
A Primal-Dual Approach for

Online Problems

Nikhil Bansal

Online Algorithms

Input revealed in parts.

Algorithm has no knowledge of future.

Scheduling, Load Balancing, Routing, Caching,

Finance, Machine Learning …

Competitive ratio =

Expected Competitive ratio =

Some classic problems

The Ski Rental Problem

• Buying costs $B.

• Renting costs $1 per day.

Problem:

• Number of ski days is not known in advance.

Goal: Minimize the total cost.

Deterministic: 2

Randomized: e/(e-1) ¼ 1.58

Online Virtual Circuit Routing

Network graph G=(V, E)

capacity function u: E Z+

Requests: ri = (si, ti)

• Problem: Connect si to ti by a path, or reject the
request.

• Reserve one unit of bandwidth along the path.

• No re-routing is allowed.

• Load: ratio between reserved edge bandwidth and
edge capacity.

• Goal: Maximize the total throughput.

Virtual Circuit Routing - Example

t1

s1

t2

s2

s3

t3

Maximum Load: 0 1/5 2/5 3/5

Edge capacities: 5

Virtual Circuit Routing

Key decision:

1) Whether to choose request or not?

2) How to route request?

O(log n)-congestion, O(1)-throughput [Awerbuch Azar Plotkin 90’s]

Various other versions and tradeoffs.

Main idea: Exponential penalty approach

 length (edge) = exp (congestion)

Decisions based on length of shortest (si,ti) path

Clever potential function analysis

The Paging/Caching Problem

Set of pages {1,2,…,n} , cache of size k<n.

Request sequence of pages 1, 6, 4, 1, 4, 7, 6, 1, 3, …

a) If requested page already in cache, no penalty.

b) Else, cache miss. Need to fetch page in cache

 (possibly) evicting some other page.

Goal: Minimize the number of cache misses.

Key Decision: Upon a request, which page to evacuate?

Previous Results: Paging

Paging (Deterministic) [Sleator Tarjan 85]:

• Any det. algorithm ¸ k-competitive.

• LRU is k-competitive (also other algorithms)

Paging (Randomized):

• Rand. Marking O(log k) [Fiat, Karp, Luby, McGeoch, Sleator,

Young 91].

• Lower bound Hk [Fiat et al. 91], tight results known.

Do these problems have

anything in common?

An Abstract Online Problem

min 3 x1 + 5 x2 + x3 + 4 x4 + …

2 x1 + x3 + x6 + … ¸ 3

x3 + x14 + x19 + … ¸ 8

x2 + 7 x4 + x12 + … ¸ 2

Goal: Find feasible solution x* with min cost.

Requirements:

1) Upon arrival constraint must be satisfied

2) Cannot decrease a variable.

Covering LP

(non-negative

entries)

Example

 min x1 + x2 + … + xn

x1 + x2 + x3 + … + xn ¸ 1

 x2 + x3 + … + xn ¸ 1

 x3 + … + xn ¸ 1

 …

 xn ¸ 1

Online ¸ ln n (1+1/2+ 1/3+ … + 1/n)

Opt = 1 (xn=1 suffices)

Set all xi to 1/n

Increase x2 ,x3,…,xn to 1/n-1

…

Increase xn to 1

The Dual Problem

max 3 y1 + 5 y2 + y3 + 4 y4 + …

2 y1+ y2 + y3 + … · 3

y1 + y2 + 2 y3 + … · 8

y1 +7 y2 + y3 + … · 2

Goal: Find y* with max cost.

Requirements:

1) Variables arrive sequentially

2) At step t, can only modify y(t)

Packing LP

(non-negative

entries)

All previous problems

can be expressed as

Covering/Packing LP

Ski Rental – Integer Program

Subject to:

For each day i:

1 - Rent on day i

0 - Don't rent on day i
iz


 



1 - Buy

0 - Don't Buy
x


 



1

min
k

i

i

Bx z


 

1ix z 

, {0,1}ix z 

(either buy or rent)

Routing – Linear Program

s.t:

For each ri:

For each edge e:

(,)iy r p

()

max (,)
i i

i

r p P r

y r p


 

= Amount of bandwidth allocated for ri on path p

()iP r - Available paths to serve request ri

()

(,) 1
i

i

p P r

y r p




()

(,) ()
i i

i

r p P r e p

y r p u e
 

 

Paging – Linear Program

Time line

 Pg i Pg i Pg i

At any time t, can have at most k such intervals.

x(i,j): How much interval (i,j)

evacuated thus far

If interval not present, then cache miss.

 at least n-k intervals must be absent

Cost =i j x(i,j)

n: number of distinct pages

t Pg i’ Pg i’ Pg i’

0 · x(i,j) · 1
i: i  pt

 x(i,r(i,t)) ¸ n-k 8 t

(i,1)
(i,2)

What can we say about the

 abstract problem ?

General Covering/Packing Results

General Covering/Packing Results

For a {0,1} covering/packing matrix: [Buchbinder Naor 05]

– Competitive ratio O(log D)

– Can get e/e-1 for ski rental and other problems.

 (D – max number of non-zero entries in a constraint).

Remarks:
• Number of constraints/variables can be exponential.

• There can be a tradeoff between the competitive ratio and the factor by
which constraints are violated.

Fractional solution ! randomized algorithm (online rounding)

Consequences

Very powerful framework.

Unified and improved several previous results.

Weighted Paging: O(log k) guarantee [B., Buchbinder, Naor 07]
Previously, o(k) known only for the case of 2 weights [Irani 02]

O(log2 k) for Generalized Paging (arbitrary weights and sizes)
[B., Buchbinder, Naor 08]

A poly-logarithmic guarantee for the k-server problem
[B., Buchbinder, Madry, Naor 11]

Rest of the Talk

1) Overview of LP Duality, offline P-D technique

2) Derive Online Primal Dual (very natural)

3) Further Extensions + k-server Problem

Duality

 Min 3 x1 + 4 x2

 x1 + x2 >= 3

 x1 + 2 x2 >= 5

Want to convince someone that

there is a solution of value 12.

Easy, just demonstrate a solution,

 x2 = 3

Duality

 Min 3 x1 + 4 x2

 x1 + x2 >= 3

 x1 + 2 x2 >= 5

Want to convince someone that

there is no solution of value 10.

How?

 2 * first eqn + second eqn

 3 x1 + 4 x2 >= 11

LP Duality Theorem: This seemingly ad hoc trick always works!

LP Duality

Min cj xj

j aij xj ¸ bi

So, for any y ¸ 0 satisfying i aij yi · cj for all i

j xj cj ¸ i yi bi

Equality when Complementary Slackness

i.e. yi > 0 (only if corresponding primal constraint is tight)

 xi > 0 (only if corresponding dual constraint is tight)

Dual LP

Dual cost

Linear combination

(y ¸ 0)

Offline Primal-Dual Approach

min cx max b y

Ax ¸ b At y · c

x ¸ 0 y ¸ 0

Generic Primal Dual Algorithm:

0) Start with x=0, y=0 (primal infeasible, dual feasible)

1) Increase dual and primal together,

 s.t. if dual cost increases by 1, primal increases by · c

2) If both dual and primal feasible) c approximate solution

Key Idea for Online Primal Dual

Primal: Min i ci xi Dual

Step t, new constraint: New variable yt

a1x1 + a2x2 + … + ajxj ¸ bt + bt yt in dual objective

How much:  xi ? yt ! yt + 1 (additive update)

 primal cost =

 dx/dy proportional to x so, x varies as exp(y)

=  Dual Cost

How to initialize

A problem: dx/dy is proportional to x, but x=0 initially.

So, x will remain equal to 0 ?

Answer: Initialize to 1/n.

When: Complementary slackness tells us that x > 0 only if

dual constraint corresponding to x is tight.

 Set x=1/n when its dual constraint becomes tight.

The Algorithm

Min j cj xj

j aij xj ¸ bi

On arrival of i-th constraint, Initialize yi=0 (dual var. for constraint)

If current constraint unsatisfied, gradually increase yi

If xj =0, set xj = 1/n when i aij yi = cj

else update xj as 1/n ¢ exp((i aij yi / cj) - 1)

1) Primal Cost · Dual Cost

2) Dual solution violated by at most O(log n) factor.

Max i bi yi
i aij yi · cj

Corresponding

Dual constraint

Example: Caching

1/k

1

Dual is tight Dual violated

by O(log k)
Page fully

 in cache

 (“marked”)

Page fully

evacuated
Page is

“unmarked”

0

xp: fraction of p missing from cache

Part 2: Rounding

Primal dual technique gives fractional solution.

Problem specific rounding/interpretation:

1) Easy for ski rental (value of x, is prob. of buying by then)

2) Routing: Can derandomize online using pessimistic
estimator or other techniques

3) Caching (tricky): Gives probability distribution on pages,

Actually want probability distribution on cache states.

Beyond Packing/Covering LPs

Extended Framework

Limitations of current framework

1. Only covering or packing LP

2. Variables can only increase.

Cannot impose: a ¸ b or a ¸ b1 – b2

Problem with monotonicity:

Predicting with Experts: Do as well as best expert in hindsight

n experts: Each day, predict rain or shine.

Online · Best expert (1+ ) + O(log n)/ (low regret)

In any LP, xi,t = Prob. of expert i at time t.

Recent Extensions

Handle somewhat more general settings
[B., Buchbinder, Naor 10] (can capture expert learning)

(Algorithms based on similar insight)

Potential function interpretation [B., Buchbinder, Naor 11]

(Useful when primal-dual view is messy)

K-Server Problem

The k-server Problem

• k servers lie in an n-point metric space.

• Requests arrive at metric points.

• To serve request: Need to move some server there.

Goal: Minimize total distance traveled.

Objective: Competitive ratio.

1 2 3

Move Nearest Algorithm

The Paging/Caching Problem

K-server on the uniform metric.

Server on location p = page p in cache

1 n . . .

Previous Results: Paging

Paging (Deterministic) [Sleator Tarjan 85]:

• Any deterministic algorithm >= k-competitive.

• LRU is k-competitive (also other algorithms)

Paging (Randomized):

• Rand. Marking O(log k) [Fiat, Karp, Luby, McGeoch, Sleator, Young 91].

• Lower bound Hk [Fiat et al. 91], tight results known.

K-server conjecture

[Manasse-McGeoch-Sleator ’88]:

There exists k competitive algorithm on any metric space.

Initially no f(k) guarantee.

Fiat-Rababi-Ravid’90: exp(k log k)

 …

Koutsoupias-Papadimitriou’95: 2k-1

Chrobak-Larmore’91: k for trees.

Randomized k-server Conjecture

There is an O(log k) competitive algorithm for any metric.

Uniform Metric: log k

Polylog for very special cases (uniform-like)

Line: n2/3 [Csaba-Lodha’06]

 exp(O(log n)1/2) [Bansal-Buchbinder-Naor’10]

Depth 2-tree: No o(k) guarantee

Result

Thm [B.,Buchbinder,Madry,Naor 11]: There is an O(log2 k

log3 n) competitive* algorithm for k-server on any

metric with n points.

* Hiding some log log n terms

Our Approach

Hierarchically Separated Trees (HSTs) [Bartal 96].

Any Metric

Allocation Problem (uniform metrics): [Cote-Meyerson-Poplawski’08]

(decides how to distribute servers among children)

O(log n)

Allocation

instances

K-server on HST

Allocation Problem

Uniform Metric

At each time t, request arrives at some location i

Request = (ht(0),…,ht(k)) [monotone: h(0) ¸ h(1) … ¸ h(k)]

Upon seeing request, can reallocate servers

Hit cost = ht(ki) [ki : number of servers at i]

Total cost = Hit cost + Move cost

Eg: Paging = cost vectors (1,0,0,…,0)

*Total servers k(t) can also change (let’s ignore this)

Allocation to k-server

Thm [Cote-Poplawski-Meyerson]: An online algorithm for allocation

 s.t. for any  > 0,

 i) Hit Cost (Alg) · (1+) OPT

 ii) Move Cost (Alg) · () OPT

gives ¼ O(d (1/d)) competitive k-server alg. on depth d HSTs

d = log (aspect ratio) So,  = poly(1/) polylog(k,n) suffices

*HSTs need some well-separatedness

*Later, we do tricks to remove dependence on aspect ratio

We do not know how to obtain such an algorithm.

Fractional Allocation Problem

xi,j : prob. of having j servers at location i (at time t)

j xi,j = 1 (prob. distribution)

i j j xi,j · k (global server bound)

Cost: Hit cost with h(0),…,h(k) = j xi,j h(j)

 Moving  mass from (i,j) to (i,j’) costs  |j’-j|

Surprisingly, fractional allocation does not give good

randomized alg. for allocation problem.

A gap example

 Allocation Problem on 2 points

Requests alternate on locations.

Left: (1,1,…,1,0) Right: (1,0,…,0,0)

Any integral solution must pay (T) in T steps.

Claim: Fractional Algorithm pays only T/(2k) .

XL,0 = 1/k xL,k = 1-1/k

XR,1 = 1

No move cost. Hit cost of 1/k on left requests.

Left Right

Fractional Algorithm Suffices

Thm (Analog of Cote et al): Suffices to have fractional

allocation algorithm with (1+,()) guarantee.

Gives a fractional k-server algorithm on HST

Thm (Rounding): Fractional k-server alg. on HSTs ->

Randomized Alg. with O(1) loss.

Thm (Frac. Allocation): Design a fractional allocation

algorithm with () = O(log (k/)).

Concluding Remarks

Primal Dual: Unifying idea in many online algorithms.

Close connections to multiplicative updates method.

Related work for regret minimization [Shwartz-Singer 07]

Towards a unified framework for problems dealing

with uncertainty ?

Thank you

