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Online Algorithms 

Input revealed in parts.  

Algorithm has no knowledge of future. 

 

Scheduling, Load Balancing, Routing, Caching, 

Finance, Machine Learning … 

 

Competitive ratio = 

 

 

Expected Competitive ratio = 



Some classic problems 



The Ski Rental Problem 

• Buying costs $B. 

• Renting costs $1 per day. 

 

Problem: 

• Number of ski days is not known in advance. 

 

Goal: Minimize the total cost. 

 

Deterministic:  2 

Randomized: e/(e-1) ¼ 1.58 



Online Virtual Circuit Routing 

Network graph G=(V, E) 

capacity function u: E Z+ 

 

Requests: ri = (si, ti) 
 

• Problem: Connect si to ti by a path, or reject the 
request.  

• Reserve one unit of bandwidth along the path. 

• No re-routing is allowed. 
 

• Load: ratio between reserved edge bandwidth and 
edge capacity. 

• Goal: Maximize the total throughput. 



Virtual Circuit Routing - Example 

t1 

s1 

t2 

s2 

s3 

t3 

Maximum Load:  0 1/5 2/5 3/5 

Edge capacities: 5  



Virtual Circuit Routing 

Key decision: 

1) Whether to choose request or not? 

2) How to route request? 

 

O(log n)-congestion, O(1)-throughput  [Awerbuch Azar Plotkin 90’s] 

Various other versions and tradeoffs. 

 

Main idea: Exponential penalty approach   

                 length (edge) =  exp (congestion) 

Decisions based on length of shortest (si,ti) path 

 

Clever potential function analysis 



The Paging/Caching Problem 

Set of pages {1,2,…,n} , cache of size k<n. 

Request sequence of pages 1, 6, 4, 1, 4, 7, 6, 1, 3, … 

 

a) If requested page already in cache, no penalty. 

b) Else, cache miss. Need to fetch page in cache 

   (possibly) evicting some other page.  

 

Goal:  Minimize the number of cache misses. 

 

Key Decision: Upon a request, which page to evacuate? 



Previous Results: Paging 

Paging (Deterministic) [Sleator Tarjan 85]: 

• Any det. algorithm ¸ k-competitive. 

• LRU is k-competitive (also other algorithms) 

 

Paging (Randomized): 

• Rand. Marking O(log k)   [Fiat, Karp, Luby, McGeoch, Sleator, 

Young 91].  

• Lower bound Hk  [Fiat et al. 91],  tight results known. 



Do these problems have  

anything in common? 



An Abstract Online Problem 

min   3 x1 + 5 x2 + x3 + 4 x4 + … 

 

2 x1 + x3 + x6 + …  ¸ 3 

x3 +  x14 + x19 + … ¸ 8 

x2 + 7 x4 + x12 + … ¸ 2 

 

 

Goal: Find feasible solution x* with min cost. 

 

Requirements:  

1) Upon arrival constraint must be satisfied 

2) Cannot decrease a variable.  

Covering LP  

(non-negative  

entries) 



Example 

 min  x1 + x2 + … + xn 

 

x1 + x2 + x3 + … + xn   ¸ 1 

       x2 + x3 + … + xn   ¸ 1 

              x3 + … + xn   ¸ 1 

                     … 

                             xn   ¸ 1 

 

Online  ¸  ln n      (1+1/2+ 1/3+ … + 1/n) 

Opt = 1  ( xn=1 suffices)                      

 

Set all xi to 1/n 

Increase  x2 ,x3,…,xn to 1/n-1 

… 

Increase  xn to 1 



The Dual Problem 

max   3 y1 + 5 y2 + y3 + 4 y4 + … 

 

2 y1+ y2   + y3     + …  · 3 

y1   +  y2  + 2 y3 + …  · 8 

y1   +7 y2 + y3    + …   · 2 

 

 

Goal: Find y* with max cost. 

 

Requirements:  

1) Variables arrive sequentially    

2) At step t,  can only modify y(t)  

Packing LP  

(non-negative  

entries) 

All previous problems  

can be expressed as  

Covering/Packing LP 



Ski Rental – Integer Program 

Subject to: 
 

For each day i:  

1 - Rent on day i          

0 - Don't rent on day i 
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Routing – Linear Program 

s.t: 
 

For each ri: 

 

For each edge e:  
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Paging – Linear Program 

Time line 

 Pg i Pg i Pg i 

At any time t, can have at most k such intervals. 

x(i,j):  How much interval (i,j)  

evacuated thus far 

 

If interval not present, then cache miss. 

   at least n-k intervals must be absent 

Cost =i j  x(i,j)  

n: number of distinct pages 

t Pg i’ Pg i’ Pg i’ 

0 · x(i,j) ·  1  
i: i  pt

 x(i,r(i,t)) ¸  n-k   8 t 
 

(i,1) 
(i,2) 



What can we say about the 

 abstract problem ? 



General Covering/Packing Results 



General Covering/Packing Results 

For a {0,1} covering/packing matrix:           [Buchbinder Naor 05] 

– Competitive ratio O(log D)  

– Can get e/e-1 for ski rental and other problems. 

 (D – max number of non-zero entries in a constraint).     

 

 
Remarks: 
• Number of constraints/variables can be exponential. 

• There can be a tradeoff between the competitive ratio and the factor by 
which constraints are violated. 

 

Fractional solution !  randomized algorithm  (online rounding) 



Consequences 

Very powerful framework. 

Unified and improved several previous results. 

Weighted Paging: O(log k)  guarantee  [B., Buchbinder, Naor 07]       
Previously, o(k) known only for the case of  2 weights [Irani 02] 

 

O(log2 k)  for Generalized Paging (arbitrary weights and sizes)  
[B., Buchbinder, Naor 08] 

 

 

A poly-logarithmic guarantee for the k-server problem 
[B., Buchbinder, Madry, Naor 11] 



Rest of the Talk 

1) Overview of LP Duality, offline P-D technique 

2) Derive Online Primal Dual  (very natural)  

3) Further Extensions + k-server Problem 

 



Duality 

   Min  3 x1 + 4 x2  

 

    x1 + x2 >= 3 

    x1 + 2 x2 >= 5 

 

 

 

Want to convince someone that 

there is a solution of value 12. 

Easy, just demonstrate a solution, 

 x2 = 3 



Duality 

   Min  3 x1 + 4 x2  

 

    x1 + x2 >= 3 

    x1 + 2 x2 >= 5 

 
 

 

Want to convince someone that 

there is no solution of value 10. 

How? 

                               2 * first eqn +  second eqn   

                               3 x1 + 4 x2  >= 11 
 

LP Duality Theorem: This seemingly ad hoc trick always works! 



LP Duality 

Min cj xj 

j aij xj ¸ bi 

 

 

So, for any y ¸ 0 satisfying  i aij yi · cj   for all i 

j xj cj  ¸ i yi bi 

 

 

 
Equality when Complementary Slackness 

i.e.  yi  > 0  (only if corresponding primal constraint is tight) 

       xi  > 0     (only if corresponding dual constraint is tight) 

Dual LP 

Dual cost 

Linear combination 

(y ¸ 0) 



Offline Primal-Dual Approach 

min cx                                              max b y 

Ax ¸ b                                            At y · c    

x ¸ 0                                               y ¸ 0 

 

 

Generic Primal Dual Algorithm: 

0) Start with x=0, y=0    (primal infeasible, dual feasible) 

1) Increase dual and primal together, 

    s.t. if dual cost increases by 1,  primal increases by · c 

2) If both dual and primal feasible ) c approximate solution 



Key Idea for Online Primal Dual 

Primal: Min i  ci xi                       Dual 

 

Step t, new constraint:                 New variable yt 

a1x1 + a2x2 + … + ajxj ¸ bt            + bt yt    in dual objective 

 

How much:  xi  ?                         yt ! yt + 1   (additive update) 

 

 primal cost =  

 dx/dy  proportional to  x        so, x  varies as  exp(y)                                

=   Dual Cost 



How to initialize 

A problem: dx/dy  is proportional to x, but x=0 initially.  

 

So, x will  remain equal to 0  ? 

 

Answer: Initialize to 1/n. 

  

When: Complementary slackness tells us that x > 0 only if 

dual constraint corresponding to x is tight. 

  

    Set x=1/n when its dual constraint becomes tight.  



The Algorithm 

Min j cj xj                                                                      

j  aij xj  ¸ bi 

 

On arrival of i-th constraint, Initialize yi=0   (dual var. for constraint) 

 

If current constraint unsatisfied, gradually increase yi 

If  xj =0,  set xj = 1/n     when i aij yi = cj  

else update  xj  as   1/n ¢ exp( (i aij yi / cj)   - 1 )  

1)  Primal  Cost  · Dual Cost 

2)  Dual solution violated by at most O(log n) factor.  

Max i bi yi 
i  aij yi · cj   



Corresponding  

Dual constraint 

Example: Caching 

1/k 

1 

Dual is tight Dual violated  

by O(log k) 
Page fully 

 in cache 

 (“marked”) 

Page fully 

evacuated 
Page is 

“unmarked” 

0 

xp: fraction of p missing from cache 



Part 2: Rounding 

Primal dual technique gives fractional solution. 

 

Problem specific rounding/interpretation: 

 

1) Easy for ski rental   (value of x, is prob. of buying by then) 

 

2) Routing: Can derandomize  online using  pessimistic 
estimator or other techniques 

 

3) Caching (tricky):  Gives probability distribution on pages, 

Actually want probability distribution on cache states. 



Beyond Packing/Covering LPs 



Extended Framework 

Limitations of current framework 

1. Only covering or packing LP 

2. Variables can only increase. 

 

Cannot impose:   a ¸ b  or    a ¸ b1 – b2 

 

Problem with monotonicity: 

 

Predicting with Experts: Do as well as best expert in hindsight 

n experts: Each day, predict rain or shine.   

 

Online ·  Best expert (1+ ) + O(log n)/                (low regret) 

In any LP,   xi,t =  Prob. of expert i at time t. 



Recent Extensions 

Handle somewhat more general settings 
[B., Buchbinder, Naor 10]  (can capture expert learning) 

(Algorithms based on similar insight) 

 

Potential function interpretation [B., Buchbinder, Naor 11] 

(Useful when primal-dual view is messy) 



K-Server Problem 



The k-server Problem 

• k servers lie in an n-point metric space. 

• Requests arrive at metric points. 

• To serve request: Need to move some server there. 

 

Goal: Minimize total distance traveled. 

 

Objective: Competitive ratio. 

1 2 3 

Move Nearest Algorithm 



The Paging/Caching Problem 

 

K-server on the uniform metric. 

Server on location p =  page p in cache 

1 n .  .  .   



Previous Results: Paging 

Paging (Deterministic) [Sleator Tarjan 85]: 

• Any deterministic algorithm >= k-competitive. 

• LRU is k-competitive (also other algorithms) 

 

Paging (Randomized): 

• Rand. Marking O(log k)  [Fiat, Karp, Luby, McGeoch, Sleator, Young 91].  

• Lower bound Hk  [Fiat et al. 91],  tight results known. 



K-server conjecture 

[Manasse-McGeoch-Sleator ’88]: 

There exists k competitive algorithm on any metric space. 

 

Initially no f(k) guarantee. 

Fiat-Rababi-Ravid’90:  exp(k log k) 

   … 

Koutsoupias-Papadimitriou’95:   2k-1 

 

Chrobak-Larmore’91: k for trees. 



Randomized k-server Conjecture 

There is an O(log k) competitive algorithm for any metric. 

 

Uniform Metric:  log k 

Polylog for very special cases (uniform-like) 

 

Line:  n2/3                                 [Csaba-Lodha’06]   

          exp(O(log n)1/2)             [Bansal-Buchbinder-Naor’10] 

 

Depth 2-tree: No o(k) guarantee 



Result 

Thm [B.,Buchbinder,Madry,Naor 11]: There is an O(log2 k 

log3 n)  competitive* algorithm for k-server on any 

metric with n points. 

* Hiding some log log n terms 



Our Approach 

Hierarchically Separated Trees (HSTs) [Bartal 96]. 

 

Any Metric   

 

 

 

Allocation Problem (uniform metrics): [Cote-Meyerson-Poplawski’08] 

(decides how to distribute servers among children) 

O(log n) 

Allocation  

instances 

K-server on HST 



Allocation Problem 

Uniform Metric 

 

At each time t, request arrives at some location i 

Request = (ht(0),…,ht(k))            [monotone: h(0) ¸ h(1) … ¸ h(k)] 

 

Upon seeing request, can reallocate servers 

 

Hit cost = ht(ki)                            [ki : number of servers at i]   

Total cost = Hit cost  +  Move cost 

 

Eg: Paging  =  cost vectors (1,0,0,…,0) 

 
*Total servers k(t) can also change (let’s ignore this) 



Allocation to k-server 

Thm [Cote-Poplawski-Meyerson]: An online algorithm for allocation  

  s.t. for any  > 0, 

  i)  Hit Cost (Alg) · (1+) OPT     

  ii) Move Cost (Alg) ·  () OPT 

 

gives ¼ O(d (1/d)) competitive k-server alg. on depth d HSTs 

 

d = log (aspect ratio)     So,  = poly(1/) polylog(k,n) suffices 

   
*HSTs need some well-separatedness 

*Later, we do tricks to remove dependence on aspect ratio 

 

We do not know how to obtain such an algorithm. 



Fractional Allocation Problem 

xi,j  :  prob. of having  j servers at location i  (at time t) 

 

j  xi,j = 1            (prob. distribution) 

i j j xi,j · k       (global server bound)  

 

Cost: Hit cost with h(0),…,h(k) =  j xi,j h(j) 

          Moving  mass from (i,j)  to  (i,j’)  costs    |j’-j|   

 

Surprisingly, fractional allocation does not give good 

randomized alg. for allocation problem. 



A gap example 

   Allocation Problem on 2 points 

Requests alternate on locations. 

Left:   (1,1,…,1,0)                        Right:  (1,0,…,0,0) 

 

Any integral solution must pay  (T) in T steps. 

 

Claim: Fractional Algorithm pays only T/(2k) . 

XL,0 = 1/k     xL,k = 1-1/k 

XR,1 = 1 

 

No move cost. Hit cost of 1/k  on left requests. 
 

Left Right 



Fractional Algorithm Suffices 

Thm (Analog of Cote et al): Suffices to have fractional 

allocation algorithm with (1+,()) guarantee. 

 

Gives a fractional k-server algorithm on HST 

 

Thm (Rounding): Fractional k-server alg. on HSTs -> 

Randomized Alg. with O(1) loss. 

 

Thm (Frac. Allocation): Design a fractional allocation 

algorithm with () = O(log (k/)). 



Concluding Remarks 

Primal Dual: Unifying idea in many online algorithms. 

 

Close connections to multiplicative updates method. 

 

Related work for regret minimization [Shwartz-Singer 07] 

Towards a unified framework for problems dealing 

with uncertainty ? 

 

 

 



Thank you 


