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Linear/Convex Programming

Heart of combinatorial optimization
Discrete Problem (E.g. Travelling Salesman, ...)

Solve continuous relaxation xX; € ip/f} [0,1]
(LP: min cx s.t. Ax<=D)

“Round” fractional solution



Relax and Round

By far the most powerful and ubiquitous technique.

[Raghavendra 08 and others]: For several problems LPs/SDPs
best among any polynomial time algorithm (assuming P = NP)

Our focus on Rounding:

Polyhedral Combinatorics
Geometry

. Two basic approaches
Probability



Careful +/- Rounding

Transform LP solution to integral solution by careful updates
(guided by problem structure)

60 —80s Exact Algorithms (Work of Edmonds)
Combinatorial optimization.

Various extensions in Approximation Algorithms.



Bipartite Matching

Given: n X n graph with edge costs
Min c,x,

Diecs)Xe = 1  (integer b, in general)

Rounding: Fix Fractionality ®- 0 DS

Either § > 0 or < 0 good wrt cost. 5

LP = 0.5 LP(6) +0.5 LP(—6)
Thm: Any LP = convex combination of matchings



Randomization

View x; € [0,1] as probabilities
Randomized Rounding:
Independently round each x; to 1 with probability x;.

Suppose X; aj;x; = b;
Then upon rounding, E[X;a;; X;]=b;

Sharp concentration (Chernoff): ».; a;; X; = b; + “small error”

Can handle several constraints + possibly several objectives



Randomization

Raghavan Thompson 84 (Routing with congestion)
Goal: Given s; — t; pairs. Find routes with congestion 1.

LP: Find unit flow from s; — ¢t; (s.t. edge capacity = 1)
Flow = prob. distribution over paths.
Pick one path at random for each flow.

Expected congestion of any edge < 1
Max. congestion = O(log n/log log n)

Si



Often at odds

Matching: 2.eswyXe = 1

Picking x, at random 1/n

1/n

Pr [vertex unmatched] = (1 — %)n ~ 1/e 1/n
1/n

Randomization is not the right thing here.



Motivating Example

Several cost functions c{le}, c{ze}, ---,C{";}
Cost (M) =max ct(M)
l

Suppose good fractional matching x
ie. Clx < C* foralli=1 ...k

Two cost functions (blue and green)
M1: (2,0) M2:(0,2) So, Value =2 ><
Fractional Matching (0.5 M1 + 0.5 M2): (1,1)




Matching: Multiple Costs

Ideally: Pick each edge randomly.
Max cost (Chernoff) » C* + 0(4/log k) - (std.deviation)

Naive approaches:
1. Sample from Convex Combination (LP = Prob. over matchings)

LP =1k (M; + My + -+ My,) M;: (0,..,0,kC"0,..)
Each individual M; very bad (for some color)!

2. Pick each edge randomly

Good wrt all costs.
Must sample O(log n) times to ensure each vertex degree >= 1.



Combined Approaches

Very useful techniques developed in recent years.

For matching with several costs.
Can obtain Chernoff type bound [Arora Frieze Kaplan 96]
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Dependent Rounding

[Srinivasan 01; Gandhi-Khuller-Parathasarathy-Srinivasan 04]:
Relevant for b-matchings (b>1)

Give a randomized algorithm s.t. /
For any node

(i) Pick exactly b edges X
(i) Prob. Edge e picked = x,

(i11) Cost of edges at each vertex concentrated around LP mean.

Extremely useful: E.g. in load balancing



Bipartite Rounding

Alg: Take an even cycle, randomly round up or down.

Thm: (i) Pr[echosen] = x, /

(i1) Degree b,, exactly preserved
(i11) Edges on a vertex are Negatively Corre&
Pr[Mees(Xe = 1)] < e Pr[ X, =1]

Useful Fact: Negative Correlation implies Chernoff bounds.




Dependent Rounding

Proof of thm:

Inductively E[ Il ¢ X,] decreases over iterations.
At beginning t=0, x, = LP value.
Atend it is the 0-1 random variable.

In S, either update none, or 1 or 2 elements.

XXy o X
>BLXi—e)Xy+e) X;.. Xp + Yo(X1+e)(Xy, — €)X ... Xy



Second Rounding

[Arora-Frieze-Kaplan 96]: Implies Chernoff like bounds
Guarantee: (1 +¢€)C* + O(+/n - c_max) ¢_max: max edge cost

Alg: Consider LP =), a;M;
Pick large k, view as ka; matchings M; (chosen to extent 1/k)

Will reduce to k/2 matchings (extent 2/k) and so on
until get one Matching.



Algorithm

Given matchings My, ... M, pair them arbitrarily.
Consider M; U M,. Union of alternating even cycles.

For each cycle,
pick one color randomly

If insufficient randomness (e.g. union = single cycle)
Break long cycles (make of length <=+/n)

Proof: Whp c(Merge) = % (c(M;) + c(M,)) + tiny error




Algorithm
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Proof: Whp c(Merge) = % (c(M;) + c(M,)) + tiny error

If insufficient randomness (e.g. union = single cycle)
Break long cycles (make of length <=+/n)
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Spanning Trees

Polyhedral Description

Min )., c.x,

Yie Xe = n—1 (n-1 edges)

Qieci(s) Xe = |S[—1 (for each subset S of vertices)
Edmonds 65:

Integral (LP = convex combination of spanning trees)

Sometimes prefer convex combination with stronger properties.



General Degree Bounds

Arbitrary subset bounds: For subset S of edges, bound bs.

LP: Spanning Tree constraints
+ Degree constraints

Convex combination is useless (the individual trees could
have large maximum degrees)



General Degree Bounds

Thm: (1+4+€)bs + O.(logk)  [exactly Chernoff bound]
K: number of degree bounds

Proof: Will sample spanning tree with marginals x,,
s.t. edges are negatively correlated (can use Chernoff bounds)

1. Max. Entropy Sampling [Asadpour-Goemans-Madry-OveisGharan-
Saberi 10]. Gave O(log n/log log n) for ATSP.

2. Randomized Matroid Rounding [Chekuri-Vondrak-Zenklusen 10]



CVZ Matroid Rounding
Qiecks] Xe < |S[—1

Apply +/- to candidate x., xf

S T
Trouble: Some tight set contains e but not f. q@} (f)

Let g be other fractional element in S.
May be some other set T complains.

LookatSN T.

Claim (uncrossing): If Sand T tight, S n T also tight (so integral)
Repeat, until find minimal tight set.



Proof of Claim

Claim: If S,T tight, then SN T and S U T also tight

x(E[S]) +x(E[T]) <x(EISNT]) +x(E[SUT])

LHS = |S|-1 +|T|-1 @

RHS< |SNT|—1+|SuUT| -1 S T
=|S| +[T| -2




More Applications (TSP)

Christofedes (70°s): 3/2 approximation
TSP < Spanning Eulerian Subgraph
< Min. Spanning Tree + Matching on odd degrees.

(at most OPT TSP) (at most ¥2 OPT TSP)

Thm [Oveis,Saberi,Singh 11]: 1.5 - € for “graphic” TSP
Alg: Pick Random spanning Tree.

Directed Graphs: Reduce to finding “thin spanning tree”
Thm [Asadpour,Goemans,Madry,Oveis,Saberi 10]: O(log n/log log n)
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A General Question

Given Ax = b say with fractional x, say x €[0,1].

Want to round x to integer X s.t. error |Ax-A%| isas
small as possible.

X1Xy o Xp

[
@y

A

Natural Idea: Do +/- updates on columns, s.t. low error added



Discrepancy

Hereditary Discrepancy: A

If for any subset S of columns, there is some (clever) +/- coloring
of S, s.t. each row sum <=4

Thm [Lovasz Spencer Vestzergombi 86]:
There always exists rounding with error < 2 - Herdisc(A)

Structure often implies low herdisc.

(TU matrices = 1, geometric set systems, ...) [Discrepancy Theory]

Existential result: How do we efficiently find the +/- update?
(in matchings: even cycles, in spanning trees: two elements in a minimal set)



Making the result Algorithmic

Thm [Bansal 10]: Given any X, can round in polynomial time
with error Herdisc(A) - O(logn)

Nothing previously known.

And, instead of +/- updates, we will do Gaussian Updates.

We will use SDPs to find these updates.



Algorithm (at high level)

Cube: {0,1}"

Slar,

¥

finish

Each dimension: A variable
Each vertex: A rounding

Algorithm: Atstept, update x;(t) = x;(t —1) + §;(t)

Fix variable if reaches 0 or 1.

Each 6;(t) distributed as a Gaussian
But the 6;’s are correlated (e.g. §;(t) + 6,(t) + 83(t) =0)
so that low error added to rows.



SDP relaxations

SDPS (LP on v; - U])
| X v |f < A2 Y
lv.]=1  Intended soln. v,= (+1,0....,0) or (-1,0,...,0).

Low hereditary discrepancy guarantees feasibility.
But get vectors v;.

Pick random Gaussian g: Set §; = g - v;
Why Projection?

Saylf v1+v2+v3=0
Then 51+62+63= g-(v1+v2+v3)= 0



Properties of Rounding

Lemma: If g € R" Is random Gaussian. For any v € R",
g - v is distributed as N(O, |v|?)

Pf:  N(0,a2) + N(0,b?) = N(0,a2+b?) g-v=Y; v(i)g; ~N(©O, I v(i)?)
If & =g-v;
SDP:
1. Eachg; ~ N(0,1) vi2 =1
For each row |, 25 aj; vil* < A2

2 a;; 6; =g - (2 a;; vi) ~N(O, <29
(std deviation <))

d’s mimic a = +/- update with low error



Analysis (at high level)

Cube; {0,1}" W@ Each dimension: An Element
Each vertex: A Coloring

finish

Algorithm: Solve SDP. Take a small step. Repeat.

Analysis:
Progress: Few steps to reach a vertex (walk has high variance)

LLow Discrepancy: For each equation, discrepancy random walk
has low variance



Analysis
Consider time T = O(1/y?) y = Scaling factor

Claim 1: With prob. ¥, at least n/2 elements reach -1 or +1.
Pf. Each element doing random walk with size ~ .
Recall: Random walk with step 41, is &~ O(t'?) away in t steps.

Claim 2: Each row has O(A) discrepancy in expectation.

Pf. For each row J, X(R;) doing 4- random walk with step size ~ y A

T log n steps suffices to color everything,
Chernoff: Max Error = O(Alogn)



Conclusions

Classical Rounding + Randomization
Has turned out to be very fruitful idea.

Matchings, Spanning Trees, Discrepancy, ...

Probably several new results still to be discovered.



Thank Youl!



