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Online Algorithms

Input revealed in parts.
Algorithm has no knowledge of future.

Scheduling, Load Balancing, Routing, Caching
Finance, Machine Learning ...

o On(I)
Competitive ratio = maxXx
I Opt(1])

o ElOn(1)]
Expected Competitive ratio = Max
I Opt(1)



Some classic problems



The Ski Rental Problem

* Buying costs $B.
* Renting costs $1 per day.

Problem:
 Number of ski days is not known in advance.

Goal: Minimize the total cost. BUYL

Deterministic: 2
Randomized: e/(e-1) ~ 1.58




Online Virtual Circuit Routing

Network graph G=(V, E)
capacity function u: E-> Z*

Requests: r;, = (S;, t))

* Problem: Connect s; to t; by a path, or reject the
request.

* Reserve one unit of bandwidth along the path.

* No re-routing is allowed.

* Load: ratio between reserved edge bandwidth and
edge capacity.
* Goal: Maximize the total throughput.



Virtual Circuit Routing - Example

Edge capacities: 5
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Virtual Circuit Routing

Key decision:
1) Whether to choose request or not?
2) How to route request?

O(log n)-congestion, O(1)-throughput [Awerbuch Azar Plotkin 90’s]
Various other versions and tradeoffs.

Main idea: Exponential penalty approach
length (edge) = exp (congestion)

Decisions based on length of shortest (s,,t) path

Clever potential function analysis



The Paging/Caching Problem

Set of pages {1,2,...,n} , cache of size k<n.
Request sequence of pages 1,6,4,1,4,7,6,1, 3, ...

a) If requested page already in cache, no penalty.
b) Else, cache miss. Need to fetch page in cache
(possibly) evicting some other page.

Goal: Minimize the number of cache misses.

Key Decision: Upon a request, which page to evacuate?



Previous Results: Paging

Paging (Deterministic) [Sleator Tarjan 85]:
« Any det. algorithm > k-competitive.

* LRU is k-competitive (also other algorithms)

Paging (Randomized): @W

« Rand. Marking O(log k) [Fiat, Karp, Luby, McGeoch, Sleator,
Young 91].

* Lower bound H, [Fiatetal. 91], tight results known.



Do these problems have
anything in common?



An Abstract Online Problem

min 3 X, +5X,+Xg3+4Xx,+ ...

2X;t Xzt X+ ... 23 Covering LP
X3+ Xyt Xgt...>8 > (non-negative
Xo+ 7T Xg+Xpp+ .00 >2 entries)

Goal: Find feasible solution x* with min cost.

Requirements:
1) Upon arrival constraint must be satisfied
2) Cannot decrease a variable.



Example

min X; + X, + ... + X,

X+ X, + X3+ ...+Xx, >1 Set all x; to 1/n

X+ Xg+...+Xx, >1 Increase X, ,Xs,...,X, to 1/n-1

Xg+...+Xx, >1
Xy, =21 Increase x to 1

Online > Inn  (1+1/2+ 1/3+ ... + 1/n)
Opt =1 (x,=1 suffices)



The Dual Problem

max 3y, +5Yy,+y;+4y,+ ...

2Y, <3
Y1 <38
Y1 <2

Goal: Find y* with max cost.

Requirements:
1) Variables arrive sequentially
2) At step t, can only modify y(t)

Packing LP

> (non-negative
entries)

All previous problems
can be expressed as <
Covering/Packing LP



Ski Rental — Integer Program

1-Buy z 1-Renton day i
. =X
0-DontBuy = (0-Dontrentondayi
Kk
min Bx+ )z
=1
Subject to:

Foreachdayi: X+2z >1

(either buy or rent)

X,z €{0,1}



Routing — Linear Program

)/(r, ; p) = Amount of bandwidth allocated for r; on path p

P(I’I) - Avallable paths to serve requestr,

max > > Y(r, p)

i peP(r)

S.t

For each r; Z y(r, p) <1

peP(r;)

For each edge e: Z Z y(r, p) <u(e)

. peP(r)eep



Paging — Linear Program
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If interval not present, then cache miss.

X(1,)): How much interval (i,))
evacuated thus far

0<x()) <1

1 at least n-k intervals must be absent

At any time t, can have at most k such intervals.

n: number of distinct pages

Cost =25 2 X(i,j)
X(@i,r(i,t)) > n-k Vt

||¢p



What can we say about the
abstract problem ?



General Covering/Packing Results

LP Connection — Powerful Techniques (duality)

For a general covering/packing matrix [BNO3] :

Covering:
— Competitive ratio O(logn)  (n — number of variables).
Packing:
— Competitive ratio O(log n + log [a(max)/a(min)])
a(max), a(min) — max/min non-zero entry

Remarks:
Results are tight.
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General Covering/Packing Results

For a {0,1} covering/packing matrix: [Buchbinder Naor 05]
— Competitive ratio O(log D)
— Can get e/e-1 for ski rental and other problems.
(D — max number of non-zero entries in a constraint).

Remarks:
 Number of constraints/variables can be exponential.

 There can be a tradeoff between the competitive ratio and the factor by
which constraints are violated.

Fractional solution — randomized algorithm (online rounding)



Consequences

Very powerful framework.
Unified and improved several previous results.

Weighted Paging: O(log k) guarantee [B., Buchbinder, Naor 07]
Previously, o(k) known only for the case of 2 weights [Irani 02]

O(log? k) for Generalized Paging (arbitrary weights and sizes)
[B., Buchbinder, Naor 08]

A poly-logarithmic guarantee for the k-server problem
[B., Buchbinder, Madry, Naor 11]



Rest of the Talk

1) Overview of LP Duality, offline P-D technique
2) Derive Online Primal Dual (very natural)
3) Further Extensions + k-server Problem



Duality

Min 3 X, +4 X, Want to convince someone that
there Is a solution of value 12.

X, + X, >=3

X1+ 2%, >=9 Easy, just demonstrate a solution,

X, =3



Duality

Want to convince someone that

| N f _
Min 3 X, +4 X there is no solution of value 10.

Xp + Xy >= 3 ®
r) =)
&'%’ A 2 * first eqn + second egn
X/ ® @ g q

~ 3%, +4x, >=11

LP Duality Theorem: This seemingly ad hoc trick always works!



LP Duality

Min Cj Xj Linear combination
ﬁ
i X 2 b sy

So, for any y > O satisfying 2, a;y; <c; foralll
2% C 22, Y;b; —_
'\ Dual LP

Dual cost

Equality when Complementary Slackness
l.e. y; >0 (only if corresponding primal constraint is tight)
X; >0 (only if corresponding dual constraint is tight)



Offline Primal-Dual Approach

min cX max by
Ax > Db Aly <c
x>0 y>0

Generic Primal Dual Algorithm:
0) Start with x=0, y=0 (primal infeasible, dual feasible)
1) Increase dual and primal together,
s.t. if dual cost increases by 1, primal increases by < c
2) If both dual and primal feasible = ¢ approximate solution



Key Idea for Online Primal Dual

Primal: Min 2, ¢, X; Dual
Step t, new constraint: New variable vy,
a;X; +aX, + ... +ax > b + b, y, In dual objective

How much: A x, ? Y = Y, + 1 (additive update)

A primal cost = Y _ ¢;(Az;)

1

< b= A Dual Cost

dx/dy proportional to x SO, X varies as exp(y)



How to Initialize

A problem: dx/dy Is proportional to x, but x=0 initially.
So, x will remain equalto O ?
Answer: Initialize to 1/n.

When: Complementary slackness tells us that x > 0 only if
dual constraint corresponding to x is tight.

Set x=1/n when its dual constraint becomes tight.



The Algorithm

Min 2, ¢; % Max 3 b,
2 &% > b 2 Y <G

On arrival of i-th constraint, Initialize y,=0 (dual var. for constraint)

If current constraint unsatisfied, gradually increase vy,
If x,=0, setx;=1/n when 2, a;y,=¢
else update x; as 1/n-exp((X;a;y;/c) -1)

1) Primal Cost < Dual Cost
2) Dual solution violated by at most O(log n) factor.



Example: Caching

X,: fraction of p missing from cache

Corresponding
ual constraint

Dual is tight Dual violate
p
Page fully by O(log k)
In cache Page is Page fully }
_ (“marked”) “unmarked” UEILUELSC




Part 2. Rounding

Primal dual technique gives fractional solution.
Problem specific rounding/interpretation:
1) Easy for ski rental (value of x, is prob. of buying by then)

2) Routing: Can derandomize online using pessimistic
estimator or other techniques

3) Caching (tricky): Gives probability distribution on pages,
Actually want probability distribution on cache states.



Beyond Packing/Covering LPs



Extended Framework

Limitations of current framework

1. Only covering or packing LP

2. Variables can only increase.

Cannot impose: a>b or a>b;—-b,

Problem with monotonicity:

Predicting with Experts: Do as well as best expert in hindsight
n experts: Each day, predict rain or shine.

Online < Best expert (1+ ¢) + O(log n)/e (low regret)
Inany LP, x;,= Prob. of expertiat time t.



Recent Extensions

Handle somewhat more general settings
[B., Buchbinder, Naor 10] (can capture expert learning)

(Algorithms based on similar insight)

Potential function interpretation [B., Buchbinder, Naor 11]
(Useful when primal-dual view is messy)



K-Server Problem



The k-server Problem

* k servers lie in an n-point metric space.
* Requests arrive at metric points.
« To serve request: Need to move some server there.

O
Goal: Minimize total distance traveled.

Objective: Competitive ratio.

)
=
©

Move Nearest Algorithm



The Paging/Caching Problem

K-server on the uniform metric.
Server on location p = page p in cache

—7IN

1 n



Previous Results: Paging

Paging (Deterministic) [Sleator Tarjan 85]:
« Any deterministic algorithm >= k-competitive.
 LRU is k-competitive (also other algorithms)

gﬁ

« Rand. Marking O(log k) [Fiat, Karp, Luby, McGeoch, Sleator, Young 91].

Paging (Randomized):

* Lower bound H, [Fiatetal. 91], tight results known.



K-server conjecture

[Manasse-McGeoch-Sleator '88]:
There exists k competitive algorithm on any metric space.

Initially no f(k) guarantee.
Fiat-Rababi-Ravid'90: exp(k log k)

Koutsoupias-Papadimitriou’95: 2k-1

Chrobak-Larmore’91: k for trees.



Randomized k-server Conjecture

There is an O(log k) competitive algorithm for any metric.

Uniform Metric: log k
Polylog for very special cases (uniform-like)

Line: n2/3 [Csaba-Lodha’06]
exp(O(log n)2) [Bansal-Buchbinder-Naor’'10]

Depth 2-tree: No o(k) guarantee %



Result

Thm [B.,Buchbinder,Madry,Naor 11]: There is an O(log? k
log® n) competitive* algorithm for k-server on any
metric with n points.

* Hiding some log log n terms



Our Approach
Hierarchically Separated Trees (HSTS) [Bartal 96].

Any Metric ——

owan A

Allocation Problem (uniform metrics): [Cote-Meyerson-Poplawski’08]
(decides how to distribute servers among children)

Allocation
instances

NN NN

K-server on HST



Allocation Problem

Uniform Metric m

At each time t, request arrives at some location |
Request = (h,(0),...,h(k)) [monotone: h(0) > h(1) ... > h(k)]

Upon seeing request, can reallocate servers

Hit cost = hy(k) [k : number of servers at i]
Total cost = Hit cost + Move cost

Eg: Paging = cost vectors (c0,0,0,...,0)

*Total servers k(t) can also change (let’s ignore this)



Allocation to k-server

Thm [Cote-Poplawski-Meyerson]: An online algorithm for allocation

s.t. for any € > 0,
) Hit Cost (Alg) < (1+¢) OPT
1) Move Cost (Alg) < [B(e) OPT

gives ~ O(d B(1/d)) competitive k-server alg. on depth d HSTs

d = log (aspect ratio) So, = poly(1/e) polylog(k,n) suffices

*HSTs need some well-separatedness
*Later, we do tricks to remove dependence on aspect ratio

We do not know how to obtain such an algorithm.



Fractional Allocation Problem

X;; - prob. of having | servers at location i (at ti%

2 %=1 (prob. distribution)
22 ix;<k (global server bound)

Cost: Hit cost with h(0),...,h(k) = 2 x;; h(j)
Moving € mass from (i,j) to (i,j’) costs ¢ |’

Surprisingly, fractional allocation does not give good
randomized alg. for allocation problem.



A gap example

A Allocation Problem on 2 points

Left Right

Requests alternate on locations.
Left: (1,1,...,1,0) Right: (1,0,...,0,0)

Any integral solution must pay Q(T) in T steps.
Claim: Fractional Algorithm pays only T/(2k) .
Xio=1lk x ,=1-1/k

Xp1=1

No move cost. Hit cost of 1/k on left requests.



Fractional Algorithm Suffices

Thm (Analog of Cote et al): Suffices to have fractional
allocation algorithm with (1+¢,B(c)) guarantee.

Gives a fractional k-server algorithm on HST

Thm (Rounding): Fractional k-server alg. on HSTs ->
Randomized Alg. with O(1) loss.

Thm (Frac. Allocation): Design a fractional allocation
algorithm with B(e) = O(log (k/e)).



Concluding Remarks

Primal Dual: Unifying idea in many online algorithms.
Close connections to multiplicative updates method.

Related work for regret minimization [Shwartz-Singer 07]

Towards a unified framework for problems dealing
with uncertainty ?



Thank you



