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CoP and CP matrices Background

Let Sn denote the set of n × n real symmetric matrices, S+
n denote the

cone of n × n real symmetric positive semidefinite matrices and Nn
denote the cone of symmetric nonnegative n × n matrices.

The cone of n × n completely positive (CP) matrices is
Cn = {X |X = AAT for some n × k nonnegative matrix A}.
Dual of Cn is the cone of n × n copositive (CoP) matrices,
C∗n = {X ∈ Sn | yT Xy ≥ 0 ∀ y ∈ Rn

+}.

Extensive linear algebra literature for CP and CoP matrices; see for
example new survey article on CoP matrices by Hiriart-Urruty and
Seeger in SIAM Review (December, 2010).
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CoP and CP matrices Background

However, much of the linear algebra literature has little applicability in
the optimization context.

Literature on CoP matrices largely concerned with necessary and
sufficient conditions, many of which are not algorithmic in nature.
Known that determining if X ∈ C∗n is co-NP-complete (Murty and
Kabadi, 1987).
Literature on CP matrices largely concerned with issue of CP-rank
(minimum k so that X = AAT for some n × k nonnegative A).
One relevant topic concerns the distinction between completely
positive and doubly nonnegative (DNN) matrices. The cone of
n × n DNN matrices is Dn = S+

n ∩Nn. Clear that Cn ⊂ Dn.
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CoP and CP matrices Background

CP Graphs
For X ∈ Sn let G(X ) denote the undirected graph on vertices {1, . . . ,n}
with edges {{i 6= j} |Xij 6= 0}.

Definition (CP Graph)
Let G be an undirected graph on n vertices. Then G is called a CP
graph if any matrix X ∈ Dn with G(X ) = G also has X ∈ Cn.

Theorem (Kogan and Berman, 1993)
An undirected graph on n vertices is a CP graph if and only if it
contains no odd cycle of length 5 or greater.

Immediately implies that for n ≤ 4,

Cn = Dn, C∗n = D∗n = S+
n +Nn.
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CoP and CP matrices Applications in Optimization
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CoP and CP matrices Applications in Optimization

Lemke’s algorithm for the LCP Iw −Mz = q, w ≥ 0, z ≥ 0,
wT z = 0 converges if M is a “copositive plus” (but not generally
symmetric) matrix.

Global optimality for nonconvex quadratic programming can be
written in terms of copositivity conditions (Bomze, 1992/Danninger
and Bomze, 1993)

More recent results show that certain NP-Hard problems can be
formulated as linear optimization problems over CP or CoP matrices.

Nonconvex quadratic optimization over the simplex (“standard
QP”) (Bomze et al., 2000)
Computing a maximum stable set or maximum clique in a graph
(DeKlerk and Pasechnik, 2002)
The quadratic assignment problem (Povh and Rendl, 2009)
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CoP and CP matrices Applications in Optimization

Result of Burer (2009) shows broad applicability for CP/CoP matrices
in optimization. Consider problem

(MIQP) min xT Qx + cT x
s.t. Ax = b

x ≥ 0, xi ∈ {0,1}, i ∈ B,

where A is an m × n matrix and B ⊂ {1,2, . . . ,n}.

Let

Y = Y (x ,X ) =

(
1 xT

x X

)
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CoP and CP matrices Applications in Optimization

Theorem (CP representation of MIQP)
Assume that MIQP is feasible and the solution set is bounded. Then
the solution value in MIQP is equal to the solution value for the problem

min Q • X + cT x
s.t. Ax = b

aT
i Xai = b2

i , i = 1, . . . ,m
Y ∈ Cn+1, Xii = xi , i ∈ B.
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Separating DNN and CP matrices The 5x5 case
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Separating DNN and CP matrices The 5x5 case

Given a matrix X ∈ Dn \ Cn, want to separate X from Cn using a matrix
V ∈ C∗n having V • X < 0.

Why Bother?

Burer’s result shows that broad class of NP-hard problems can be
posed as linear optimization problems over Cn.
Dn is a tractable relaxation of Cn. Expect that solution of relaxed
problem will be X ∈ Dn \ Cn.
Note that least n where problem occurs is n = 5.
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Separating DNN and CP matrices The 5x5 case

Known that extreme rays of D5 are either rank-one matrices in C5,
or rank-three “extremely bad” matrices where G(X ) is a 5-cycle
(every vertex in G(X ) has degree two).

Burer, A. and Dür (2009) show that any such extremely bad matrix
can be separated from C5 by a transformation of the Horn matrix

H :=


1 −1 1 1 −1
−1 1 −1 1 1

1 −1 1 −1 1
1 1 −1 1 −1
−1 1 1 −1 1

 ∈ C∗5 \ D∗5.
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Separating DNN and CP matrices The 5x5 case

Dong and A. (2010) show that:

Separation procedure based on transformed Horn matrix applies
to X ∈ D5 \ C5 where X has rank three and G(X ) has at least one
vertex of degree 2.

More general separation procedure applies to any X ∈ D5 \ C5 that
is not componentwise strictly positive.

Even more general “recursive” separation procedure that applies to
any X ∈ D5 \ C5 is described by Burer and Dong (2010).

We will describe the procedure from Dong and A. (2010) for
X ∈ D5 \ C5, X 6> 0 and its generalization to larger matrices having
block structure.
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Separating DNN and CP matrices The 5x5 case

Assume that X ∈ D5, X 6> 0. After a symmetric permutation and
diagonal scaling, X may be assumed to have the form

X =

X11 α1 α2
αT

1 1 0
αT

2 0 1

 , (1)

where X11 ∈ D3.

Theorem (Berman and Xu, 2004)
Let X ∈ D5 have the form (1). Then X ∈ C5 if and only if there are
matrices A11 and A22 such that X11 = A11 + A22, and(

Aii αi
αT

i 1

)
∈ D4, i = 1,2.
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Separating DNN and CP matrices The 5x5 case

Berman and Xu use the above Theorem only as a proof mechanism,
but we now show that it has algorithmic consequences as well.

Theorem (Generation of cut, 5× 5 case)
Assume that X ∈ D5 has the form (1). Then X ∈ D5 \ C5 if and only if
there is a matrix

V =

V11 β1 β2
βT

1 γ1 0
βT

2 0 γ2

 such that
(

V11 βi
βT

i γi

)
∈ D∗4, i = 1,2,

and V • X < 0.
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but we now show that it has algorithmic consequences as well.

Theorem (Generation of cut, 5× 5 case)
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Separating DNN and CP matrices The 5x5 case

Cut matrix V can be found by solving a conic optimization
problem.

Suppose that X ∈ D5 \ C5, and V is a matrix that satisfies the
conditions of the previous Theorem. If X̃ ∈ C5 is another matrix of
the form (1), then know that V • X̃ ≥ 0.
However, cannot conclude that V ∈ C∗5 because V • X̃ ≥ 0 only
holds for X̃ of the form (1), in particular, x̃45 = 0.
Fortunately, result of Hogben, Johnson and Reams (2005) shows
that V can easily be “completed” to obtain a copositive matrix that
still separates X from C5.
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Separating DNN and CP matrices The 5x5 case

Theorem (Completion of cut, 5× 5 case)
Suppose that X ∈ D5 \ C5 has the form (1), and that V satisfies the
conditions of the previous theorem. Define

V (s) =

V11 β1 β2
βT

1 γ1 s
βT

2 s γ2

 .

Then V (s) • X < 0 for any s, and V (s) ∈ C∗5 for s ≥ √γ1γ2.
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Separating DNN and CP matrices Separation for matrices with block structure
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Separating DNN and CP matrices Separation for matrices with block structure

Procedure for 5× 5 case where X 6> 0 can be generalized to larger
matrices with block structure. Assume X has the form

X =


X11 X12 X13 . . . X1k
X T

12 X22 0 . . . 0

X T
13 0

. . . . . .
...

...
...

. . . . . . 0
X T

1k 0 . . . 0 Xkk

 , (2)

where k ≥ 3, each Xii is an ni × ni matrix, and
∑k

i=1 ni = n.
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Separating DNN and CP matrices Separation for matrices with block structure

Lemma (Characterization of CP matrix with block structure)
Suppose that X ∈ Dn has the form (2), k ≥ 3, and let

X i =

(
X11 X1i
X T

1i Xii

)
, i = 2, . . . , k .

Then X ∈ Cn if and only if there are matrices Aii , i = 2, . . . , k such that∑k
i=2 Aii = X11, and(

Aii X1i
X T

1i Xii

)
∈ Cn1+ni , i = 2, . . . , k .

Moreover, if G(X i) is a CP graph for each i = 2, . . . , k, then the above
statement remains true with Cn1+ni replaced by Dn1+ni .
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Separating DNN and CP matrices Separation for matrices with block structure

Theorem (Existence of cut, block case)

Suppose that X ∈ Dn \ Cn has the form (2), where G(X i) is a CP graph,
i = 2, . . . , k. Then there is a matrix V , also of the form (2), such that(

V11 V1i
V T

1i Vii

)
∈ D∗n1+ni

, i = 2, . . . , k ,

and V • X < 0.

Moreover, if γi = [diag(Vii)]
.5, then the matrix

Ṽ =

V11 . . . V1k
...

. . .
...

V T
1k . . . Vkk

 ,

where Vij = γiγ
T
j , 2 ≤ i 6= j ≤ k, has Ṽ ∈ C∗n and Ṽ • X = V • X < 0.
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j , 2 ≤ i 6= j ≤ k, has Ṽ ∈ C∗n and Ṽ • X = V • X < 0.

Kurt M. Anstreicher (University of Iowa) Optimization with CoP and CP Matrices Lunteren 2012, Netherlands 23 / 45



Separating DNN and CP matrices Separation for matrices with block structure

Note that:

Matrix X may have numerical entries that are small but not exactly
zero. Can apply procedure to perturbed matrix X̃ where entries of
X below a specified tolerance are set to zero. If a cut V separating
X̃ from Cn is found, then V • X ≈ V • X̃ < 0, and V is very likely to
also separate X from Cn.

Procedure may provide a cut for X ∈ Dn \ Cn even when sufficient
conditions for generating such a cut are not satisfied. In particular,
a cut may be found even when the condition that X i is a CP graph
for each i is not satisfied.
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Separating DNN and CP matrices Separation for matrices with block structure

A second case where block structure can be used to generate cuts for
a matrix X ∈ Dn \ Cn is when X has the form

X =



I X12 X13 . . . X1k
X T

12 I X23 . . . X2k

X T
13 X T

23
. . . . . .

...
...

...
. . . . . . X(k−1)k

X T
1k X T

2k . . . X T
(k−1)k I

 , (3)

where k ≥ 2, each Xij is an ni × nj matrix, and
∑k

i=1 ni = n.

The
structure in (3) corresponds to a partitioning of the vertices
{1,2, . . . ,n} into k stable sets in G(X ), of size n1, . . . ,nk .
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Separating DNN and CP matrices Applications

Example (Stable set in a graph)
Let A be the adjacency matrix of a graph G on n vertices, and let α be
the maximum size of a stable set in G.

DeKlerk and Pasechnik (2002) show that

α−1 = min
{

(I + A) • X : eeT • X = 1,X ∈ Cn

}
. (4)

Relaxing Cn to Dn results in the Lovász-Schrijver bound

(ϑ′)−1 = min
{

(I + A) • X : eeT • X = 1,X ∈ Dn

}
. (5)
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Separating DNN and CP matrices Applications

Let G12 be the complement of the graph corresponding to the vertices
of a regular icosahedron (Bomze and DeKlerk, 2002). Then α = 3 and
ϑ′ ≈ 3.24.

Using the cone K1
12 to better approximate the dual of (4) provides

no improvement (Bomze and DeKlerk, 2002).
For the solution matrix X ∈ D12 from (5), cannot find cut based on
first block structure (2). However can find a cut based on second
block structure (3), using four 3× 3 diagonal blocks. Adding this
cut and re-solving, gap to 1/α = 1

3 is approximately 2× 10−8.
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Separating DNN and CP matrices Applications

Next consider stable set problem for graphs Gn, n ∈ {11,14,17} from
Pena, Vera and Zuluaga (2007). Use following procedure:

Solve DNN relaxation to obtain the solution X = X 0 ∈ Dn and
bound ϑ′.
Find all possible structures consisting of 4 disjoint stable sets of
size 2 in G(X ). Randomly chose 2n of these structures to try to
generate cuts based on the block structure (3) applied to the
corresponding 8× 8 principal submatrices of X .
After adding all of the cuts found, re-solve the problem to get a
new solution X 1 and a new bound on α. Continue for an additional
three rounds of cuts, on each round i using the cuts obtained from
2n eligible structures, chosen at random, obtained from the
solution of the previous problem X i−1.

Perform this entire procedure 20 times for each of the 3 problems.
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Separating DNN and CP matrices Applications

Table: Results on stable set problems (20 runs for each problem)

Number of cuts Bound values
Graph α ϑ′ ϑcop Round min median max min mean max
G11 4 4.694 4.280 1 13 16 19 4.342 4.362 4.443

2 14 18 22 4.244 4.268 4.317
3 12 17 21 4.237 4.253 4.279
4 13 17 22 4.234 4.248 4.264

G14 5 5.916 5.485 1 11 15 19 5.530 5.585 5.666
2 12 17 22 5.441 5.479 5.548
3 16 20 25 5.413 5.441 5.483
4 14 17 25 5.405 5.422 5.456

G17 6 7.134 6.657 1 7 12 18 6.731 6.814 6.922
2 9 17 25 6.594 6.693 6.783
3 10 15 23 6.571 6.651 6.718
4 10 16 23 6.565 6.620 6.664
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Separating DNN and CP matrices Applications

Figure: Bounds on max stable set for G11, G14 and G17
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Approximations of the CoP and CP cones Approximation hierarchies for CoP

Clear that a matrix M ∈ C∗n if and only if the polynomial

P(0)(x) := (x ◦ x)T M(x ◦ x) =
n∑

i=1

Mijx2
i x2

j

is nonnegative for all x ∈ Rn. This is obviously the case if M ≥ 0.

A weaker sufficient condition that ensures nonegativity is if P(0)(x) can
be written as a sum of squares (s.o.s.),

P(0)(x) =
k∑

i=1

hi(x)2.

Parillo (2000) proved that P(0)(x) is a s.o.s. ⇐⇒ M ∈ D∗n = S+
n +Nn.
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Approximations of the CoP and CP cones Approximation hierarchies for CoP

To generalize this construction, consider the polynomial

P(r)(x) := P(0)(x)

(
n∑

i=1

x2
i

)r

=
n∑

i,j=1

Mijx2
i x2

j

(
n∑

i=1

x2
i

)r

.

Using P(r)(x), define the inner approximation hierarchies

Lr
n :=

{
M | P(r)(x) has nonnegative coefficients

}
,

Kr
n :=

{
M | P(r)(x) is a sum of squares

}
.

Easy to see that Lr
n ⊆ Kr

n ∀r ∈ Z+, and furthermore

Nn = L0
n ⊆ L1

n ⊆ · · · ⊆ Lr
n ⊆ Lr+1

n ⊆ · · · ⊆ C∗n ,
D∗n = K0

n ⊆ K1
n ⊆ · · · ⊆ Kr

n ⊆ Kr+1
n ⊆ · · · ⊆ C∗n .

Lr
n and Kr

n are closed convex cones, and in fact Lr
n is polyhedral.
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i=1

x2
i

)r

=
n∑

i,j=1

Mijx2
i x2

j

(
n∑

i=1

x2
i

)r

.

Using P(r)(x), define the inner approximation hierarchies

Lr
n :=

{
M | P(r)(x) has nonnegative coefficients

}
,

Kr
n :=

{
M | P(r)(x) is a sum of squares

}
.

Easy to see that Lr
n ⊆ Kr

n ∀r ∈ Z+, and furthermore

Nn = L0
n ⊆ L1

n ⊆ · · · ⊆ Lr
n ⊆ Lr+1

n ⊆ · · · ⊆ C∗n ,
D∗n = K0

n ⊆ K1
n ⊆ · · · ⊆ Kr

n ⊆ Kr+1
n ⊆ · · · ⊆ C∗n .

Lr
n and Kr

n are closed convex cones, and in fact Lr
n is polyhedral.
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Approximations of the CoP and CP cones Approximation hierarchies for CoP

Let
In(r) :=

{
m ∈ Zn

+ |eT m = r
}

denote all possible exponents for monomials of degree r , where for
m ∈ In(r), zm :=

∏n
i=1(zi)

mi . Note that |In(r)| =
(n+r−1

r

)
. For m ∈ In(r),

define
Fm = mmT − Diag(m).

Theorem (Bomze and DeKlerk, 2002)
For r ≥ 0, Lr

n = {M |Fm •M ≥ 0 ∀m ∈ In(r + 2)}.

Since Lr
n ⊂ C∗n is polyhedral, this implies

Co{mmT |m ∈ In(r + 2)} ⊂ Cn ⊂ Co{Fm |m ∈ In(r + 2)}.

Left side is obvious; right side is not.
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Approximations of the CoP and CP cones Approximation hierarchies for CoP

Pena, Vera and Zuluaga (2007) define another hierarchy of inner
approximations {Qr

n} of C∗n . Letting z = (x ◦ x), for p ∈ In(r) we then
have zp = x2p.

Then ∀r ∈ Z+, define

Qr
n :=

M

∣∣∣∣∣∣∃ {Mp}p∈In(r) ⊆ D
∗
n,

(
n∑

i=1

zi

)r

zT Mz =
∑

p∈In(r)

zpzT Mpz

 .

It is then easy to check that for any r ∈ Z+,

Lr
n ⊆ Qr

n ⊆ Kr
n

and Qr
n ( Kr

n for r > 1.
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Approximations of the CoP and CP cones Approximation hierarchies for CP
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Approximations of the CoP and CP cones Approximation hierarchies for CP

Natural to consider approximations for Cn based on symmetric tensors.

LetMr
n be the set of r -degree real-valued tensors, where each

coordinate index takes on the values 1,2, . . . ,n. (M1
n are vectors

in Rn, andM2
n are n × n real matrices.)

Let Nr (n) denote the set of indexing vectors for elements ofMr
n,

Nr (n) := {α ∈ Zn
+ | 1 ≤ αi ≤ n, i = 1, ..., r}.

If Z ∈Mr
n and α ∈ Nr (n), Z [α] ∈ R denotes the element of Z at

coordinate α.
Z is symmetric if Z [π(α)] = Z [α] for any permutation π(·). We use
S r

n to denote the set of symmetric tensors inMr
n.
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Approximations of the CoP and CP cones Approximation hierarchies for CP

For β ∈ Nr (n), and T ∈Mr+2
n , T β denotes the ordinary n × n matrix

obtained by fixing the first r indices of T as β. Each such matrix is a
“slice” of T , and we use Slices(T ) to denote the set of all such slices,

Slices(T ) = {T β |β ∈ Nr (n)}.

We also define an operator Collapse :Mr+2
n −→M2

n as:

Collapse(T ) =
∑

β∈Nr (n)

T β.
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Approximations of the CoP and CP cones Approximation hierarchies for CP
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Figure: Illustration of tensor operations for r = 1
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Approximations of the CoP and CP cones Approximation hierarchies for CP

Consider a vector x ∈ Rn
+ with eT x = 1, and the “outer product” tensor

Z ∈ S r+2
n with

Z [α] =
r+2∏
i=1

xαi .

For example, if r = 1, then Z [(1,2,4)T ] = x1x2x4, Z [(2,3,2)T ] = x2
2 x3.

Note Slices(Z ) ⊂ Dn since each slice of Z is a nonnegative multiple of
xxT , and

Collapse(Z ) =
n∑

α1=1

. . .
n∑

αr =1

(
r∏

i=1

xαi

)
= (eT x)r xxT

= xxT .
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Approximations of the CoP and CP cones Approximation hierarchies for CP

Suggests defining the following cones for integer r ≥ 0:

T r
n :=

{
X = Collapse(Z )

∣∣∣Z ∈ S r+2
n ,Slices(Z ) ⊆ Nn

}
,

T Dr
n :=

{
X = Collapse(Z )

∣∣∣Z ∈ S r+2
n ,Slices(Z ) ⊆ Dn

}
.

Then easy to show that

Cn ⊆ · · · ⊆ T r+1
n ⊆ T r

n ⊆ · · · ⊆ T 1
n ⊆ T 0

n := Nn

Cn ⊆ · · · ⊆ T Dr+1
n ⊆ T Dr

n ⊆ · · · ⊆ T D1
n ⊆ T D0

n := Dn
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Approximations of the CoP and CP cones Approximation hierarchies for CP

Theorem (Dong 2010)
For any nonnegative integer r , the cones Lr

n and T r
n are dual to one

another, as are the cones Qr
n and T Dr

n,(
Lr

n
)∗

= T r
n ,

(
T r

n
)∗

= Lr
n,(

Qr
n
)∗

= T Dr
n,

(
T Dr

n
)∗

= Qr
n.

Related result due to Laurent and Gvozdenovic (2007) shows that dual
of Kr

n corresponds to “collapsing” semidefinite relaxation of moment
matrix.
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Open Problems

Open Problems

Promising research area with many interesting questions;

Facet description of T r
n ?

Relaxations of C∗n between Qr
n and Kr

n? Might be able to apply
strengthened semidefiniteness conditions to T Dr

n for r even (for
example r=2).
Full characterization of C5 and C∗5? DONE! Complete description
of extreme rays of C∗5 obtained by Hildebrand (2011).
Approximation results - currently have results only for standard QP
and max stable set.
Computational investigations - T r

n ∩ S+
n looks attractive.
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Open Problems

Thank You
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