛿1(𝑡) + 𝛿2(𝑡) + 𝛿3(𝑡) = 0   

   so that low error added to rows. 

 



SDP relaxations 

SDPs    (LP  on  𝑣𝑖 ⋅ 𝑣𝑗  ) 

            |     𝑖 𝑎𝑗𝑖  𝑣𝑖  |
2    ≤            8 j 

                        |𝑣𝑖|
2 = 1      Intended soln. vi =  (+1,0,…,0) or (-1,0,…,0). 

 

Low hereditary discrepancy guarantees feasibility. 

But get  vectors 𝑣𝑖. 

 

Pick random Gaussian g:  Set  𝛿𝑖 = 𝑔 ⋅ 𝑣𝑖 

 

Why Projection? 

         Say if  𝑣1 + 𝑣2 + 𝑣3 = 0 

        Then  𝛿1 + 𝛿2 + 𝛿3 =  𝑔 ⋅ 𝑣1 + 𝑣2 + 𝑣3 =  0 

 

 

𝜆2 



Properties of Rounding 

Lemma: If g 2 Rn is random Gaussian.  For any v 2 Rn,      

              g ¢ v  is distributed as N(0, |v|2) 

Pf:      N(0,a2) + N(0,b2) = N(0,a2+b2)            g¢ v = i  v(i) gi   » N(0,  i v(i)2) 

 

1. Each di  » N(0,1)  

2. For each row j,   

        i  𝑎𝑗𝑖 di  = g ¢ (i 𝑎𝑗𝑖 vi) » N(0, · 2) 

        (std deviation ·) 

SDP: 

|vi|
2  = 1 

|i 𝑎𝑗𝑖 vi|
2 ·  2  

If   di  = g ¢ vi 

d’s mimic a = +/- update with low error 



Analysis (at high level) 

Cube: {0,1}n 

Algorithm: Solve SDP.  Take a small step. Repeat. 

 

Analysis:   

  Progress: Few steps to reach a vertex (walk has high variance) 

 

  Low Discrepancy: For each equation, discrepancy random walk 

has low variance  

            

start 

finish 

Each dimension: An Element 

Each vertex: A  Coloring 



Analysis 
  

Consider time T = O(1/2)                        𝛾 = Scaling factor 

 

Claim 1: With prob. ½, at least n/2 elements reach  -1 or +1. 
Pf: Each element doing random walk with size ¼  . 

Recall: Random walk with step      1, is ¼ O(t1/2)  away in t steps. 

 

Claim 2:  Each row has  O()  discrepancy in expectation. 

Pf: For each row j, xt(𝑅𝑗) doing      random walk with step size ¼   

 

  

T log n steps suffices to color everything, 

Chernoff:  Max Error =  𝑂(𝜆 log 𝑛)    
 



Conclusions 

Classical Rounding + Randomization 

Has turned out to be very fruitful idea. 

 

Matchings, Spanning Trees, Discrepancy, … 

 

Probably several new results still to be discovered.  



Thank You! 


