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Nonconvex QP

We consider a problem of the form

(QP) min xT Qx + cT x
s.t. x ∈ F

where F ∈ <n is a feasible region or ground set of a simple form. The
symmetric matrix Q is not assumed to be positive semidefinite. The
cases of greatest interest are:

The simplex, F = {x ≥ 0 |eT x = 1}. In this case QP is often
referred to as the “standard QP” problem (QPS).
The hypercube, F = {x |0 ≤ x ≤ e}. In this case QP is often
referred to as the “box QP” problem (QPB).
The hypersphere, F = {x | ‖x‖ ≤ 1}. In this case QP is often
referred to as the “trust-region subproblem” (TRS).
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Nonconvex QP

We assume throughout that F is a compact convex set. Our approach
to QP is to consider the convex hull of quadratic forms on F ,

Q[F ] := Co

{(
1
x

)(
1
x

)T

| x ∈ F

}
.

We often write an element of Q[F ] as

Y = Y (x ,X ) =

(
1 xT

x X

)
.
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Nonconvex QP

Since the extreme points of Q[F ] are points Y (x , xxT ) where x ∈ F ,
the problem QP can be written equivalently as

(QP) min Q • X + cT x
s.t. Y (x ,X ) ∈ Q[F ],

which is a linear optimization problem over Q[F ]. Written in this form,
tractability of QP depends on the ability to efficiently characterize Q[F ].

An interesting issue that we will not consider is the complexity of
approximation results for continuous optimization problems on these
ground sets: see de Klerk (2008).
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Nonconvex QP

For polyhedral F , result of Burer (2009) provides a general mechanism
for expressing Q[F ] using completely positive (CP) matrices. Let Cn
denote the cone of n × n CP matrices.

Theorem (CP representation of Q[F ])
Let F = {x ≥ 0 |Ax = b }, where A is m × n and F is bounded. Then
Q[F ] = {Y (x ,X ) ∈ Cn+1 |aix = bi , aT

i Xai = b2
i , i = 1, . . . ,m}.
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Standard QP

For the case of Standard QP have F = {x ≥ 0 |eT x = 1}. Note that if
eT x = 1 and X = xxT , then Xe = x . For X with E • X = 1, consider

Y (Xe,X ) =

(
eT

I

)
X
(
e I

)
=

(
1 eT X

Xe X

)
.

Then eT (Xe) = 1, and X ∈ Cn =⇒ Y (Xe,X ) ∈ Cn+1. Burer’s CP
representation then immediately implies that

Q[F ] = {Y (Xe,X ) |X ∈ Cn, E • X = 1} .

Let Dn be the cone of n × n doubly nonnegative (DNN) matrices.
Replacing Cn with Dn gives a tractable DNN relaxation of QPS, which
is exact for n ≤ 4.
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Standard QP

CP representation for QPS was first obtained by Bomze et al.
(2000).

Applications of QPS include formulation of max stable set
problem. In this case DNN relaxation corresponds to
Lovasz-Schrijver bound ϑ′.
Representation of Q[F ] where F is the standard simplex can also
be used to derive representations for some other sets of interest.
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Standard QP

Let T denote the convex hull of n + 1 affinely independent points in <n,
T = {Ax | x ∈ S ⊂ <n+1}, where S is a standard simplex and the
columns of A are the extreme points of T . (So T is a triangle in <2 or a
tetrahedron in <3).

Since there is an invertible affine mapping from T ∈ <n to S ∈ <n+1,
above result also gives a representation for Q[T ];

Q[T ] =

{(
1 eT XAT

AXe AXAT

)
|X ∈ Cn+1, E • X = 1

}
.

Replacing Cn+1 with Dn+1 gives a tractable DNN relaxation, which is
exact for n ≤ 3.
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Standard QP

Next consider the case where F ⊂ <n is a triangulated polytope

F = P = ∪k
i=1Ti ,

where each Ti is the convex hull of n + 1 affinely independent points,
Ti = {Aix | x ∈ S ⊂ <n+1}. We are primarily interested in cases where
P has a simple enough structure so that a triangulation can be
explicitly given.

From previous result we immediately obtain

Q[P] =

{
k∑

i=1

(
eT Xie eT XiAT

i
AiXie AiXiAT

i

)
|

k∑
i=1

E • Xi = 1, Xi ∈ Cn+1 ∀i

}
.

Replacing Cn+1 with Dn+1 gives a tractable DNN relaxation, which is
again exact for n ≤ 3.
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Box QP

Box QP problem QPB corresponds to F = {x |0 ≤ x ≤ e}. To use
Burer’s CP representation, write F in form

{(x , s) ≥ 0 | xi + si = 1, i = 1, . . . ,n}

and consider matrix

Y + =

1 xT sT

x X Z
s Z T S

 .

By Burer’s result, QPB is equivalent to the problem

min Q • X + cT x
s.t. x + s = e, diag(X + 2Z + S) = e,

Y + ∈ C2n+1.
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Box QP

Replacing C2n+1 with D2n+1 gives tractable doubly nonnegative
(DNN) relaxation.

Can easily show that DNN relaxation is equivalent to “SDP+RLT”
relaxation that imposes Y (x ,X ) � 0 and the RLT constraints

xij ≥ xi + xj − 1, xij ≥ 0, xij ≤ xi , xij ≤ xj .

For n = 2, DNN “relaxation” is equivalent to QPB (A. and Burer,
2010). Result can be viewed as strengthening of well-know fact
that for two variables, RLT constraints generate convex hull of
{x1x2 |0 ≤ xi ≤ 1, i = 1,2}.
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Box QP

Constraints from Boolean Quadric Polytope (BQP) are valid for
off-diagonal components of X (Burer and Letchford, 2009). For
example can impose triangle (TRI) inequalities

x1 + x2 + x3 ≤ x12 + x13 + x23 + 1,
x12 + x13 ≤ x1 + x23,

x12 + x23 ≤ x2 + x13,

x13 + x23 ≤ x3 + x12.

For n = 3, BQP is completely determined by triangle inequalities
and RLT constraints. However, can still be a gap when using
SDP+RLT+TRI relaxation; example from Burer and Letchford
(n = 3) has solution value 1.0, bound value 1.093.
For Burer-Letchford example (n=3), solution matrix Y + has 5× 5
principal submatrix that is not strictly positive, and is not CP. Can
obtain copositive cut, re-solve problem, and repeat.
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Box QP
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Figure: Gap to optimal value for Burer-Letchford QPB problem (n = 3)
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Box QP

Can obtain better bounds using tighter approximations of Cn or C∗n .
For Burer-Letchford example, using K1

7 = Q1
7 in place of D∗7

obtains exact solution value.

For n = 3 can obtain exact representation using result for QPS
and triangulation of the cube; this representation uses 5 or 6
matrices in D4.
For larger n, methodology based on imposing SDP+RLT+TRI
constraints often gives excellent bounds. This approach was first
considered by Yajima and Fujie (1998).
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Box QP

Consider 54 QPB maximization problems with n = 20, 30, 40, 50, 60
from Vandenbussche and Nemhauser (2003). Density of (c,Q) varies
from 30% to 100%. Compare bounds using SDP ( Y (x ,X ) � 0 with
added bounds xii ≤ xi on diagonal components), SDP+RLT and
SDP+RLT+TRI. When using TRI inequalities, generate RLT and TRI
inequalities in several rounds, with decreasing infeasibility tolerance.

Exact solution of 50 problems accomplished using branch and cut
with polyhedral bounds by Vandenbussche and Nemhauser, using
up to 28,000 LPs and 500,000 cuts per problem.
For 15 problems with n = 30, root gap for polyhedral bound
averages 71%; root gap using RLT averages 77%; root gap for
BARON after bound-tightening averages 74%.
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Box QP

Objective Value Cuts Added % Gaps to OPT
Problem OPT SDP +RLT +RLT+TRI RLT TRI SDP +RLT +RLT+TRI

20-100-1 706.50 739.39 706.52 706.50 197 55 4.655% 0.002% 0.000%
20-100-2 856.50 900.20 857.97 856.50 184 172 5.102% 0.171% 0.000%
20-100-3 772.00 785.51 772.00 168 1.750% 0.000%
30-060-1 706.00 768.12 714.68 706.00 371 777 8.799% 1.229% 0.000%
30-060-2 1377.17 1426.94 1377.17 381 3.614% 0.000%
30-060-3 1293.50 1370.13 1298.26 1293.50 394 288 5.924% 0.368% 0.000%
30-070-1 654.00 746.43 674.00 654.00 369 784 14.133% 3.058% 0.000%
30-070-2 1313.00 1375.07 1313.00 449 4.727% 0.000%
30-070-3 1657.40 1719.77 1657.57 1657.40 452 442 3.763% 0.010% 0.000%
30-080-1 952.73 1050.76 965.25 952.73 365 718 10.290% 1.315% 0.000%
30-080-2 1597.00 1622.81 1597.00 376 1.616% 0.000%
30-080-3 1809.78 1836.79 1809.78 317 1.492% 0.000%
30-090-1 1296.50 1348.48 1296.50 370 4.009% 0.000%
30-090-2 1466.84 1527.87 1466.84 344 4.160% 0.000%
30-090-3 1494.00 1516.81 1494.00 420 1.527% 0.000%
30-100-1 1227.13 1285.74 1227.13 356 4.777% 0.000%
30-100-2 1260.50 1365.32 1261.11 1260.50 427 465 8.316% 0.048% 0.000%
30-100-3 1511.05 1611.11 1513.15 1511.05 377 265 6.622% 0.139% 0.000%
40-030-1 839.50 876.60 839.50 656 4.419% 0.000%
40-030-2 1429.00 1496.83 1429.00 889 4.747% 0.000%
40-030-3 1086.00 1156.52 1086.00 705 6.494% 0.000%
40-040-1 837.00 956.09 863.09 837.00 710 1966 14.228% 3.117% 0.000%
40-040-2 1428.00 1452.53 1428.00 600 1.718% 0.000%
40-040-3 1173.50 1269.83 1180.85 1173.50 745 1427 8.209% 0.626% 0.000%
40-050-1 1154.50 1276.79 1160.44 1154.50 797 1608 10.592% 0.515% 0.000%
40-050-2 1430.98 1517.51 1436.05 1430.98 788 961 6.047% 0.354% 0.000%
40-050-3 1653.63 1747.31 1653.63 680 5.665% 0.000%
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Box QP

Objective Value Cuts Added % Gaps to OPT
Problem OPT SDP +RLT +RLT+TRI RLT TRI SDP +RLT +RLT+TRI

40-060-1 1322.67 1481.96 1352.92 1322.67 696 1722 12.043% 2.287% 0.000%
40-060-2 2004.23 2099.58 2004.23 739 4.758% 0.000%
40-060-3 2454.50 2508.68 2454.50 701 2.207% 0.000%
40-070-1 1605.00 1663.98 1605.00 584 3.675% 0.000%
40-070-2 1867.50 1931.34 1867.50 650 3.418% 0.000%
40-070-3 2436.50 2522.71 2436.50 828 3.538% 0.000%
40-080-1 1838.50 1936.17 1838.50 615 5.312% 0.000%
40-080-2 1952.50 2012.92 1952.50 639 3.094% 0.000%
40-080-3 2545.50 2638.34 2545.89 2545.50 755 742 3.647% 0.015% 0.000%
40-090-1 2135.50 2262.51 2135.50 763 5.948% 0.000%
40-090-2 2113.00 2268.86 2113.75 2113.00 731 336 7.376% 0.035% 0.000%
40-090-3 2535.00 2594.26 2535.00 598 2.338% 0.000%
40-100-1 2476.38 2557.23 2476.38 673 3.265% 0.000%
40-100-2 2102.50 2216.62 2106.37 2102.50 707 1251 5.428% 0.184% 0.000%
40-100-3 1866.07 2037.31 1908.19 1866.07 664 1732 9.176% 2.257% 0.000%
50-030-1 1324.50 1389.09 1324.50 903 4.877% 0.000%
50-030-2 1668.00 1755.68 1671.33 1668.00 831 233 5.257% 0.200% 0.000%
50-030-3 1453.61 1565.76 1454.88 1453.61 830 180 7.715% 0.087% 0.000%
50-040-1 1411.00 1483.01 1411.00 1017 5.103% 0.000%
50-040-2 1745.76 1881.33 1749.46 1745.76 868 509 7.766% 0.212% 0.000%
50-040-3 2094.50 2176.98 2094.50 1081 3.938% 0.000%
50-050-1 1198.41 1417.77 1302.24 1200.14 723 1531 18.304% 8.664% 0.144%
50-050-2 1776.00 1942.53 1789.58 1776.00 867 667 9.377% 0.765% 0.000%
50-050-3 2106.10 2268.04 2121.93 2106.10 937 933 7.689% 0.752% 0.000%
60-020-1 1212.00 1297.42 1212.00 1199 7.048% 0.000%
60-020-2 1925.50 2010.57 1925.50 1319 4.418% 0.000%
60-020-3 1483.00 1604.60 1491.06 1483.00 1040 735 8.200% 0.543% 0.000%

Average: 5.969% 0.499%
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The Trust-Region Subproblem

For TRS interested in F = {x | ‖x‖ ≤ 1}. SDP representation for Q[F ]
first given by Rendl and Wolkowocz (1997):

Q[F ] = {Y (x ,X ) � 0 | tr(X ) ≤ 1}.

Since F is not polyhedral, Burer’s CP representation cannot be
applied. Can instead use Pataki’s (1998) rank result for extreme points
of SDP constraint systems.
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The Trust-Region Subproblem

Proposition (Pataki’s rank result)
Consider an SDP feasible set in block standard form:
F := {X j � 0, j = 1, . . . ,p :

∑p
j=1 Aj

i • X j = bi , i = 1, . . . ,m}. Let
(X 1, . . . ,X p) be an extreme point of F , and define rj := rank(X j). Then∑p

j=1 rj(rj + 1) ≤ 2m.

Note that standard form LP problem corresponds to diagonal matrix,
with p = n 1× 1“blocks.” Rank of block for xi is zero if xi = 0, and one
otherwise, so result is that for an extreme point must have∑n

j=1 rj(rj + 1) =
∑n

j=1 2rj ≤ 2m, meaning that at most m variables are
positive.
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The Trust-Region Subproblem

Lemma (SDP representation of TRS)
Suppose that Y (x ,X ) is an extreme point of the convex set
{Y (x ,X ) � 0 | tr(X ) ≤ 1}. Then X = xxT , where ‖x‖ ≤ 1.

Proof.
The given convex set can be expressed in the form of Pataki’s result as

F :=

{
Y =

(
x0 xT

x X

)
� 0, s ≥ 0 | x0 = 1, tr(X ) + s = 1

}
.

Pataki’s result then implies that if (Y , s) is an extreme point of F ,
rY (rY + 1) + rs(rs + 1) ≤ 4, where rY = rank(Y ) and rs = rank(s). Then
rY ≤ 1, and since Y 6= 0 it must be that rY = 1, implying X = xxT . The
fact that ‖x‖ ≤ 1 follows from Y (x ,X ) � 0 and tr(X ) ≤ 1.
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Extended Trust-Region Subproblems TRS1

Next consider a problem TRS1 that adds one linear constraint to TRS,
corresponding to F = {x | ‖x‖ ≤ 1, aT x ≤ u}.

Sturm and Zhang
(2003) proved that in this case Q[F ] has a representation as a mixed
SDP/SOCP system

Q[F ] = {Y (x ,X ) � 0 | tr(X ) ≤ 1, ‖ux − Xa‖ ≤ u − aT x}.

Derivation of the constraint ‖ux − Xa‖ ≤ u − aT x can be viewed as an
extension of the well-known RLT procedure to SOC constraints, since

‖(u − aT x)x‖ = (u − aT x)‖x‖ ≤ u − aT x

for a feasible x , and (aT x) = xxT a. Replacing xxT with X then gives
the SOC-RLT constraint ‖ux − Xa‖ ≤ u − aT x .
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Extended Trust-Region Subproblems TRS2p

Problem TRS2p adds two parallel linear constraints to TRS,
corresponding to F = {x | ‖x‖ ≤ 1, l ≤ aT x ≤ u}.

Ye and Zhang
(2003) showed that TRS2p could be solved via a case analysis, but
could not obtain a single convex programming representation.

Burer and A. (2011) show that for TRS2p,

Q[F ] =

Y (x ,X ) � 0 | tr(X ) ≤ 1,
‖ux − Xa‖ ≤ u − aT x
‖lx − Xa‖ ≤ aT x − l

(l + u)aT x − aT Xa ≥ lu

 .

The constraints in the above representation include two SOC-RLT
constraints, each obtained from one linear inequality and the SOC
constraint ‖x‖ ≤ 1, as well as the ordinary RLT constraint obtained
from the two linear inequalities together.
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Extended Trust-Region Subproblems TTRS

The two-trust-region subproblem (TTRS) is the problem obtained by
adding a second full-dimensional ellipsoidal constraint to TRS,
corresponding to F = {x | ‖x‖ ≤ 1, ‖H1/2(x − h)‖ ≤ 1} where H � 0
and h ∈ <n is the center of the second ellipsoid. TTRS has been
heavily studied in the NLP literature.

Standard SDP relaxation for TTRS is

min
{

Q • X + cT x | tr(X ) ≤ 1, Y (x ,X ) � 0
H • X − 2hT Hx + hT Hh ≤ 1

}
.

Known that this relaxation may have a nonzero gap. Not immediately
clear how to strengthen it; for example, no explicit linear inequality
constraints from which to derive SOC-RLT constraints.
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Extended Trust-Region Subproblems TTRS

Consider SOC-RLT constraints derived from supporting hyperplanes of
the ball B = {x : ‖x‖ ≤ 1}. Given any vector a with ‖a‖ = 1, the
inequality aT x ≤ 1 supports B at a, so the SOC-RLT constraint
‖H1/2(x − Xa− (1− aT x)h)‖ ≤ 1− aT x can be used to strengthen the
SDP relaxation.

Can show that it is equivalent to generate SOC-RLT cuts using
supporting hyperplanes from second ellipsoid instead of B.
Separation problem of finding a vector a that generates an
SOC-RLT cut for which a given point is infeasible can be
formulated as an ordinary TRS problem.
Consider 4 examples from literature for which SDP relaxation of
TTRS known to have gap. By using SOC-RLT cuts, can get gap to
zero in all cases using at most 5 cuts.
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Extended Trust-Region Subproblems TTRS

However cannot always drive gap to zero using these SOC-RLT cuts.
Consider TTRS of form

min{xT Qx + cT x : ‖x‖ ≤ 1, ‖H1/2x‖ ≤ 1},

where second ellipsoid is also centered at origin.

Ye and Zhang (2003) show that SDP relaxation is tight for such a
problem if c = 0. (Can easily be proved using Pataki rank result.)
However, for instance with n = 2 and

H = 1
2

(
3 0
0 1

)
, Q =

(
−4 1
1 −2

)
, c =

(
1
1

)
,

exact solution value is −4 at x∗ = (±1,∓1)T/
√

2, and SDP
relaxation has value of −4.25. Optimal value using SOC-RLT cuts
is ≈ −4.0360, leaving a 0.9% gap to the true solution value.
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Figure: TTRS with nonzero gap using SOC-RLT constraints
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Extended Trust-Region Subproblems TTRS

To further investigate use of SOC-RLT constraints numerically, use
theorem of Martinez (1994) to generate instances of TRS having one
global solution and another local, nonglobal minimum. Add second
ellipsoidal constraint that cuts off global solution. Resulting problems
are good candidates for “difficult” TTRS.

Consider 1000 instances each for n = 5, 10, 20. First solve SDP
relaxation. If solution is not rank-one, add up to 25 SOC-RLT cuts.
Consider rank measure λn/λn−1, applied to Y (x ,X ). Consider solution
to be numerically rank-one if rank measure > 104.

Solved Unsolved
n SDP +SOC-RLT
5 92.1% 4.9 % 3.0%

10 17.5% 74.7% 7.8%
20 7.7% 84.5% 7.7%
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TTRS Results (1000 instances, n=10)
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TTRS Results (1000 instances, n=20)
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Figure: TTRS results based on Martı́nez (1994) with n = 5,10 and 20.
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Open Problems

Open Problems

Complete description of Q[F ] for box constraints
F = {x |0 ≤ x ≤ e} for n = 3, using only original (x ,X ) variables.

TRS2 - TRS with two additional linear inequalities (not parallel).
Same construction with RLT and SOC-RLT constraints as used for
TRS2p applies, but current proof does not. May be distinction
between cases where constraints do and do not intersect in ball.
TTRS - devise polynomial-time solution procedure, or
demonstrate that problem is NP-hard.
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Thank You
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